Public Health & Intelligence

Total Page:16

File Type:pdf, Size:1020Kb

Public Health & Intelligence Public Health & Intelligence PHI Trend Analysis Guidance Document Control Version Version 1.5 Date Issued March 2017 Author Róisín Farrell, David Walker / HI Team Comments to [email protected] Version Date Comment Author Version 1.0 July 2016 1st version of paper David Walker, Róisín Farrell Version 1.1 August Amending format; adding Róisín Farrell 2016 sections Version 1.2 November Adding content to sections Róisín Farrell, Lee 2016 1 and 2 Barnsdale Version 1.3 November Amending as per Róisín Farrell 2016 suggestions from SAG Version 1.4 December Structural changes Róisín Farrell, Lee 2016 Barnsdale Version 1.5 March 2017 Amending as per Róisín Farrell, Lee suggestions from SAG Barnsdale Contents 1. Introduction ........................................................................................................................................... 1 2. Understanding trend data for descriptive analysis ................................................................................. 1 3. Descriptive analysis of time trends ......................................................................................................... 2 3.1 Smoothing ................................................................................................................................................ 2 3.1.1 Simple smoothing ............................................................................................................................ 2 3.1.2 Median smoothing ........................................................................................................................... 2 3.2 Measuring change .................................................................................................................................... 3 3.2.1 Confidence Intervals ........................................................................................................................ 3 3.2.2 Population Proportion Tests ............................................................................................................ 3 3.2.3 Comparing standardised rates......................................................................................................... 3 3.2.4 Statistical Process Control................................................................................................................ 4 3.3 Charting data to highlight trends ............................................................................................................. 4 3.3.1 Logarithmic scales ........................................................................................................................... 4 3.3.2 Changing axis ratios......................................................................................................................... 5 4. Understanding trend data for exploratory analysis ................................................................................ 5 4.1 Univariate analysis ................................................................................................................................... 5 4.2 Multivariate analysis ................................................................................................................................ 6 5. Analytical methods for exploratory trend analysis ................................................................................. 6 5.1 Using Regression ...................................................................................................................................... 7 5.2 Methods ................................................................................................................................................... 8 5.2.1 Linear regression .............................................................................................................................. 8 5.2.2 Logistic regression ........................................................................................................................... 9 5.2.3 Polynomial regression ...................................................................................................................... 9 5.2.4 Restricted cubic splines .................................................................................................................. 10 5.2.5 Segmented regression ................................................................................................................... 11 5.2.6 Poisson regression ......................................................................................................................... 11 5.2.7 ARIMA ............................................................................................................................................ 12 5.2.8 Age Period Cohort Analysis ............................................................................................................ 13 6. Discussion ............................................................................................................................................ 13 Appendix 1: Examples from PHI outputs ..................................................................................................... 14 1.1: Simple Smoothing and Confidence Intervals ................................................................................................ 14 1.2: Linear Regression .......................................................................................................................................... 15 1.3: Population Proportion Tests................................................................................................................... 16 1.4: Age-Period-Cohort Analysis .................................................................................................................... 17 Appendix 2 Worked examples .................................................................................................................... 18 2.1: Simple Smoothing .................................................................................................................................. 18 2.2: Population Proportion Tests................................................................................................................... 19 2.3: Logarithmic Scales .................................................................................................................................. 20 2.4: Modifying axes ....................................................................................................................................... 