A Lightweight Kernel for the Harness Metacomputing Framework ∗ C. Engelmann and G. A. Geist Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA fengelmannc,
[email protected] http://www.csm.ornl.gov Abstract cations from software modules, parallel plug-in paradigms, highly available DVMs, fault-tolerant message pass- Harness is a pluggable heterogeneous Distributed Vir- ing, fine-grain security mechanisms and heterogeneous tual Machine (DVM) environment for parallel and dis- reconfigurable communication frameworks. tributed scientific computing. This paper describes recent Currently, there are three different Harness system proto- improvements in the Harness kernel design. By using a types, each concentrating on different research issues. The lightweight approach and moving previously integrated sys- teams at Oak Ridge National Laboratory [3, 5, 12] and at the tem services into software modules, the software becomes University of Tennessee [6, 7, 13] provide different C vari- more versatile and adaptable. This paper outlines these ants, while the team at Emory University [11, 14, 15, 18] changes and explains the major Harness kernel components maintains a Java-based alternative. in more detail. A short overview is given of ongoing ef- Conceptually, the Harness software architecture consists forts in integrating RMIX, a dynamic heterogeneous recon- of two major parts: a runtime environment (kernel) and a figurable communication framework, into the Harness en- set of plug-in software modules. The multi-threaded user- vironment as a new plug-in software module. We describe space kernel manages the set of dynamically loadable plug- the overall impact of these changes and how they relate to ins.