A Highly Efficacious Antibody Mixture Against MET-Amplified Tumors

Total Page:16

File Type:pdf, Size:1020Kb

A Highly Efficacious Antibody Mixture Against MET-Amplified Tumors Author Manuscript Published OnlineFirst on July 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0782 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Sym015: A highly efficacious antibody mixture against MET-amplified tumors Thomas Tuxen Poulsen#, Michael Monrad Grandal, Niels Jørgen Østergaard Skartved, Rikke Hald, Lene Alifrangis, Klaus Koefoed, Trine Lindsted, Camilla Fröhlich, Sofie Ellebæk Pollmann, Karsten Wessel Eriksen, Anna Dahlman, Helle Jane Jacobsen, Thomas Bouquin, Mikkel Wandahl Pedersen, Ivan David Horak, Johan Lantto, and Michael Kragh Symphogen A/S, Pederstrupvej 93, DK-2750 Ballerup, Denmark #To whom correspondence should be addressed: Thomas Tuxen Poulsen Symphogen A/S Pederstrupvej 93 DK-2750 Ballerup Denmark E-mail: [email protected] Tel: +45 45265050 Fax: +45 45265060 Running Title Sym015 inhibits MET-amplified tumors Keywords MET, EGFR resistance, antibodies, mixture, emibetuzumab, LY2875358 Notes All listed authors are current or former employees of Symphogen A/S. Abstract Length: 250 words Manuscript Length: 4987 words No. of Tables: 0 No. of Figures: 5 1 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0782 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Translational Relevance In certain malignancies, such as gastric cancer and lung cancer, increased activation of the receptor tyrosine kinase (RTK) MET is associated with poor clinical outcome and resistance to targeted therapies. A number of MET-targeting monoclonal antibodies are in clinical development, but so far none have been approved. In recent years, preclinical and early clinical studies have demonstrated enhanced efficacy and anti-tumor activity of antibody mixtures directed against different RTK targets, leading to development of Sym015, a MET-targeting antibody mixture comprising two antibodies directed against non-overlapping epitopes. In the present study, we demonstrate that Sym015 inhibits MET-dependent cancer cell and tumor growth in multiple MET- dependent in vitro and in vivo models, including models exhibiting resistance to EGFR-targeting agents. The promising preclinical efficacy and safety data justify the ongoing clinical studies of Sym015 in patients with MET-amplified tumors. 2 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0782 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Purpose: Activation of the receptor tyrosine kinase MET is associated with poor clinical outcome in certain cancers. To target MET more effectively, we developed an antagonistic antibody mixture, Sym015, consisting of two humanized monoclonal antibodies directed against non-overlapping epitopes of MET. Experimental Design/Results: We screened a large panel of well-annotated human cancer cell lines and identified a subset with highly elevated MET expression. In particular, cell lines of lung cancer and gastric cancer origin demonstrated high MET expression and activation, and Sym015 triggered degradation of MET and significantly inhibited growth of these cell lines. Next, we tested Sym015 in patient- and cell line-derived xenograft models with high MET expression and/or MET exon 14 skipping alterations, and in models harboring MET amplification as a mechanism of resistance to EGFR-targeting agents. Sym015 effectively inhibited tumor growth in all these models and was superior to an analogue of emibetuzumab, a monoclonal IgG4 antibody against MET currently in clinical development. Sym015 also induced antibody-dependent cellular cytotoxicity (ADCC) in vitro, suggesting that secondary effector functions contribute to the efficacy of Sym015. Retrospectively, all responsive, high MET-expressing models were scored as highly MET-amplified by in situ hybridization, pointing to MET amplification as a predictive biomarker for efficacy. Preclinical toxicology studies in monkeys showed that Sym015 was well tolerated, with a pharmacokinetic profile supporting administration of Sym015 every second or third week in humans. Conclusion: The preclinical efficacy and safety data provide a clear rationale for the ongoing clinical studies of Sym015 in patients with MET-amplified tumors. 