Walter Baade Papers: Finding Aid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download This Article (Pdf)
244 Trimble, JAAVSO Volume 43, 2015 As International as They Would Let Us Be Virginia Trimble Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575; [email protected] Received July 15, 2015; accepted August 28, 2015 Abstract Astronomy has always crossed borders, continents, and oceans. AAVSO itself has roughly half its membership residing outside the USA. In this excessively long paper, I look briefly at ancient and medieval beginnings and more extensively at the 18th and 19th centuries, plunge into the tragedies associated with World War I, and then try to say something relatively cheerful about subsequent events. Most of the people mentioned here you will have heard of before (Eratosthenes, Copernicus, Kepler, Olbers, Lockyer, Eddington…), others, just as important, perhaps not (von Zach, Gould, Argelander, Freundlich…). Division into heroes and villains is neither necessary nor possible, though some of the stories are tragic. In the end, all one can really say about astronomers’ efforts to keep open channels of communication that others wanted to choke off is, “the best we can do is the best we can do.” 1. Introduction astronomy (though some of the practitioners were actually Christian and Jewish) coincided with the largest extents of Astronomy has always been among the most international of regions governed by caliphates and other Moslem empire-like sciences. Some of the reasons are obvious. You cannot observe structures. In addition, Arabic astronomy also drew on earlier the whole sky continuously from any one place. Attempts to Greek, Persian, and Indian writings. measure geocentric parallax and to observe solar eclipses have In contrast, the Europe of the 16th century, across which required going to the ends (or anyhow the middles) of the earth. -
How Supernovae Became the Basis of Observational Cosmology
Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012). -
Reflections December 2020
Surviving the Bobcat Fire By Robert Anderson As recently as December 9, our solar astronomer, Steve Padilla, was taking his evening walk and noticed the smoke of a hotspot flaring up in the canyon just below the Observatory. It was a remnant of the Bobcat Fire, which started nearby on September 6. The local Angeles National Forest firefighters were notified of the flareup, either to monitor it or extinguish it if needed. They have returned many times during the last three months. And we are always glad to see them, especially those individuals who put water to flame here and battled to save the most productive and famous observatory in history. On the sunny Labor Day weekend, when the Bobcat Fire started near Cogswell Reservoir in a canyon east of the Mount Wilson, the Observatory’s maintenance staff went on cautious alert. As the fire spread out of control, it stayed to the east burning north and south of the reservoir for days, threatening communities in the foothills of the San Gabriels. Nevertheless, all non-essential staff and residents were evacuated off the mountain just in case. Under a surreal, smoke-filled September sky, crews David Cendejas, the superintendent of the Observatory, prepare to defend the Observatory. Photo: D. Cendejas and a skeleton crew of CHARA staff, stayed to monitor the situation and to secure the grounds. Routine year- round maintenance of Mount Wilson always includes In this issue . clearing a wide perimeter of combustibles from the buildings, but when a large fire is burning nearby, clearing Surviving the Fire ……………1 Betelgeuse & Baade …………….5 anything that has been missed becomes an urgent priority, News + Notes .….………………2 Thanks to our Supporters! ..….7 along with double-checking all the fire equipment. -
Physicists Look to a New Telescope to Understand Neutron Stars and Matter at the Extremes INNER WORKINGS
Correction INNER WORKINGS Correction for “Inner Workings: Physicists look to a new tele- scope to understand neutron stars and matter at the extremes,” by Stephen Ornes, which was first published November 4, 2020; 10.1073/pnas.2021447117 (Proc.Natl.Acad.Sci.U.S.A.117, 29249–29252). The editors note that ref. 5 appeared incorrectly. It should instead appear as below. The online version has been corrected. 5. E. Annala, T. Gorda, A. Kurkela, J. Nättilä, A. Vuorinen, Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 16, 907–910 (2020). Published under the PNAS license. First published December 21, 2020. www.pnas.org/cgi/doi/10.1073/pnas.2024053117 CORRECTION www.pnas.org PNAS | December 29, 2020 | vol. 117 | no. 52 | 33719 Downloaded by guest on October 2, 2021 INNER WORKINGS Physicists look to a new telescope to understand neutron stars and matter at the extremes INNER WORKINGS Stephen Ornes, Science Writer Astronomers ostensibly know plenty about neutron matter at such high densities has long been a puzzle,” stars: the hot, collapsed remnants of massive stars says Arzoumanian. Now a small, boxy X-ray telescope that have exploded as supernovae. These objects mounted on the International Space Station is spilling can spin up to hundreds of times a second, generate the inner secrets of these stars. Called the Neutron intense magnetic fields, and send out jets of radia- Star Interior Composition Explorer, or NICER, it can tion that sweep the sky like beams from a lighthouse. measure the size and mass of neutron stars, revealing When two neutron stars collide, the ripples in space- their true density. -
1949–1999 the Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics
