Chemical Demonstrations: a Sourcebook for Teachers

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Demonstrations: a Sourcebook for Teachers DOCUMENT RESUME ED 286 722 SE 048 560 AUTHOR Summerlin, Lee R.; Ealy, James L., Jr. TITLE Chemical Demonstrations: A Sourcebook for Teachers. Volume 1. INSTITUTION American Chemical Society, Washington, D.C. REPORT NO ISBN-0-8412-0923-5 PUB DATE 85 NOTE 186p.; For Volume 2, see SE 048 561. AVAILABLE FROMAmerican Chemical Society, 1155 Sixteenth St., NW, Washington, DC 20036 ($19.95). PUB TYPE Guides - Classroom Use - Guides (For Teachers) (052) EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS Atomic Theory; Chemical Equilibrium; *Chemical Reactions; *Chemistry; *College Science; *Demonstrations (Educational); Energy; Higher Education; Kinetics; Oxidation; *Science Activities; Science Education; Science Instruction; Secondary Education; *Secondary School Science ABSTRACT This book contains 108 classroom demonstrations intended to be used with any introductory chemistry program. These demonstrations were selected in an effort to provide simple, safe, effective and enjoyable experiences for the class. In addition, they are intended to be used to introduce many of the major concepts in chemistry. The demonstrations involve color changes, gas evolution, precipitate formation, smoke, fire, and other obvious or dramatic chemical changes. The guide is organized into 11 major sections including: (1) properties of atoms; (2) gases; (3) solubility and solutions; (4) acids and bases; (5) energy changes; (6) equilibrium; (7) kinetics; (8) oxidation-reduction; (9) electrochemistry; (10) smoke, fire, and explosions; and (11) other chemical reactions. Appendices include an equipment and reagent list and detailed safety and disposal instructions. (TN) *********************************************************************** Reproductions supplied by EDRS are the best that can be made * ti * from the original document. * *********************************************************************** Chemical Demonstrations A Sourcebook for Michas volume I Lee R. Summerlin The University of Alabama at Birmingham James L Ealy, Jr. U.S. DEPARTMENT Of EDUCATION The Hill School Mc. of Educator. Rea* and smotomment OUCATIONAL RESOURCES INFORMATION CENTER (ERIC) Tho document has been reprOducedse evened from the Demon or COPAITIONI "noA 0 Mew changes twee been made to ~am merothachon quality Pommel yam or (*nand Meted on MIS doMP ment do not neceseenly represent OMNI OEM ocertron orPOScY "PERMISSION TO REPRODUCE THIS MATERIAL IN MICROFICHE ONLY P ks 86EN GRANTED o-tA. a6r.i TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)." AMERICAN4 CHEMICAL soarry %VASIUNGION, DC 1115 BEST COPY AVAILABLE 2 Library of Congress Cataloging in Publication Data Summerlin, Le Chemical deu. .enstrations. Includes index. 1. ChemistryExperiments. L Ealy, Jim, 1943- IL Tide. QD43S77 1985 542 85-11240 ISBN 0-8412-0923-5 Book cover desige and illustrations: Pamela Lewis Copy Editor: Susan Robinson Production Editor. Hilary Kanter Managing Editor. Janet S. Dodd Text typesetting: The Lodders of Rockville, Rockville, Md. Front matter and index typesetting: Hot Type Ltd.. Washington, D.C. Typeface: Mellor Printing and binding: R. R. Donnelley and Sons Company, Harrison:7Irg Va. Copyright 411985 American Chemical Society All Rights Reserved. Reprographic copies of individual demonstrationsmay be made for personal or internal use or for the personal or internal use of specific clients. This ccnsent does not extend to copying or transmission by any meansgraphic or electronicforany other purpose, such as for general distribution, for advertising or promotionalpurposes, for creating a new collective work, for resale, or for information storage and retrieval systems. The citation of trade names and/or names of manufacturers in this publicationis not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemicalprocess, or other data be regarded as a license or as a conveyance of any rightor permission, to the holder, reader, or any other person or corporation, to manufacture, reproduce,use, or sell any patented invention or copyrighted work that may in any way be related thereto. Registerednames, trademarks, etc., used in this publication., even wihout specific indication thereof,are not to be considered unprotected by