3 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0782 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Introduction The receptor tyrosine kinase (RTK) MET, also known as c-MET or hepatocyte growth factor (HGF) receptor (HGFR), is essential for embryonic and liver development, wound healing, and tissue regeneration. Lately, evidence has accumulated for the role of elevated MET activation as an oncogenic driver in a number of malignancies(1). In a context-dependent manner, high activation of MET induces increased cell proliferation, survival, motility, scattering, and angiogenesis, and drives epithelial-mesenchymal transition and cell invasion(2). There are multiple mechanisms for aberrant MET activation in tumorigenesis, including overexpression of its ligand HGF, as well as amplification, activating mutations, and other modifications of the MET gene. In particular, MET gene amplification is observed in a distinct subset of patients and is associated with poor prognosis in malignancies such as gastric and non- small cell lung cancer (NSCLC)(3,4). In addition, genetic alterations leading to MET exon 14 skipping have recently gained interest. MET exon 14 encodes the juxta-membrane receptor domain containing the binding site for the ubiquitin ligase CBL, responsible for triggering MET internalization and degradation. Exon 14 skipping thus induces stabilization of MET on the cell surface, leading to enhanced and constitutively active MET signaling(5,6). A shift to MET dependency as a mechanism of resistance to tyrosine kinase inhibitors (TKIs) targeting other RTKs is frequently observed, and up to 20% of epidermal growth factor receptor (EGFR) mutated NSCLCs develop resistance by MET gene amplification in response to treatment with EGFR- targeting TKIs(7,8). A number of MET-targeted TKIs and therapeutic antibodies have entered clinical development, but so far none have been approved as MET-targeting agents(9). TKIs generally have limited target specificity, which may lead to pleiotropic effects and unwanted toxicity. Furthermore, after long- term therapy with MET-targeting TKIs, subsets of quiescent tumor cells survive treatment, resulting in a rebound effect with aggressive tumor regrowth upon release of treatment pressure(10,11). MET-targeting antibodies in clinical development include the one-armed engineered antibody onartuzumab (MetMAb), which demonstrated activity in early-stage clinical trials(12–15), but failed to improve survival when used in combination with erlotinib to treat NSCLC in a phase 3 study(16). More recently, other antibodies targeting MET have entered the clinic. These include ABT-700, which has demonstrated activity in patients with MET-amplified tumors(17,18), and ARGX-111, which has been glyco-engineered to enhance secondary effector functions and which also demonstrated efficacy in a single patient with MET gene amplification(19,20). One of the most advanced MET-targeting antibody therapeutics in clinical development is emibetuzumab (LY2875358), a humanized IgG4 reported to block ligand binding and induce receptor internalization(21). Emibetuzumab has demonstrated preliminary evidence of antitumor activity in combination with erlotinib in patients with MET-positive tumors and is currently being evaluated in phase 2 studies(22). 4 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0782 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. As an alternative to monoclonal antibodies, mixtures comprising more than one antibody have demonstrated strong potential as RTK-targeting anti-cancer agents. A major therapeutic advantage of antibody mixtures is their ability to orchestrate receptor internalization and degradation in a manner superior to monoclonal antibodies, as previously demonstrated for different targets in the human epidermal growth factor receptor family(23,24). In light of the role of MET as a therapeutic target in cancer and the enhanced activity of antibody mixtures in targeting other RTKs, we developed the antibody mixture Sym015 comprising two antibodies directed against non-overlapping epitopes on the MET extracellular domain(25, Grandal et al., manuscript submitted). Here, we present data demonstrating efficacy of Sym015 in MET amplified cancer models. Sym015 demonstrated superior anti-proliferative and tumor growth-inhibitory effects in many cell lines and xenograft models, including models resistant to an analogue ofemibetuzumab. Furthermore, Sym015 was efficacious in models harboring MET exon 14 deletions and in models with acquired MET dependency in response to EGFR-targeting agents.