P1: FHN/fkr P2: FHN/fgm QC: FHN/anil T1: FHN September 9, 1999 19:34 Annual Reviews AR088-11 Annu. Rev. Astron. Astrophys. 1999. 37:445–86 Copyright c 1999 by Annual Reviews. All rights reserved THE FIRST 50 YEARS AT PALOMAR: 1949–1999 The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics Allan Sandage The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 Key Words stellar evolution, observational cosmology, radio astronomy, high energy astrophysics PROLOGUE In 1999 we celebrate the 50th anniversary of the initial bringing into operation of the Palomar 200-inch Hale telescope. When this telescope was dedicated, it opened up a much larger and clearer window on the universe than any telescope that had gone before. Because the Hale telescope has played such an important role in twentieth century astrophysics, we decided to invite one or two of the astronomers most familiar with what has been achieved at Palomar to give a scientific commentary on the work that has been done there in the first fifty years. The first article of this kind which follows is by Allan Sandage, who has been an active member of the staff of what was originally the Mount Wilson and Palomar Observatories, and later the Carnegie Observatories for the whole of these fifty years. The article is devoted to the topics which covered the original goals for the Palomar telescope, namely observational cosmology and the study of galaxies, together with discoveries that were not anticipated, but were first made at Palomar and which played a leading role in the development of high energy astrophysics. -
Table of Contents
PAGE: 1 PAGE: 2 Table of Contents LEXILE® MEASURE 3 Copernicus, King of Craters 870L 4 Catching Andromeda’s Light 890L 6 Merry Christmas from the Moon! 810L ©Highlights for Children, Inc. This item is permitted to be used by a teacher or educator free of charge for classroom use by printing or photocopying one copy for each student in the class. Highlights® Fun with a Purpose® ISBN 978-1-62091-227-0 PAGE: 32 object—either a rocky asteroid or an icy comet—was more than a mile in diameter. Still, there are larger craters on the Moon, so why is Copernicus special? The answer is simple: because the crater faces Earth directly, it looks nice and round, exactly the way everyone thinks a crater should look. But what really makes Coper- nicus special is its halo of rays. These wispy streamers stretch outward in every direction. Like the crater itself, they are brightest when the Moon is full. Take a close look at these feather-like Copernicus splashes. When a big object blasts out a crater, the smallest particles travel farthest from the point of impact. This spray of rock then falls in a splash pattern onto the lunar surface. This material looks bright because it’s made up of crushed and broken rock, which Copernicus, King of Craters By Edmund A. Fortier On the Moon, this crater rules. The best-known impact crater on to the left of the Moon’s center. reflects light better than the dust- Earth is Meteor Crater. It is You’ll see a small bright spot covered lava plain. -
Not Yet Imagined: a Study of Hubble Space Telescope Operations
NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe. -
A Short History of Hambur Y of Hambur Y of Hamburg Observatory
A short history of Hamburggg Observvvaaatoryyy Stuart R. Anderson & Dieter Engels This paper’s aim is to provide a short history of Hamburg Observatory, its astronomers and instruments, its contribution to astronomy and to the popularisation and educational development of astronomy in Germany. Introduction ‘Bergedorf’, and this name will sometimes be used in this paper, although its official name is Hamburger Sternwarte), a small community just east of the city of Hamburg in north- Hamburg Observatory is located in Bergedorf, near the port ern Germany. This was not always the case, however. Johann city of Hamburg, Germany. Its history throughout its ap- Georg Repsold (1770−1830) was a fireman in the city who proximately 170 years of existence has been interesting and also maintained lighthouse equipment in his own workshop. varied, and at one stage it was one of the largest observato- For extra income, he was permitted to use this workshop for ries in Europe. The observatory and its astronomers have private purposes and having taken lessons in astronomy produced some contributions of outstanding importance to and mathematics, had an interest in building astronomical astronomy, including the celebrated Schmidt corrector plate. observing instruments. In 1799, the Swiss Johann Caspar Several minor planets, comets and novae were discovered Horner received a commission to survey the Weser, Elbe and and catalogues of crucial significance were and continue to Eider rivers and needed good quality optical equipment. be produced. More re- Repsold’s workshop seemed well suited to the task, and the cently, research efforts order for the equipment awakened his astronomical inter- have turned to extraga- ests. -
Starfest 2019 - Registration Closes Sept
October 2019 The Monthly Newsletter of the Bays Mountain Astronomy Club More on Edited by Adam Thanz this image. See FN1 Chapter 1 Cosmic Reflections William Troxel - BMAC Chair More on this image. See FN2 William Troxel More on Cosmic Reflections this image. See FN3 Greetings BMACer’s includes both the start of the fall StarWatch public night viewings and our annual StarFest 3-day event. It is hard to believe that October is upon us all ready. October is a very big month for the club. More on that later in the article. StarWatch is our free, public night viewings at the observatories. They are held on the Saturday nights of October and November First, I want to thank a few people from September’s meeting. I (and March and April) starting at dusk. If the weather is clear, want to thank Brandon Stroupe for hosting and running the we'll be sharing the night sky with the general public. If the business part of the September meeting. I know that Brandon weather is poor, there will be an alternate program in the did a wonderful job in my absence. Next, I want to thank Robin planetarium theater. If you would like to help with the StarWatch Byrne and John Hay for being willing to help out with the programs and interact with the public, you'll need to go through research for the Solar System Walk game that will be part of the the volunteer program from the Park first. If you want to learn the 2020 Astronomy Day activities. -
