The Trochlear Nerve in the Human Embryo and Fœtus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basal Ganglia & Cerebellum
1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte. -
Bilateral Cerebellar Dysfunctions in a Unilateral Meso-Diencephalic Lesion
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.44.4.361 on 1 April 1981. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1981, 44, 361-363 Short report Bilateral cerebellar dysfunctions in a unilateral meso-diencephalic lesion D VON CRAMON From the Max-Planck-Institute for Psychiatry, Munich, Germany SUMMARY The clinical syndrome of a 65-year-old patient with a slit-shaped right-sided meso- diencephalic lesion was analysed. A cerebellar syndrome with limb-kinetic ataxia, intention tremor and hypotonicity in all extremities as well as ataxic dysarthria was found. The disruption of the two cerebello-(rubro)-thalamic pathways probably explained the signs of bilateral cere- bellar dysfunction. The uncrossed ascending limb of the right, and the crossed one of the left brachium conjunctivum may have been damaged by the unilateral lesion extending between caudal midbrain and dorsal thalamus. Protected by copyright. Most of the fibres which constitute the superior general hospital where neurological examination cerebellar peduncle leave the cerebellum and showed bilateral miosis, convergent strabism, vertical originate in cells of the dentate nucleus but also gaze paresis on upward gaze with gaze-paretic nystag- arise from neurons of the globose and emboli- mus, flaccid sensori-motor hemiparesis with increased stretch reflexes and Babinski sign on the left side, forme nuclei. The crossed ascending fibres of the and dysmetric movements of the right upper extremity. brachia conjunctiva constitute the major outflow The CT scan showed an acute haemorrhage in the from the cerebellum, they form the cerebello- right mesodiencephalic area. On 19 February 1979 (rubro)-thalamic and dentato-thalamic tracts.' the patient was admitted to our department. -
Telovelar Approach to the Fourth Ventricle: Microsurgical Anatomy
J Neurosurg 92:812–823, 2000 Telovelar approach to the fourth ventricle: microsurgical anatomy ANTONIO C. M. MUSSI, M.D., AND ALBERT L. RHOTON, JR., M.D. Department of Neurological Surgery, University of Florida, Gainesville, Florida Object. In the past, access to the fourth ventricle was obtained by splitting the vermis or removing part of the cere- bellum. The purpose of this study was to examine the access to the fourth ventricle achieved by opening the tela cho- roidea and inferior medullary velum, the two thin sheets of tissue that form the lower half of the roof of the fourth ven- tricle, without incising or removing part of the cerebellum. Methods. Fifty formalin-fixed specimens, in which the arteries were perfused with red silicone and the veins with blue silicone, provided the material for this study. The dissections were performed in a stepwise manner to simulate the exposure that can be obtained by retracting the cerebellar tonsils and opening the tela choroidea and inferior medullary velum. Conclusions. Gently displacing the tonsils laterally exposes both the tela choroidea and the inferior medullary velum. Opening the tela provides access to the floor and body of the ventricle from the aqueduct to the obex. The additional opening of the velum provides access to the superior half of the roof of the ventricle, the fastigium, and the superolater- al recess. Elevating the tonsillar surface away from the posterolateral medulla exposes the tela, which covers the later- al recess, and opening this tela exposes the structure forming -
University International
INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo graphed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necescary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. -
Differentiation of the Cerebellum 2463
Development 128, 2461-2469 (2001) 2461 Printed in Great Britain © The Company of Biologists Limited 2001 DEV1660 Inductive signal and tissue responsiveness defining the tectum and the cerebellum Tatsuya Sato, Isato Araki‡ and Harukazu Nakamura* Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Seiryo-machi 4-1, Aoba-ku, Sendai 980- 8575, Japan ‡Present address: Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany *Author for correspondence (e-mail: [email protected]) Accepted 11 April 2001 SUMMARY The mes/metencephalic boundary (isthmus) has an Fgf8b repressed Otx2 expression, but upregulated Gbx2 and organizing activity for mesencephalon and metencephalon. Irx2 expression in the mesencephalon. As a result, Fgf8b The candidate signaling molecule is Fgf8 whose mRNA is completely changed the fate of the mesencephalic alar plate localized in the region where the cerebellum differentiates. to cerebellum. Quantitative analysis showed