Recommended publications
  • Lung Cancer Drugs in the Pipeline
    HemOnc today | JANUARY 10, 2016 | Healio.com/HemOnc 5 Lung Cancer Drugs in the Pipeline HEMONC TODAY presents this guide to drugs in phase 2 or phase 3 development for lung cancer-related indications. Clinicians can use this chart as a quick reference to learn about the status of those drugs that may be clinically significant to their practice. Generic name (Brand name, Manufacturer) Indication(s) Development status abemaciclib (Eli Lilly) non–small cell lung cancer phase 3 ABP 215 (Allergan/Amgen) non–small cell lung cancer (advanced disease) phase 3 ACP-196 (Acerta Pharma) non–small cell lung cancer (advanced disease) phase 2 ado-trastuzumab emtansine (Kadcyla, Genentech) non–small cell lung cancer (HER-2–positive disease) phase 2 afatinib (Gilotrif, Boehringer Ingelheim) lung cancer (squamous cell carcinoma) phase 3 aldoxorubicin (CytRx) small cell lung cancer phase 2 alectinib (Alecensa, Genentech) non–small cell lung cancer (second-line treatment of ALK-positive disease) phase 2 non–small cell lung cancer (first-line treatment of ALK-positive disease); phase 3 alisertib (Takeda) malignant mesothelioma, small cell lung cancer phase 2 avelumab (EMD Serono/Pfizer) non–small cell lung cancer phase 3 AZD9291 (AstraZeneca) non–small cell lung cancer (first-line treatment of advancedEGFR -positive disease; phase 3 second-line treatment of advanced EGFR-positive, T790M-positive disease) bavituximab (Peregrine Pharmaceuticals) non–small cell lung cancer (previously treated advanced/metastatic disease) phase 3 belinostat (Beleodaq, Spectrum
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • 2017 Immuno-Oncology Medicines in Development
    2017 Immuno-Oncology Medicines in Development Adoptive Cell Therapies Drug Name Organization Indication Development Phase ACTR087 + rituximab Unum Therapeutics B-cell lymphoma Phase I (antibody-coupled T-cell receptor Cambridge, MA www.unumrx.com immunotherapy + rituximab) AFP TCR Adaptimmune liver Phase I (T-cell receptor cell therapy) Philadelphia, PA www.adaptimmune.com anti-BCMA CAR-T cell therapy Juno Therapeutics multiple myeloma Phase I Seattle, WA www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 "armored" CAR-T Juno Therapeutics recurrent/relapsed chronic Phase I cell therapy Seattle, WA lymphocytic leukemia (CLL) www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 CAR-T cell therapy Intrexon B-cell malignancies Phase I Germantown, MD www.dna.com ZIOPHARM Oncology www.ziopharm.com Boston, MA anti-CD19 CAR-T cell therapy Kite Pharma hematological malignancies Phase I (second generation) Santa Monica, CA www.kitepharma.com National Cancer Institute Bethesda, MD Medicines in Development: Immuno-Oncology 1 Adoptive Cell Therapies Drug Name Organization Indication Development Phase anti-CEA CAR-T therapy Sorrento Therapeutics liver metastases Phase I San Diego, CA www.sorrentotherapeutics.com TNK Therapeutics San Diego, CA anti-PSMA CAR-T cell therapy TNK Therapeutics cancer Phase I San Diego, CA www.sorrentotherapeutics.com Sorrento Therapeutics San Diego, CA ATA520 Atara Biotherapeutics multiple myeloma, Phase I (WT1-specific T lymphocyte South San Francisco, CA plasma cell leukemia www.atarabio.com
    [Show full text]
  • The Role of MET Inhibitor Therapies in the Treatment of Advanced Non-Small Cell Lung Cancer
    Journal of Clinical Medicine Review The Role of MET Inhibitor Therapies in the Treatment of Advanced Non-Small Cell Lung Cancer Ramon Andrade De Mello 1,2,3,* , Nathália Moisés Neves 2 , Giovanna Araújo Amaral 2, Estela Gudin Lippo 4, Pedro Castelo-Branco 1, Daniel Humberto Pozza 5 , Carla Chizuru Tajima 6 and Georgios Antoniou 7 1 Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine University of Algarve (DCBM UALG), 8005-139 Faro, Portugal; [email protected] 2 Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil; [email protected] (N.M.N.); [email protected] (G.A.A.) 3 Precision Oncology and Health Economics Group (ONCOPRECH), Post-Graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo 01525-000, Brazil 4 School of Biomedical Sciences, Santo Amaro University, São Paulo 01525-000, Brazil; [email protected] 5 Department of Biomedicine & I3S, Faculty of Medicine, University of Porto (FMUP), 4200-317 Porto, Portugal; [email protected] 6 Hospital São José & Hospital São Joaquim, A Beneficência Portuguesa de São Paulo, São Paulo 01323-001, Brazil; [email protected] 7 Division of Medical Oncology, Mount Vernon Cancer Center, London HA6 2RN, UK; [email protected] * Correspondence: [email protected] Received: 15 May 2020; Accepted: 10 June 2020; Published: 19 June 2020 Abstract: Introduction: Non-small cell lung cancer (NSCLC) is the second most common cancer globally. The mesenchymal-epithelial transition (MET) proto-oncogene can be targeted in NSCLC patients. Methods: We performed a literature search on PubMed in December 2019 for studies on MET inhibitors and NSCLC.