law. PRINTED IN THE UNITED STATES OF AMERICA Second Printing 1986 3 About the Authors LEE R. SUMMERLIN received his B.A. in Chemis- try/Biology from Samford University, his M.S. I in Biology/Chemistry from Birmingham-South- ern College, and his Ph.D. in Chemistry/Science Education from the University of Maryland. He has held many teaching and administrative positions as well as served as a consultant to various agencies and organizations, companies, colleges and universities, and school boards in 1 this country and abroad. He has served as a peer review panelist for several science educa- tional development programs and as a chemistry consultant to various National Science Foundation Instituits. He has presented many seminars and published a number of books on methods and aspects of teaching chemistry and science. He has also conducted numerous workshops on chemical demonstrations throughout the country. He served as coordinator of the Institute for Chemical Education program at the University of Califo'nia, Berkeley, in the summer of 1986. Dr. Summerlin has held office or had major committee assignments in the American Chemical Society, the National Science Teachers Association, the American Association for the Advancement of Science, the Florida Association of Science Teachers, and the Association for the Education of Teachers of Science. He was the recipient of the American Chemical Society Outstanding Chemistry Teacher Award (1967), the James B. Conant Award (1969), and the Du Pont Award (1970). He received the 1985 Ingalls Award, which is given to the Outstanding Teacher at the University of Alabama at Birmingham, and was a national recipient of the 1986 Chemical Manufacturers Association Catalyst Award. JAMES LEE EALY, JR.. received his B.A. in Chem- istry/Biology from Shippensburg University. Since that time he has worked at the Mercers- burg Academy (Chemistry and Biology Mas- ter), The Greensboro Day School (Science Department Chairman), and The Hill School (Head, Chemistry Department). In each of these positions, he worked to develop demonstrations as well as courses that would teach students how to learn the "scientific method" as well as the basics of chemistry. He developed a labora- tory manual for use at The Hill School and is a teacher in the Chemistry Workshop presented by The Taft School in Watertown, Connecticut. In addition to working at The Hill School, Mr. Ealy serves as a marine consultant; his latest project was to develop nine training manuals to be used by a consortium of fourteen oil companies in Alaska. Mr. Ealy has also served on various committees including the American Chemical Society Committee on Advanced Chemistry Exam Writing and the Test Writing Committee for the 1985 Chemistry Olympiad. He serves as a subject editor for the Journal of Chemical Education and has presented demonstrations around the country andpapers at several ChemEd International Meetings. A W)rd of Caution Demonstrations can be fun, and they add excitement to the teaching of chemistry. However, this volume is intended foruse by professional chemists and chemistry teachers. Even the simplest demonstration is potentially dangerous when performed by someone lacking the manipulative skills and knowledge of chemistry necessary to understand the reactions involved. Every precaution must be taken to ensure the safety of the demonstrator and the students. You should follow the directions given for each demonstration andnot exceed the recommended amounts of chemicals. Contents Preface ix Properties of Atoms 1. Electronegativity, Atomic Diameter, and Ionization Energy 3 Gases 2. Gas Densities 7 3. Properties of Gases: Pressure and Suction 8 4. Temperature and Pressure Relationships 9 5. Solubility of a Gas: The Ammonia Fountain 10 6. Preparation of Oxygen Gas from Laundry Bleach 12 7. Preparation of Chlorine Gas from Laundry Bleach 13 8. Diffusion of Gases 14 9. Production of a Gas: Acetylene 16 10. Determining the Molecular Weight of a Gas: Flick Your Bic 17 11. The Effect of Pressure on Boiling Point 19 Solubility and Solutions 12. Precipitate Formation: White 23 13. Precipitate Formation: Black and White 24 14. Precipitate Formation: Blue 25 15. Effect of Temperature on Solubility 26 16. Negative Coefficient of Solubility: Calcium Acetate 27 17. Supersaturation and Crystallization 26 18. The Silicate Garden 