22 2.5: Histograms ............................................................................................................................................. 23 2.6: Standard deviation ................................................................................................................................. 25 2.7: Scatterplots ............................................................................................................................................ 26 2.8: Residual plots ......................................................................................................................................... 28 2.9: Linear Regression ................................................................................................................................... 29 2.10: Logistic regression .................................................................................................................................. 31 2.11: Polynomial regression ............................................................................................................................ 34 2.12: Restricted cubic splines .......................................................................................................................... 37 2.13: Poisson regression .................................................................................................................................. 41 2.14: ARIMA ..................................................................................................................................................... 46 Appendix 3 Further Reading ....................................................................................................................... 50 1. Introduction When presenting and publishing data, it is common to provide a trend or time series analysis. A time series is simply a sequence of data points plotted over time (frequently using column or line charts). Time series analysis is used for a number of reasons: To summarise a trend and show if a measure is increasing or decreasing. By summarising data across a range of years, it may be possible to remove the ‘noise’ of a single-year analysis and expose an underlying trend. To project future trends, or estimate uncertain past events. To identify a change in trend resulting from policy change or a significant event. In many cases, a description of the observations and the magnitude of any observed change over time may be sufficient. However, when change occurs (and in some cases, when it does not) we may be required to explain why this has happened. This document provides individuals producing analytical outputs with guidance on time trend analysis methods and examples of their appropriate use. It first examines methods of describing trend data in order to aid interpretation and then discusses methods for exploring associations within data over time, observing the key principle that the best method to use is the
Recommended publications
  • Trend Analysis and Forecasting the Spread of COVID-19 Pandemic in Ethiopia Using Box– Jenkins Modeling Procedure
    International Journal of General Medicine Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Trend Analysis and Forecasting the Spread of COVID-19 Pandemic in Ethiopia Using Box– Jenkins Modeling Procedure Yemane Asmelash Introduction: COVID-19, which causes severe acute respiratory syndrome, is spreading Gebretensae 1 rapidly across the world, and the severity of this pandemic is rising in Ethiopia. The main Daniel Asmelash 2 objective of the study was to analyze the trend and forecast the spread of COVID-19 and to develop an appropriate statistical forecast model. 1Department of Statistics, College of Natural and Computational Science, Methodology: Data on the daily spread between 13 March, 2020 and 31 August 2020 were Aksum University, Aksum, Ethiopia; collected for the development of the autoregressive integrated moving average (ARIMA) 2 Department of Clinical Chemistry, model. Stationarity testing, parameter testing and model diagnosis were performed. In School of Biomedical and Laboratory Sciences, College of Medicine and Health addition, candidate models were obtained using autocorrelation function (ACF) and partial Sciences, University of Gondar, Gondar, autocorrelation functions (PACF). Finally, the fitting, selection and prediction accuracy of the Ethiopia ARIMA models was evaluated using the RMSE and MAPE model selection criteria. Results: A total of 51,910 confirmed COVID-19 cases were reported from 13 March to 31 August 2020. The total recovered and death rates as of 31 August 2020 were 37.2% and 1.57%, respectively, with a high level of increase after the mid of August, 2020. In this study, ARIMA (0, 1, 5) and ARIMA (2, 1, 3) were finally confirmed as the optimal model for confirmed and recovered COVID-19 cases, respectively, based on lowest RMSE, MAPE and BIC values.
    [Show full text]
  • Wavelet Entropy Energy Measure (WEEM): a Multiscale Measure to Grade a Geophysical System's Predictability
    EGU21-703, updated on 28 Sep 2021 https://doi.org/10.5194/egusphere-egu21-703 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Wavelet Entropy Energy Measure (WEEM): A multiscale measure to grade a geophysical system's predictability Ravi Kumar Guntu and Ankit Agarwal Indian Institute of Technology Roorkee, Hydrology, Roorkee, India ([email protected]) Model-free gradation of predictability of a geophysical system is essential to quantify how much inherent information is contained within the system and evaluate different forecasting methods' performance to get the best possible prediction. We conjecture that Multiscale Information enclosed in a given geophysical time series is the only input source for any forecast model. In the literature, established entropic measures dealing with grading the predictability of a time series at multiple time scales are limited. Therefore, we need an additional measure to quantify the information at multiple time scales, thereby grading the predictability level. This study introduces a novel measure, Wavelet Entropy Energy Measure (WEEM), based on Wavelet entropy to investigate a time series's energy distribution. From the WEEM analysis, predictability can be graded low to high. The difference between the entropy of a wavelet energy distribution of a time series and entropy of wavelet energy of white noise is the basis for gradation. The metric quantifies the proportion of the deterministic component of a time series in terms of energy concentration, and its range varies from zero to one. One corresponds to high predictable due to its high energy concentration and zero representing a process similar to the white noise process having scattered energy distribution.