    [Show full text]
  • Atezolizumab Plus Nab-Paclitaxel As First-Line Treatment for Unresectable, Locally Advanced Or Metastatic Triple-Negative Breast
    Articles Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial Peter Schmid*, Hope S Rugo*, Sylvia Adams, Andreas Schneeweiss, Carlos H Barrios, Hiroji Iwata, Véronique Diéras, Volkmar Henschel, Luciana Molinero, Stephen Y Chui, Vidya Maiya, Amreen Husain, Eric P Winer, Sherene Loi, Leisha A Emens, for the IMpassion130 Investigators† Summary Lancet Oncol 2020; 21: 44–59 Background Immunotherapy in combination with chemotherapy has shown promising efficacy across many different Published Online tumour types. We report the prespecified second interim overall survival analysis of the phase 3 IMpassion130 study November 27, 2019 assessing the efficacy and safety of atezolizumab plus nab-paclitaxel in patients with unresectable, locally advanced or https://doi.org/10.1016/ metastatic triple-negative breast cancer. S1470-2045(19)30689-8 See Comment page 3 Methods In this randomised, placebo-controlled, double-blind, phase 3 trial, done in 246 academic centres and *Contributed equally community oncology practices in 41 countries, patients aged 18 years or older, with previously untreated, histologically †Investigators are listed in the documented, locally advanced or metastatic triple-negative breast cancer, and Eastern Cooperative Oncology Group appendix performance status of 0 or 1 were eligible. Patients were randomly assigned (1:1) using a permuted block method Barts Cancer Institute, Queen Mary University of London, (block size of four) and an interactive voice–web response system. Randomisation was stratified by previous taxane London, UK (Prof P Schmid MD); use, liver metastases, and PD-L1 expression on tumour-infiltrating immune cells.
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • PPB 2009 Presentation
    Sym001 Rozrolimupab for treatment of Immune Thrombocytopenic Purpura (ITP) and Anti-D Prophylaxis (ADP) The Sixth Plasma Product Biotechnology Meeting Torben P. Frandsen, Director of Antibody Chemistry Symphogen A/S 3rd generation of therapeutic antibodies Immunoglobulins Recombinant polyclonal antibody products Diverse: + Specific: ÷ Diverse: + Specific: + Monoclonal antibodies Diverse: ÷ Specific: + Proprietary antibody technologies 18 MonthstoPreclnical Development Symplex™ Discovery engine • Human antibody drug lead candidates – Natural VH-VL pairing preserved – Natural high affinities and reactivities http://www.symphogen.com/web/guest/symplex Sympress™ Expression engine • Recombinant polyclonal Ab products • Single batch manufacturing • Batch-to-batch consistency • Industrial scale http://www.symphogen.com/web/guest/sympress Symphogen product pipeline Sym001 rozrolimupab Indications ITP: Treatment of Immune Thrombocytopenic Purpura ADP: Anti-D prophylaxis to prevent Hemolytic Disease in Newborns (HDN) Target Rhesus D on Red Blood Cells Opportunity Replacement of blood-derived immune globulin products (IVIG and Anti-D) Class Recombinant polyclonal antibody product (pAb) Composition 25 human full-length IgG1 Abs with documented RhD reactivity Stage ITP: Phase 2 ADP: Phase 1/2, RBC challenge in healthy volunteers Sym001 product characteristics • Sym001 antibody leads identified from Danish anti-D donors by phage display technology • Sym001 comprises 25 unique human IgG1 antibodies • Sym001 comprises antibodies with verified reactivity