30 19. The Effect of Temperature on a Hydrate: Pink to Blue 31 20. Cobalt Complexes: Changing Coordination Numbers 32 21. Polar Properties and Solubility 34 Acids and Bases 22. Acid-Base Indicators 37 23. Acid-Base Indicators: Universal Indicator 36 24. Acid-Base Indicators and pH 39 25. Acid-Base Indicators: A Voice-Activated Chemical Reaction 40 Energy Changes 26. Endothermic Reaction: Anunonium Nitrate 43 27. Endothermic Reaction: Two Solids 44 28. Endothermic Reaction: Thionyl Chloride and Cobalt Sulfate 45 29. Exothermic Reaction: Calcium Chloride 46 I 30. Exothermic Reaction: Sodium Sulfite and Bleach 47 I Equilibrium 31. Equilibrium and LeChatelier's Principle 51 I 32. Effect of Temperature Change on Equilibrium: Cobalt Complex 53 33. Effects of Concentration and Temperatureon Equilibrium: Craver Complex 54 I 34. Effect
Recommended publications
  • Ni33nh3+3Nhi
    Pure & Appi. Chem., Vol. 49, pp.67—73. Pergamon Press, 1977. Printed in Great Britain. NON-AQJEOUS SOLVENTS FOR PREPARATION AND REACTIONS OF NITROGEN HALOGEN COMPOUNDS Jochen Jander Department of Chemistry, University of Heidelberg, D 69 Heidelberg, Germany Abstract -Theimportance of non—aqueous solvents for the chemistry of haloamines is shown in more recent reaction examples. The solvents must be low-melting because of the general temperature sensitivity of the haloamines. They may take part in the reaction (formation of CH NI •CH NH (CH )2NI, NI-,.5 NH-, and NH0I.NH-)ormay e ner (ormation of I .quinuiilidin, 2 NI •1 trithylenediamine, [I(qunuclidine),] salts pure NBr, and compounds of the type R1R2NC103 with R1 and R2 =orgnicgroup or hydrogen). INTRODUCTION Non-aqueous solvents play an important role in preparation and reactions of nitrogen halogen compounds. Due to the fact, that all haloamines are derivatives of ammonia or amines, liquid ammonia or liquid organic amines are used as solvents very often. Liquid ammonia and the lower organic amines reveal, in addition, the advantage of low melting points (liquid ammonia -78, liquid monomethylamine -93.5, liquid dimethylamine -92, liquid tn-. methylamine -12k°C); these meet the general temperature sensitivity of the nitrogen halogen compounds, especially of the pure .lorganic ones. Ammonia and amines are very seldom inert solvents; they mostly take part in the reaction planned for synthesis or conversion of the haloamine. In case a reaction of the solvent is to be avoided, one has to look for a low melting inert solvent, for example methylene chloride (m.p.
    [Show full text]
  • Mathematical Modelling of the Vitamin C Clock Reaction Arxiv:1808.06010
    Mathematical modelling of the vitamin C clock reaction R. Kerr, W. M. Thomson and D. J. Smith∗ Abstract Chemical clock reactions are characterised by a relatively long induction period followed by a rapid `switchover' during which the concentration of a clock chemical rises rapidly. In addition to their interest in chemistry education, these reactions are relevant to industrial and biochemical applications. A substrate-depletive, non- autocatalytic clock reaction involving household chemicals (vitamin C, iodine, hy- drogen peroxide and starch) is modelled mathematically via a system of nonlinear ordinary differential equations. Following dimensional analysis the model is analysed in the phase plane and via matched asymptotic expansions. Asymptotic approxi- mations are found to agree closely with numerical solutions in the appropriate time regions. Asymptotic analysis also yields an approximate formula for the dependence of switchover time on initial concentrations and the rate of the slow reaction. This formula is tested via `kitchen sink chemistry' experiments, and is found to enable a good fit to experimental series varying in initial concentrations of both iodine and vitamin C. The vitamin C clock reaction provides an accessible model system for mathematical chemistry. 1 Introduction `Clock reactions' encompass many different chemical processes in which, following mixing of the reactants, a long induction period of repeatable duration occurs, followed by a rapid visible change. These reactions have been studied for over a century, with early examples including the work of H. Landolt on the sulphite{iodate reaction in the 1880s { for review arXiv:1808.06010v2 [math.DS] 24 Mar 2019 see Horv´ath& Nagyp´al[1], and the work of G.