    [Show full text]
  • Biostatistics for Oral Healthcare
    Biostatistics for Oral Healthcare Jay S. Kim, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 Ronald J. Dailey, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 Biostatistics for Oral Healthcare Biostatistics for Oral Healthcare Jay S. Kim, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 Ronald J. Dailey, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 JayS.Kim, PhD, is Professor of Biostatistics at Loma Linda University, CA. A specialist in this area, he has been teaching biostatistics since 1997 to students in public health, medical school, and dental school. Currently his primary responsibility is teaching biostatistics courses to hygiene students, predoctoral dental students, and dental residents. He also collaborates with the faculty members on a variety of research projects. Ronald J. Dailey is the Associate Dean for Academic Affairs at Loma Linda and an active member of American Dental Educational Association. C 2008 by Blackwell Munksgaard, a Blackwell Publishing Company Editorial Offices: Blackwell Publishing Professional, 2121 State Avenue, Ames, Iowa 50014-8300, USA Tel: +1 515 292 0140 9600 Garsington Road, Oxford OX4 2DQ Tel: 01865 776868 Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, Victoria 3053, Australia Tel: +61 (0)3 9347 0300 Blackwell Wissenschafts Verlag, Kurf¨urstendamm57, 10707 Berlin, Germany Tel: +49 (0)30 32 79 060 The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Big Data for Reliability Engineering: Threat and Opportunity
    Reliability, February 2016 Big Data for Reliability Engineering: Threat and Opportunity Vitali Volovoi Independent Consultant [email protected] more recently, analytics). It shares with the rest of the fields Abstract - The confluence of several technologies promises under this umbrella the need to abstract away most stormy waters ahead for reliability engineering. News reports domain-specific information, and to use tools that are mainly are full of buzzwords relevant to the future of the field—Big domain-independent1. As a result, it increasingly shares the Data, the Internet of Things, predictive and prescriptive lingua franca of modern systems engineering—probability and analytics—the sexier sisters of reliability engineering, both statistics that are required to balance the otherwise orderly and exciting and threatening. Can we reliability engineers join the deterministic engineering world. party and suddenly become popular (and better paid), or are And yet, reliability engineering does not wear the fancy we at risk of being superseded and driven into obsolescence? clothes of its sisters. There is nothing privileged about it. It is This article argues that“big-picture” thinking, which is at the rarely studied in engineering schools, and it is definitely not core of the concept of the System of Systems, is key for a studied in business schools! Instead, it is perceived as a bright future for reliability engineering. necessary evil (especially if the reliability issues in question are safety-related). The community of reliability engineers Keywords - System of Systems, complex systems, Big Data, consists of engineers from other fields who were mainly Internet of Things, industrial internet, predictive analytics, trained on the job (instead of receiving formal degrees in the prescriptive analytics field).
    [Show full text]
  • Volatility Estimation of Stock Prices Using Garch Method
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals European Journal of Business and Management www.iiste.org ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) Vol.7, No.19, 2015 Volatility Estimation of Stock Prices using Garch Method Koima, J.K, Mwita, P.N Nassiuma, D.K Kabarak University Abstract Economic decisions are modeled based on perceived distribution of the random variables in the future, assessment and measurement of the variance which has a significant impact on the future profit or losses of particular portfolio. The ability to accurately measure and predict the stock market volatility has a wide spread implications. Volatility plays a very significant role in many financial decisions. The main purpose of this study is to examine the nature and the characteristics of stock market volatility of Kenyan stock markets and its stylized facts using GARCH models. Symmetric volatility model namly GARCH model was used to estimate volatility of stock returns. GARCH (1, 1) explains volatility of Kenyan stock markets and its stylized facts including volatility clustering, fat tails and mean reverting more satisfactorily.The results indicates the evidence of time varying stock return volatility over the sampled period of time. In conclusion it follows that in a financial crisis; the negative returns shocks have higher volatility than positive returns shocks. Keywords: GARCH, Stylized facts, Volatility clustering INTRODUCTION Volatility forecasting in financial market is very significant particularly in Investment, financial risk management and monetory policy making Poon and Granger (2003).Because of the link between volatility and risk,volatility can form a basis for efficient price discovery.Volatility implying predictability is very important phenomenon for traders and medium term - investors.