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub
    US 20170172932A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub. Date: Jun. 22, 2017 (54) EARLY CANCER DETECTION AND A 6LX 39/395 (2006.01) ENHANCED IMMUNOTHERAPY A61R 4I/00 (2006.01) (52) U.S. Cl. (71) Applicant: Gholam A. Peyman, Sun City, AZ CPC .......... A61K 9/50 (2013.01); A61K 39/39558 (US) (2013.01); A61K 4I/0052 (2013.01); A61 K 48/00 (2013.01); A61K 35/17 (2013.01); A61 K (72) Inventor: sham A. Peyman, Sun City, AZ 35/15 (2013.01); A61K 2035/124 (2013.01) (21) Appl. No.: 15/143,981 (57) ABSTRACT (22) Filed: May 2, 2016 A method of therapy for a tumor or other pathology by administering a combination of thermotherapy and immu Related U.S. Application Data notherapy optionally combined with gene delivery. The combination therapy beneficially treats the tumor and pre (63) Continuation-in-part of application No. 14/976,321, vents tumor recurrence, either locally or at a different site, by filed on Dec. 21, 2015. boosting the patient’s immune response both at the time or original therapy and/or for later therapy. With respect to Publication Classification gene delivery, the inventive method may be used in cancer (51) Int. Cl. therapy, but is not limited to such use; it will be appreciated A 6LX 9/50 (2006.01) that the inventive method may be used for gene delivery in A6 IK 35/5 (2006.01) general. The controlled and precise application of thermal A6 IK 4.8/00 (2006.01) energy enhances gene transfer to any cell, whether the cell A 6LX 35/7 (2006.01) is a neoplastic cell, a pre-neoplastic cell, or a normal cell.
    [Show full text]
  • Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion–Positive Lung Cancer by Combining Selpercatinib with Crizotinib a C Ezra Y
    Published OnlineFirst October 20, 2020; DOI: 10.1158/1078-0432.CCR-20-2278 CLINICAL CANCER RESEARCH | RESEARCH BRIEFS: CLINICAL TRIAL BRIEF REPORT Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion–Positive Lung Cancer by Combining Selpercatinib with Crizotinib A C Ezra Y. Rosen1, Melissa L. Johnson2, Sarah E. Clifford3, Romel Somwar4, Jennifer F. Kherani5, Jieun Son3, Arrien A. Bertram3, Monika A. Davare6, Eric Gladstone4, Elena V. Ivanova7, Dahlia N. Henry5, Elaine M. Kelley3, Mika Lin3, Marina S.D. Milan3, Binoj C. Nair5, Elizabeth A. Olek5, Jenna E. Scanlon3, Morana Vojnic4, Kevin Ebata5, Jaclyn F. Hechtman4, Bob T. Li1,8, Lynette M. Sholl9, Barry S. Taylor10, Marc Ladanyi4, Pasi A. Janne€ 3, S. Michael Rothenberg5, Alexander Drilon1,8, and Geoffrey R. Oxnard3 ABSTRACT ◥ Purpose: The RET proto-oncogene encodes a receptor tyrosine Results: MET amplification was identified in posttreatment kinase that is activated by gene fusion in 1%–2% of non–small biopsies in 4 patients with RET fusion–positive NSCLC treated with cell lung cancers (NSCLC) and rarely in other cancer types. selpercatinib. In at least one case, MET amplification was clearly Selpercatinib is a highly selective RET kinase inhibitor that has evident prior to therapy with selpercatinib. We demonstrate that recently been approved by the FDA in lung and thyroid cancers increased MET expression in RET fusion–positive tumor cells causes with activating RET gene fusions and mutations. Molecular resistance to selpercatinib, and this can be overcome by combining mechanisms of acquired resistance to selpercatinib are poorly selpercatinib with crizotinib. Using SPPs, selpercatinib with crizo- understood.