    [Show full text]
  • Bismuth Chloride Solution SDS US
    SAFETY DATA SHEET Issue Date 10-Nov-2015 Revision Date 11-Nov-2015 Version 1 1. IDENTIFICATION Product identifier Product Name Bismuth Trichloride Solution Other means of identification Product Code 0650 UN/ID no. UN1760 Synonyms Bismuth chloride; Trichlorobismuth, Trichlorobismuthine Recommended use of the chemical and restrictions on use Recommended Use Laboratory chemicals. Uses advised against No information available Details of the supplier of the safety data sheet Manufacturer Address Harrell Industries, Inc. 2495 Commerce Drive Rock Hill, SC 29730 www.harrellindustries.com Emergency telephone number Company Phone Number 803-327-6335 Fax Number 803-327-7808 24 Hour Emergency Phone Number (800) 633-8253 PERS Emergency Telephone (800) 633-8253 (PERS) 2. HAZARDS IDENTIFICATION Classification OSHA Regulatory Status This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute toxicity - Inhalation (Gases) Category 4 Acute toxicity - Inhalation (Dusts/Mists) Category 4 Skin corrosion/irritation Category 1 Sub-category A Serious eye damage/eye irritation Category 1 Specific target organ toxicity (single exposure) Category 3 Label elements Emergency Overview Warning Hazard statements Corrosive to metals. Causes severe skin burns and eye damage May cause respiratory irritation _____________________________________________________________________________________________ Page 1 / 8 0650 - Bismuth Trichloride Solution Revision Date 11-Nov-2015 _____________________________________________________________________________________________ Appearance Clear, colorless to yellow Physical state liquid Odor Faint hydrochloric acid odor. liquid Precautionary Statements - Prevention Wash skin thoroughly after handling Wear eye protection/ face protection Wear protective gloves Precautionary Statements - Response Immediately call a POISON CENTER or doctor IF ON SKIN: Wash with plenty of soap and water IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Theoretical Study on the Molecular and Crystal Structures of Nitrogen Trifluoride and It’S Adduct with BF3
    J. Chem. Sci. Vol. 127, No. 8, August 2015, pp. 1491–1496. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0857-3 Theoretical study on the molecular and crystal structures of nitrogen trifluoride and it’s adduct with BF3 HONGCHEN DUa,b,c aSchool of Science, Zhejiang A & F University, Linan, 311300, China bZhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin’an, 311300, China cPresent address: Weifang University of Science and Technology, Jinguang Street 1299, Shouguang, 262700, China e-mail: [email protected]; [email protected] MS received 30 April 2014; revised 30 October 2014; accepted 27 January 2015 Abstract. The molecular and crystal structure of the adduct NF3·BF3 was studied computationally using density functional theory. It shows that the adduct exists in the form of a complex but is not ionic. The heats of formation in the gas and the condensed phase of the adduct are −1266.09 and −1276.37 kJ·mol−1, respectively, which indicates that it is stable under atmospheric conditions. The crystal form belongs to P 21/c space group. The calculated large band gap (Eg) of the crystal proves that it is stable. The conduction band (LUCO) is mainly contributed by the p orbital of N atom and the valence band (HOCO) from the p orbital of F atom. Keywords. Molecular; crystal; structure; property; theoretical study. 1. Introduction investigation even though there is limited information on the structure–property relationship, especially on the Molecular complexes containing boron trifluoride as a crystal structure of NF3 with BF3.