    [Show full text]
  • A Python Library for Neuroimaging Based Machine Learning
    Brain Predictability toolbox: a Python library for neuroimaging based machine learning 1 1 2 1 1 1 Hahn, S. ,​ Yuan, D.K. ,​ Thompson, W.K. ,​ Owens, M. ,​ Allgaier, N .​ and Garavan, H ​ ​ ​ ​ ​ ​ 1. Departments of Psychiatry and Complex Systems, University of Vermont, Burlington, VT 05401, USA 2. Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA Abstract Summary Brain Predictability toolbox (BPt) represents a unified framework of machine learning (ML) tools designed to work with both tabulated data (in particular brain, psychiatric, behavioral, and physiological variables) and neuroimaging specific derived data (e.g., brain volumes and surfaces). This package is suitable for investigating a wide range of different neuroimaging based ML questions, in particular, those queried from large human datasets. Availability and Implementation BPt has been developed as an open-source Python 3.6+ package hosted at https://github.com/sahahn/BPt under MIT License, with documentation provided at ​ https://bpt.readthedocs.io/en/latest/, and continues to be actively developed. The project can be ​ downloaded through the github link provided. A web GUI interface based on the same code is currently under development and can be set up through docker with instructions at https://github.com/sahahn/BPt_app. ​ Contact Please contact Sage Hahn at [email protected] ​ Main Text 1 Introduction Large datasets in all domains are becoming increasingly prevalent as data from smaller existing studies are pooled and larger studies are funded. This increase in available data offers an unprecedented opportunity for researchers interested in applying machine learning (ML) based methodologies, especially those working in domains such as neuroimaging where data collection is quite expensive.
    [Show full text]
  • BIOSTATS Documentation
    BIOSTATS Documentation BIOSTATS is a collection of R functions written to aid in the statistical analysis of ecological data sets using both univariate and multivariate procedures. All of these functions make use of existing R functions and many are simply convenience wrappers for functions contained in other popular libraries, such as VEGAN and LABDSV for multivariate statistics, however others are custom functions written using functions in the base or stats libraries. Author: Kevin McGarigal, Professor Department of Environmental Conservation University of Massachusetts, Amherst Date Last Updated: 9 November 2016 Functions: all.subsets.gam.. 3 all.subsets.glm. 6 box.plots. 12 by.names. 14 ci.lines. 16 class.monte. 17 clus.composite.. 19 clus.stats. 21 cohen.kappa. 23 col.summary. 25 commission.mc. 27 concordance. 29 contrast.matrix. 33 cov.test. 35 data.dist. 37 data.stand. 41 data.trans. 44 dist.plots. 48 distributions. 50 drop.var. 53 edf.plots.. 55 ecdf.plots. 57 foa.plots.. 59 hclus.cophenetic. 62 hclus.scree. 64 hclus.table. 66 hist.plots. 68 intrasetcor. 70 Biostats Library 2 kappa.mc. 72 lda.structure.. 74 mantel2. 76 mantel.part. 78 mrpp2. 82 mv.outliers.. 84 nhclus.scree. 87 nmds.monte. 89 nmds.scree.. 91 norm.test. 93 ordi.monte.. 95 ordi.overlay. 97 ordi.part.. 99 ordi.scree. 105 pca.communality. 107 pca.eigenval. 109 pca.eigenvec. 111 pca.structure. 113 plot.anosim. 115 plot.mantel. 117 plot.mrpp.. 119 plot.ordi.part. 121 qqnorm.plots.. 123 ran.split. ..