that Fgf8b Responding to this signal, the cerebellum differentiates in signal is 100 times stronger than Fgf8a signal. Co- the metencephalon and the tectum differentiates in the transfection of Fgf8b with Otx2 indicates that Otx2 is a key mesencephalon. Based on the assumption that strong Fgf8 molecule in mesencephalic generation. We have shown by signal induces the cerebellum and that the Fgf8b signal is RT-PCR that both Fgf8a and Fgf8b are expressed, Fgf8b stronger than that of Fgf8a, we carried out experiments to expression prevailing in the isthmic region. The results all misexpress Fgf8b and Fgf8a in chick embryos. Fgf8a did not support our working hypothesis that the strong Fgf8 signal affect the expression pattern of Otx2, Gbx2 or Irx2. -
NERVOUS SYSTEM هذا الملف لالستزادة واثراء المعلومات Neuropsychiatry Block
NERVOUS SYSTEM هذا الملف لﻻستزادة واثراء المعلومات Neuropsychiatry block. قال تعالى: ) َو َل َق د َخ َل قنَا ا ِْلن َسا َن ِمن ُس ََل َل ة ِ من ِطي ن }12{ ثُ م َجعَ لنَاه ُ نُ ط َفة فِي َق َرا ر م ِكي ن }13{ ثُ م َخ َل قنَا ال ُّن ط َفة َ َع َل َقة َف َخ َل قنَا ا لعَ َل َقة َ ُم ضغَة َف َخ َل قنَا ا ل ُم ضغَة َ ِع َظا ما َف َك َس ونَا ا ل ِع َظا َم َل ح ما ثُ م أَن َشأنَاه ُ َخ ل قا آ َخ َر َفتَبَا َر َك ّللا ُ أَ ح َس ُن ا ل َخا ِل ِقي َن }14{( Resources BRS Embryology Book. Pathoma Book ( IN DEVELOPMENTAL ANOMALIES PART ). [email protected] 1 OVERVIEW A- Central nervous system (CNS) is formed in week 3 of development, during which time the neural plate develops. The neural plate, consisting of neuroectoderm, becomes the neural tube, which gives rise to the brain and spinal cord. B- Peripheral nervous system (PNS) is derived from three sources: 1. Neural crest cells 2. Neural tube, which gives rise to all preganglionic autonomic nerves (sympathetic and parasympathetic) and all nerves (-motoneurons and -motoneurons) that innervate skeletal muscles 3. Mesoderm, which gives rise to the dura mater and to connective tissue investments of peripheral nerve fibers (endoneurium, perineurium, and epineurium) DEVELOPMENT OF THE NEURAL TUBE Neurulation refers to the formation and closure of the neural tube. BMP-4 (bone morphogenetic protein), noggin (an inductor protein), chordin (an inductor protein), FGF-8 (fibroblast growth factor), and N-CAM (neural cell adhesion molecule) appear to play a role in neurulation. -
Lipoma of the Midbrain
LIPOMA OF THE MIDBRAIN POST-MORTEM FINDING IN A PATIENT WITH BREAST CANCER VERÔNICA MAIA GOUVEA * — MYRIAM DUMAS HAHN ** — LEILA CHIMELLI ** SUMMARY — Intracranial lipomas are rare, usually do not have clinical expression and are located mare frequently in the corpus callosum. Other locations include the spinal cord, midbrain tectum, superior vermis, tuber cinereum, infundibulum and more rarely cerebello pontine angle, hypothalamus, superior medullary velum and insula. We report the case of a lipoma of the left inferior colliculus which was a post-mortem finding in a woman who died of breast cancer. Although there are reports of intracranial lipomas in patients with malignant tumors there is no explanation for the co-existence of the two tumors. The present tumor also includes a segment of a nerve which is not uncommon, but a less common finding was the presence of nests of Schwann cells within it, shown by immunohistochemistry. Lipoma do mesencéfalo: achado de necrópsia, em paciente com câncer da mama. RESUMO — Lipomas intracranianos são raros, em geral sem expressão clínica, localizados mais freqüentemente no corpo caloso. Outras localizações incluem medula espinhal, teto mesencefálico, vermis superior, tuber cinereum, infundibulum e mais raramente o ângulo ponto-cerebelar, hipotálamo, véu medular superior e insula. Relatamos o achado de necrópsia de um lipoma do colículo inferior esquerdo em uma mulher com câncer de mama. Embora haja relatos de lipomas intracranianos em pacientes com tumores malignos não há explicação para a co-existência dos dois tumores. O presente tumor também inclui o segmento de um nervo, o que não é incomum, mas um achado menos comum foi a presença de ninhos de células de Schwann no tumor, mostradas por imuno-histoquímica. -
The Nuclear Pattern of the Non-Tectal Portions of the Midbrain and Isthmus in Primates