    [Show full text]
  • Safety Data Sheet
    Safety data sheet Page: 1/13 BASF Safety data sheet according to UN GHS 4th rev. Date / Revised: 23.10.2017 Version: 2.0 Product: Pearl-Glo® SF PG1099 (ID no. 30322522/SDS_COS_00/EN) Date of print 24.10.2017 1. Identification Product identifier Pearl-Glo® SF PG1099 Chemical name: Pearl-Glo SF CAS Number: 7787-59-9 Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses: cosmetic ingredient Details of the supplier of the safety data sheet Company: BASF SE 67056 Ludwigshafen GERMANY Telephone: +49 621 60-48799 E-mail address: [email protected] Emergency telephone number International emergency number: Telephone: +49 180 2273-112 2. Hazards Identification Classification of the substance or mixture According to UN GHS criteria No need for classification according to GHS criteria for this product. Page: 2/13 BASF Safety data sheet according to UN GHS 4th rev. Date / Revised: 23.10.2017 Version: 2.0 Product: Pearl-Glo® SF PG1099 (ID no. 30322522/SDS_COS_00/EN) Date of print 24.10.2017 Label elements Globally Harmonized System (GHS) The product does not require a hazard warning label in accordance with GHS criteria. Other hazards According to UN GHS criteria No specific dangers known, if the regulations/notes for storage and handling are considered. 3. Composition/Information on Ingredients Substances Chemical nature INCI Name: BISMUTH OXYCHLORIDE Contains: Bismuth chloride oxide CAS Number: 7787-59-9 EC-Number: 232-122-7 Hazardous ingredients (GHS) According to UN GHS criteria No particular hazards known. Mixtures Not applicable 4. First-Aid Measures Description of first aid measures Remove contaminated clothing.
    [Show full text]
  • Kinetics, Equilibrium & Catalysis
    Kinetics, Equilibrium & Catalysis The rates of chemical reactions as a function of temperature will be discussed via the use of light sticks at 3 different temperatures and the H2/O2 balloon explosion. The concept of activation barriers to chemical reactions will thus be introduced. The catalytic decomposition of H2O2 and oscillating Iodine reaction will also be performed along with the chemical principles involved. Stuff: * thermos bottle (or insulated container) (you provide) * boiling hot water to put in thermos (you provide) * ice (you provide) * water in container (you provide) * large disposable plastic or aluminum tray (e.g., turkey pan) (you provide) * roll of paper towels for cleaning up messes (you provide) * small amount of dishwashing detergent liquid (you provide) Propane torch (we provide, please return) 2 large plastic graduated cylinders (we provide, please clean & return) 3 × 250 mL beakers for the light sticks (we provide, please return) 3 light sticks (we will provide) balloons – H2, O2 and several H2/O2 mixtures (we provide) potassium iodide solution, dilute & concentrated (we provide, return empty containers) 15% and 30% H2O2 (hydrogen peroxide) solution (we provide, return empty containers) oscillating iodine clock reaction kit (we provide – return empty containers) 600 mL beaker for oscillating clock rxn (we provide - please clean & return) General SAFETY notes: You are representing LSU. Please be professional and safety conscious. 90% of safety is using good common sense and being cautious. Wear safety glasses when working with chemicals. Store the 15 and 30% H2O2 and oscillating iodine clock Solution A (15% H2O2) in a refrigerator if you pick up the chemicals the day before the demo.
    [Show full text]
  • BISMUTH(III)CHLORIDE ENVIRONMENTALLY BEGIN ONE–POT SYNTHESIS of COUMARIN DERIVATIVE Pankaj S
    [Chaudhari* et al., 5(7): July, 2016] ISSN: 2277-9655 IC™ Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY BISMUTH(III)CHLORIDE ENVIRONMENTALLY BEGIN ONE–POT SYNTHESIS OF COUMARIN DERIVATIVE Pankaj S. Chaudhari*, Dr. Shrikant S.Patil * Babasaheb Naik College of Engineering, Pusad (MS) India DOI: ABSTRACT Bismuth(III)chloride is used as an efficient catalyst in the Von–Pachmann condensation of phenol with derivative of phenols with B–ketoesters leading to the formation of coumarine and their derivative with good yields, high purity and eco-friendly synthesis. KEYWORDS: Coumarin, Von-Pachmann reaction, B–ketoesters, Substituted phenol, Bismuth (III) chloride. INTRODUCTION Coumarins are naturally occurring compound and found in various plants in large quantities, coumarins are biologically active compound used in various aspects of cosmetics, medicines & pharmaceutical industries (1) recently used in anti–tuberculosis and anti–HIV and active drugs (2). Coumarin is the best known aromatic lactone (3) the isolation of coumarin was first reported by Vogel in Munich is 1820 (4) The IUPAC nomenclature of the coumarin ring system is 2H – 1 benzopyran – 2– one (5). The synthesis of coumarins and their derivatives has attracted considerable attention from the organic and medicinal chemist for many years as a large number of natural products contain this heterocyclic nucleus. The Von – Pechmann reaction is a venerable reaction and it is one of the most simple & straightforward methods used to produce coumarins classically, the process consists of the condensation of phenols with B– ketoesters in the presence of a variety of reagents and gives a good yield of G– substituted coumarin(6).Several acid catalysts have been used in the Von- Pechmann reaction including sulfuric acid, aluminum chloride (7).