Interview with Donald E. Osterbrock
DONALD E. OSTERBROCK (1924 – 2007) INTERVIEWED BY SHIRLEY K. COHEN February 10, 2003 Photo courtesy Don Harris, UCSC Photo Services ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Astronomy; astrophysics Abstract In this brief interview, the American astronomer Donald Osterbrock, who died on January 11, 2007, offers recollections of Enrico Fermi and Subrahmanyan Chandrasekhar in the early 1950s at the University of Chicago. He recalls the atmosphere at Yerkes Observatory, where he got his PhD (1952); his postdoctoral fellowship at Princeton (1952-1953); and the five years he spent at Caltech, first as an instructor (1953-1955) and then as an assistant professor (1955-1958). At Caltech, he worked on gaseous nebulae. He recalls that work and comments on Jesse Greenstein’s style as head of the astronomy department. He discusses his various colleagues affiliated with the Carnegie Observatories on Santa Barbara Street in Pasadena, including Walter Baade, Rudolph Minkowski, Armin Deutsch and Maarten Schmidt; his Caltech colleagues Guido Münch, Art Code, and Fritz Zwicky; his two graduate students, George Abell and John Mathis; his decision to leave Caltech in 1958 and help Art Code develop a graduate program in astronomy at the University of Wisconsin. http://resolver.caltech.edu/CaltechOH:OH_Osterbrock_D Administrative information Access The interview is unrestricted. Copyright Copyright has been assigned to the California Institute of Technology © 2004, 2007. All requests for permission to publish or quote from the transcript must be submitted in writing to the University Archivist. Preferred citation Osterbrock, Donald E. Interview by Shirley K. Cohen. Pasadena, California, February 10, 2003. Oral History Project, California Institute of Technology Archives. -
Fritz Zwicky, Fritz Z 1
1 Z Zwicky, Fritz Zwicky, Fritz Z 1 Z w i c k y , F r i t z Born Varna, Bulgaria, 14 February 1898 Died Pasadena, California, USA, 8 February 1974 Swiss-American physicist and astrophysicist Fritz Zwicky is remembered as more or less the fi rst (a) to point out the very large amounts of dark matter in rich clusters of galaxies, (b) to show that gravitational lensing of one galaxy by another is much more likely than star–star lensing, and (c) with Walter Baade to associate the supernova phenomenon with the formation of neutron stars and the acceleration of cosmic rays . Zwicky was born into a family of Swiss merchants working abroad, and returned with them to the village of Mollis, in the home canton of Glarus (where he was eventually buried) in 1904. Th ough employed for nearly his entire career in the United States, he remained a Swiss citizen his entire life, returning home to vote, and remarking that “a naturalized citizen is always a second-class citizen.” Zwicky was educated at the Swiss Federal Institute of Technology (ETH), completing a diploma thesis (fi rst degree) under mathematician Herman Weyl and a Ph.D. dissertation in theory of crystals under Peter Debye (winner of the 1936 Nobel Prize in Chemistry) and Paul Scherrer in 1922. Following a 3-year period as an assistant at ETH, Zwicky moved in 1925 to the California Institute of Technology, at the invitation of its president Robert Millikan , receiving a Rockefeller fellowship from the International Education Board to support 2 years’ work there. -
Rudolph Minkowski Was an Outstanding Ob- Servational Astronomer and Astrophysicist
NATIONAL ACADEMY OF SCIENCES R U D O L P H M INKO W SKI 1895—1976 A Biographical Memoir by DO N A L D E . O STER BROCK Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1983 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. RUDOLPH LEO BERNHARD MINKOWSKI May 28, 1895-January 4, 1976 BY DONALD E. OSTERBROCK UDOLPH MINKOWSKI was born in Germany near the end R of the last century and died in California during the final quarter of this century. He was trained as a laboratory physicist, but worked most of his life as an observational astronomer. Using the largest optical telescopes in the world, he made important contributions to nearly every branch of nebular and extragalactic astronomy, but his most important contribution of all was to the identification and interpretation of cosmic radio sources. His monument is the National Geographic Society-Palomar Observatory Sky Survey. He guided, encouraged, and counseled a generation of radio and optical astronomers. Minkowski was born in Strassburg, then part of Germany, on May 28, 1895. His grandfather had hurriedly moved his family to Konigsberg from their native Russia less than twenty-five years before to escape the policy of anti-Semitic persecution adopted by the Czar's government. Rudolph's father Oskar, educated in Konigsberg, became a physician, and at the time of Rudolph's birth he was a well-known pathologist on the Strassburg University medical faculty. His research had played a very important part in understanding the causes of diabetes.