    [Show full text]
  • Measuring Predictability: Theory and Macroeconomic Applications," Journal of Applied Econometrics, 16, 657-669
    Diebold, F.X. and Kilian, L. (2001), "Measuring Predictability: Theory and Macroeconomic Applications," Journal of Applied Econometrics, 16, 657-669. Measuring Predictability: Theory and Macroeconomic Applications Francis X. Diebold Department of Finance, Stern School of Business, New York University, New York, NY 10012- 1126, USA, and NBER. Lutz Kilian Department of Economics, University of Michigan, Ann Arbor, MI 48109-1220, USA, and CEPR. SUMMARY We propose a measure of predictability based on the ratio of the expected loss of a short-run forecast to the expected loss of a long-run forecast. This predictability measure can be tailored to the forecast horizons of interest, and it allows for general loss functions, univariate or multivariate information sets, and covariance stationary or difference stationary processes. We propose a simple estimator, and we suggest resampling methods for inference. We then provide several macroeconomic applications. First, we illustrate the implementation of predictability measures based on fitted parametric models for several U.S. macroeconomic time series. Second, we analyze the internal propagation mechanism of a standard dynamic macroeconomic model by comparing the predictability of model inputs and model outputs. Third, we use predictability as a metric for assessing the similarity of data simulated from the model and actual data. Finally, we outline several nonparametric extensions of our approach. Correspondence to: F.X. Diebold, Department of Finance, Suite 9-190, Stern School of Business, New York University, New York, NY 10012-1126, USA. E-mail: [email protected]. 1. INTRODUCTION It is natural and informative to judge forecasts by their accuracy. However, actual and forecasted values will differ, even for very good forecasts.
    [Show full text]
  • Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models
    mathematics Article Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models Oscar Trull 1,* , Juan Carlos García-Díaz 1 and Alicia Troncoso 2 1 Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Department of Computer Science, Pablo de Olavide University, 41013 Sevilla, Spain; [email protected] * Correspondence: [email protected] Received: 8 January 2020; Accepted: 13 February 2020; Published: 18 February 2020 Abstract: The Holt–Winters models are one of the most popular forecasting algorithms. As well-known, these models are recursive and thus, an initialization value is needed to feed the model, being that a proper initialization of the Holt–Winters models is crucial for obtaining a good accuracy of the predictions. Moreover, the introduction of multiple seasonal Holt–Winters models requires a new development of methods for seed initialization and obtaining initial values. This work proposes new initialization methods based on the adaptation of the traditional methods developed for a single seasonality in order to include multiple seasonalities. Thus, new methods to initialize the level, trend, and seasonality in multiple seasonal Holt–Winters models are presented. These new methods are tested with an application for electricity demand in Spain and analyzed for their impact on the accuracy of forecasts. As a consequence of the analysis carried out, which initialization method to use for the level, trend, and seasonality in multiple seasonal Holt–Winters models with an additive and multiplicative trend is provided. Keywords: forecasting; multiple seasonal periods; Holt–Winters, initialization 1. Introduction Exponential smoothing methods are widely used worldwide in time series forecasting, especially in financial and energy forecasting [1,2].