    [Show full text]
  • Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds
    Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds Name the following compounds: 1) KCl potassium chloride 2) MgI2 magnesium iodide 3) FeO iron (II) oxide 4) Fe2O3 iron (III) oxide 5) Cu3P copper (I) phosphide 6) SnSe2 tin (IV) selenide 7) TiBr3 titanium (III) bromide 8) GaAs gallium arsenide 9) BeF2 beryllium fluoride 10) Cs3N cesium nitride Write the formulas for the following compounds: 1) lithium iodide LiI 2) cobalt (III) oxide Co2O3 3) calcium fluoride CaF2 4) silver bromide AgBr 5) sodium hydride NaH 6) vanadium (V) sulfide V2S5 7) lead (II) nitride Pb3N2 8) titanium (II) selenide TiSe 9) manganese (VII) arsenide Mn3As7 10) gallium chloride GaCl3 ©2013, TESCCC 06/17/13 page 1 of 4 Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems Naming Complex (polyatomic) Ionic Compounds Name the following compounds: 1) NH4Cl ammonium chloride 2) Fe(NO3)3 iron (III) nitrate 3) Pb(SO4)2 lead (IV) sulfate 4) Ag3PO4 silver phosphate 5) Be(HCO3)2 beryllium hydrogen carbonate 6) Al(CN)3 aluminum cyanide 7) Mn2(SO3)3 manganese (III) sulfite 8) Sr(C2H3O2)2 strontium acetate 9) Ti(CN)4 titanium (IV) cyanide 10) YClO3 yttrium chlorate Write the formulas for the following compounds: 1) lead (IV) sulfate Pb(SO4)2 2) silver cyanide AgCN 3) copper (II) chlorate Cu(ClO3)2 4) chromium (IV) phosphate Cr3(PO4)4 5) vanadium (IV) carbonate V(CO3)2 6) ammonium oxide (NH4)2O 7) tin (II) nitrite Sn(NO2)2 8) chromium (III) hydroxide Cr(OH)3 9) titanium (II) acetate Ti(C2H3O2)2 10)
    [Show full text]
  • Alkali Metal Bismuth(III) Chloride Double Salts
    W&M ScholarWorks Arts & Sciences Articles Arts and Sciences 2016 Alkali metal bismuth(III) chloride double salts Andrew W. Kelly College of William and Mary, Dept Chem, Williamsburg, VA 23187 USA Robert D. Pike College of William and Mary, Dept Chem, Williamsburg, VA 23187 USA Aaron Nicholas Univ Maine, Dept Chem, Orono, ME 04469 USA; John C. Ahern Univ Maine, Dept Chem, Orono, ME 04469 USA; Howard H. Patterson Univ Maine, Dept Chem, Orono, ME 04469 USA; Follow this and additional works at: https://scholarworks.wm.edu/aspubs Recommended Citation Kelly, A. W., Nicholas, A., Ahern, J. C., Chan, B., Patterson, H. H., & Pike, R. D. (2016). Alkali metal bismuth (III) chloride double salts. Journal of Alloys and Compounds, 670, 337-345. This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Alkali Metal Bismuth(III) Chloride Double Salts Andrew W. Kelly,a Aaron Nicholas,b John C. Ahern,b Benny Chan,c Howard H. Patterson,b and Robert D. Pikea* aDepartment of Chemistry, College of William and Mary, Williamsburg, VA 23187. bDepartment of Chemistry, University of Maine, Orono, ME 04469. cDepartment of Chemistry, College of New Jersey, Ewing, NJ 08628-0718. Corresponding Author: Robert D. Pike Department of Chemistry College of William and Mary Williamsburg, VA 23187-8795. telephone: 757-221-2555 FAX: 757-221-2715 email: rdpike@ wm.edu 1 © 2016. This manuscript version is made available under the Elsevier user license http://www.elsevier.com/open-access/userlicense/1.0/ Abstract: Evaporative co-crystallization of MCl (M = Na, K, Rb, Cs) with BiOCl in aqueous HCl produces double salts: MxBiyCl(x+3y)•zH2O.