    [Show full text]
  • WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A01N 43/00 (2006.01) A61K 31/33 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US2016/028383 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 20 April 2016 (20.04.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/154,426 29 April 2015 (29.04.2015) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: KARDIATONOS, INC. [US/US]; 4909 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Lapeer Road, Metamora, Michigan 48455 (US).
    [Show full text]
  • Acquired Resistance to a MET Antibody in Vivo Can Be Overcome by the MET Antibody Mixture Sym015
    Author Manuscript Published OnlineFirst on March 15, 2018; DOI: 10.1158/1535-7163.MCT-17-0787 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Acquired resistance to a MET antibody in vivo can be overcome by the MET antibody mixture Sym015 Authors: Sofie Ellebæk Pollmann1, Valerie S. Calvert2, Shruti Rao3, Simina M. Boca3, Subha Madhavan3, Ivan D. Horak1, Andreas Kjær4, Emanuel F. Petricoin2, Michael Kragh1, and Thomas Tuxen Poulsen1 Authors’ affiliations: 1Symphogen A/S, Ballerup, Denmark 2Center for Applied Proteomics and Molecular Medicine, George Mason University, Virginia, USA 3Innovation Center for Biomedical Informatics, Georgetown University, Washington DC, USA 4Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Denmark Running title: In vivo acquired resistance to a MET-targeting antibody. Keywords: Antibody, MET, Resistance, in vivo, RPPA Corresponding author: Sofie Ellebæk Pollmann Symphogen A/S Pederstrupvej 93 DK-2750 Ballerup, Denmark E-mail: [email protected] Tel: +4545265050 Disclosure of potential conflicts of interest: Sofie Ellebæk Pollmann, Ivan D. Horak, Michael Kragh, and Thomas Tuxen Poulsen are all employed by Symphogen A/S. Subha Madhavan is a member of the scientific advisory board of and a consultant for Perthera. Emanuel F. Petricoin is chief scientific officer, co-founder, member of board of directors of Perthera, of which he has ownership interests. He is also a member of the scientific advisory board of/consultant for Perthera and Avant Diagnotics. 1 Downloaded from mct.aacrjournals.org on September 30, 2021. © 2018 American Association for Cancer Research.
    [Show full text]
  • Small-Cell Lung Cancer: Evidence to Date Olivier Bylicki, Nicolas Paleiron, Jean-Baptiste Assié, Christos Chouaid
    Targeting the MET-Signaling Pathway in Non- Small-Cell Lung Cancer: Evidence to Date Olivier Bylicki, Nicolas Paleiron, Jean-Baptiste Assié, Christos Chouaid To cite this version: Olivier Bylicki, Nicolas Paleiron, Jean-Baptiste Assié, Christos Chouaid. Targeting the MET-Signaling Pathway in Non- Small-Cell Lung Cancer: Evidence to Date. OncoTargets and Therapy, Dove Medical Press, 2020, Volume 13, pp.5691-5706. 10.2147/OTT.S219959. hal-02886104 HAL Id: hal-02886104 https://hal.sorbonne-universite.fr/hal-02886104 Submitted on 1 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OncoTargets and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Targeting the MET-Signaling Pathway in Non- Small–Cell Lung Cancer: Evidence to Date This article was published in the following Dove Press journal: OncoTargets and Therapy Olivier Bylicki 1,2 Abstract: The c-MET proto-oncogene (MET) plays an important role in lung oncogenesis, Nicolas Paleiron1 affecting cancer-cell survival, growth and invasiveness. The MET receptor in non-small–cell – Jean-Baptiste Assié2 4 lung cancer (NSCLC) is a potential therapeutic target. The development of high-output next- fi Christos Chouaïd2,3 generation sequencing techniques has enabled better identi cation of anomalies in the MET pathway, like the MET exon-14 (METex14) mutation.
    [Show full text]