    [Show full text]
  • Central Limit Theorems When Data Are Dependent: Addressing the Pedagogical Gaps
    Institute for Empirical Research in Economics University of Zurich Working Paper Series ISSN 1424-0459 Working Paper No. 480 Central Limit Theorems When Data Are Dependent: Addressing the Pedagogical Gaps Timothy Falcon Crack and Olivier Ledoit February 2010 Central Limit Theorems When Data Are Dependent: Addressing the Pedagogical Gaps Timothy Falcon Crack1 University of Otago Olivier Ledoit2 University of Zurich Version: August 18, 2009 1Corresponding author, Professor of Finance, University of Otago, Department of Finance and Quantitative Analysis, PO Box 56, Dunedin, New Zealand, [email protected] 2Research Associate, Institute for Empirical Research in Economics, University of Zurich, [email protected] Central Limit Theorems When Data Are Dependent: Addressing the Pedagogical Gaps ABSTRACT Although dependence in financial data is pervasive, standard doctoral-level econometrics texts do not make clear that the common central limit theorems (CLTs) contained therein fail when applied to dependent data. More advanced books that are clear in their CLT assumptions do not contain any worked examples of CLTs that apply to dependent data. We address these pedagogical gaps by discussing dependence in financial data and dependence assumptions in CLTs and by giving a worked example of the application of a CLT for dependent data to the case of the derivation of the asymptotic distribution of the sample variance of a Gaussian AR(1). We also provide code and the results for a Monte-Carlo simulation used to check the results of the derivation. INTRODUCTION Financial data exhibit dependence. This dependence invalidates the assumptions of common central limit theorems (CLTs). Although dependence in financial data has been a high- profile research area for over 70 years, standard doctoral-level econometrics texts are not always clear about the dependence assumptions needed for common CLTs.
    [Show full text]
  • Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks
    Article Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks Renjie Zhou 1,2, Chen Yang 1,2, Jian Wan 1,2,*, Wei Zhang 1,2, Bo Guan 3,*, Naixue Xiong 4,* 1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; [email protected] (R.Z.); [email protected] (C.Y.); [email protected] (W.Z.) 2 Key Laboratory of Complex Systems Modeling and Simulation of Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China 3 School of Electronic and Information Engineer, Ningbo University of Technology, Ningbo 315211, China 4 Department of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA * Correspondence: [email protected] (J.W.); [email protected] (B.G.); [email protected] (N.X.) Tel.: +1-404-645-4067 (N.X.) Academic Editor: Mohamed F. Younis Received: 15 November 2016; Accepted: 24 March 2017; Published: 6 April 2017 Abstract: Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity.
    [Show full text]
  • Incubation Periods Impact the Spatial Predictability of Cholera and Ebola Outbreaks in Sierra Leone
    Incubation periods impact the spatial predictability of cholera and Ebola outbreaks in Sierra Leone Rebecca Kahna,1, Corey M. Peaka,1, Juan Fernández-Graciaa,b, Alexandra Hillc, Amara Jambaid, Louisa Gandae, Marcia C. Castrof, and Caroline O. Buckeea,2 aCenter for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115; bInstitute for Cross-Disciplinary Physics and Complex Systems, Universitat de les Illes Balears - Consell Superior d’Investigacions Científiques, E-07122 Palma de Mallorca, Spain; cDisease Control in Humanitarian Emergencies, World Health Organization, CH-1211 Geneva 27, Switzerland; dDisease Control and Prevention, Sierra Leone Ministry of Health and Sanitation, Freetown, Sierra Leone FPGG+89; eCountry Office, World Health Organization, Freetown, Sierra Leone FPGG+89; and fDepartment of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02115 Edited by Burton H. Singer, University of Florida, Gainesville, FL, and approved January 22, 2020 (received for review July 29, 2019) Forecasting the spatiotemporal spread of infectious diseases during total number of secondary infections by an infectious individual in an outbreak is an important component of epidemic response. a completely susceptible population (i.e., R0) (13, 14). Indeed, the However, it remains challenging both methodologically and with basis of contact tracing protocols during an outbreak reflects the respect to data requirements, as disease spread is influenced by need to identify and contain individuals during the incubation numerous factors, including the pathogen’s underlying transmission period, and the relative effectiveness of interventions such as parameters and epidemiological dynamics, social networks and pop- symptom monitoring or quarantine significantly depends on the ulation connectivity, and environmental conditions.
    [Show full text]