    [Show full text]
  • Application of Briggs-Rauscher Reaction for Measurement of Antioxidant Capacity of Croatian Wines
    APPLICATION OF BRIGGS-RAUSCHER REACTION FOR MEASUREMENT OF ANTIOXIDANT CAPACITY OF CROATIAN WINES * J. GAJDOŠ KLJUSURI Ć , S. DJAKOVI Ć, I. KRUHAK , K. KOVA ČEVI Ć GANI Ć, D. KOMES and Ž. KURTANJEK Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10 000 Zagreb. Croatia Briggs-Rauscher (BR) reaction is one of the most commonly studied oscillation reactions which has been applied for measurement of antioxidant activity of water-soluble substances. By addition of free radicals (from fruits or vegetables), there is an immediate quenching of oscillations. The reaction is followed potentiometrically and the inhibition time (IT), or time of no oscillations, is proportional to concentration of antioxidant. pH of BR reaction is about 2, what is similar to that of the fluids of the main digestive process (human stomach), giving in vitro information’s on antioxidant activity at “real digestion conditions” and can help in assessment of nutrition for maintenance of health and prevention of diseases. Antioxidant activities of different concentrations of native Croatian red and white wines are analysed by inhibition of BR reaction and determination of total phenols using galic acid as the calibration standard. By use of mathematical models, relative antioxidant activities of antioxidants and amounts of total phenols are estimated. Second order polynomial calibration curve is estimated in the range of 150-2500 galic acid equivalent (GAE mg l –1), with standard error of 84 GAE mg l -1. Keywords: Briggs-Rauscher reaction, white and red wines, antioxidant capacity, prediction of total phenols in wine * To whom correspondence should be addressed. Fax: 00 385 1 483 60 83; e-mail: [email protected] 1 Phenolic compounds of major dietary constituents are widely accepted as antioxidant substances which play important role in maintenance of human health and in prevention of diseases (ALONSO et al., 2004; CORDENUNSI et al., 2004; GALVANO et al., 2004; GONZALES -PARAMAS et al., 2004; CAI et al., 2004; VITAGLIONE & FOGLIANO , 2004).
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • Structural Regulation of Lanthanum Oxychloride and Its Enhanced Photosynthetic Activity
    2018 International Conference on Biomedical Engineering, Machinery and Earth Science (BEMES 2018) Structural Regulation of Lanthanum Oxychloride and its Enhanced Photosynthetic Activity Xie Liyan Putian University, Fujian, Putian, 351100 Keywords: Structural Regulation, Lanthanum Oxychloride Abstract: BiOCl has high photocatalytic efficiency due to its unique laminar structure, reasonable restraining zone and stable property, which has attracted a lot of researches from domestic and foreign scholars. However, it has the disadvantage of narrow absorption band, so it needs to be modified by metal, semiconductor and carbon materials. The difficulty in the study of bismuth chloride is the stability and load of bismuth chloride composite. 1. Introduction At present, the energy crisis and environmental pollution have gradually affected the survival and development of human beings and become a worldwide problem. At present, photocatalytic technology can provide green hydrogen energy through solar energy decomposition of water, and also decompose organic pollutants in sewage, providing new support for energy and environmental protection. The traditional semiconductor photocatalysts are mainly TiO2 and CdS, etc. The disadvantage of these catalysts is that they have large bandgap width, which makes the catalytic efficiency low[1-2].Therefore, we need to develop a catalyst with high photoefficiency and high catalytic activity. In recent years, the two-dimensional material in terms of energy, catalytic show a broad application prospect, especially layered bismuth chloride, the material is non-toxic, stable chemical properties, optical properties of stable structure, easy to adjust and moderate band structure characteristic, in the light, showed excellent physical and chemical properties. 2. Yttrium Oxychloride Material BiOCl has high anisotropy, and its crystal structure is PbFCl, belonging to tetragonal system.
    [Show full text]