THE NUCLEAR PATTERN OF THE NON-TECTAL PORTIONS OF THE MIDBRAIN AND ISTHMUS IN PRIMATES ELIZABETH C. CROSBY AND RUSSELL T. WOODBURNE Department of Anatomy, University of Michigan FOURTEEN PLATES (TWENTY-THREE FIGURES) INTRODUCTION The various nuclear groups in the midbrain of primates show marked resemblances to their homologues in subprimate forms, although certain regions are characterized by a marked increase and others by a definite decrease in development. The literature dealing with special regions is considerable in amount and some of it is of relatively early date. That pertinent to the present consideration of these regions has been reviewed under the account of the general literature placed at the end of this series of papers. Attention is called here to a few contributions that have been particularly helpful in the preparation of the primate descriptions. Among such are the studies of Ziehen on various regions of the midbrain, particularly his account of the periventricular regions, and the descriptive analysis of Ingram and Ranson ('35) of the nucleus of Darkschewitsch and the interstitial nucleus of the medial longitudinal fasciculus, which confirmed Stengel's ( '24) earlier account. There are innumerable figures and descrip- tions of various parts of the oculomotor and trochlear gray in primates. Among these may be mentioned the work of Panegrossi ('04), Ram6n y Cajal ('ll), Brouwer ('18, and elsewhere), Le Gros Clark ( '26) and Mingazzini ( '28). The differences in nomenclature with respect to the periventricular gray of caudal midbrain and isthmus regions are indicated 441 442 G. CARL HUBER ET AL. to some extent on the figures of the human brain as well as considered in the general literature. -
Neuroanatomy
Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Neuroanatomy W. Jeffrey Wilson Fall 2012 \Without education we are in a horrible and deadly danger of taking educated people seriously." { Gilbert Keith Chesterton [LATEX in use { a Microsoft- & PowerPoint-free presentation] Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Blood-Brain Barrier Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Peripheral Nervous System • Somatic N.S.: skeletal muscles, skin, joints • Autonomic N.S.: internal organs, glands • Sympathetic N.S.: rapid expenditure of energy • Parasympathetic N.S.: restoration of energy Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Spinal Cord Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Brain | Ventricles Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Brain Midline Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Brain Midline Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Hindbrain Myelencephalon & Metencephalon Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Reticular -
Lecture (6) Internal Structures of the Brainstem.Pdf
Internal structures of the Brainstem Neuroanatomy block-Anatomy-Lecture 6 Editing file Objectives At the end of the lecture, students should be able to: ● Distinguish the internal structure of the components of the brain stem in different levels and the specific criteria of each level. 1. Medulla oblongata (closed, mid and open medulla) 2. Pons (caudal and rostral). 3. Midbrain ( superior and inferior colliculi). Color guide ● Only in boys slides in Green ● Only in girls slides in Purple ● important in Red ● Notes in Grey Medulla oblongata Caudal (Closed) Medulla Traversed by the central canal Motor decussation (decussation of the pyramids) ● Formed by pyramidal fibers, (75-90%) cross to the opposite side ● They descend in the lateral white column of the spinal cord as the lateral corticospinal tract. ● The uncrossed fibers form the ventral corticospinal tract Trigeminal sensory nucleus. ● it is the larger sensory nucleus. ● The Nucleus Extends Through the whole length of the brainstem and its note :All CN V afferent sensory information enters continuation of the substantia gelatinosa of the spinal cord. the brainstem through the nerve itself located in the pons. Thus, to reach the spinal nucleus (which ● It lies in all levels of M.O, medial to the spinal tract of the trigeminal. spans the entire brain stem length) in the Caudal ● It receives pain and temperature from face, forehead. Medulla those fibers have to "descend" in what's known as the Spinal Tract of the Trigeminal ● Its tract present in all levels of M.O. is formed of descending (how its sensory and descend?see the note) fibers that terminate in the trigeminal nucleus. -
1) Brainstem and Cerebellum
Lecture Title: BRAIN STEM AND CEREBELLUM (CNS Block, Radiology) Lecture Objectives.. Students at the end of the lecture will be able to: • Identify radiological anatomy of brain stem and cerebellum. • Compares CT and MRI imaging of brain stem and cerebellum. • Recognize the imaging findings in common diseases involving brain stem and cerebellum. Brain Divisions.. • There are three major divisions of the brain: I Prosencephalon – Forebrain Diencephalon thalamus, hypothalamus Telencephalon cerebrum II Mesencephalon – Midbrain III Rhombencephalon - Hindbrain Metencephalon pons and cerebellum Myelencephalon medulla oblongata Brain Divisions.. Brain Stem.. • Three parts from superior to inferior: 1 midbrain 2 pons 3 medulla oblongata 1 2 • Connects cerebral 3 hemisphere with spinal cord Midbrain.. Radiological Features: CT+ • At the level of circle of willis • Anteriorly two cerebral peduncles separated by interpeduncular fossa • Posteriorly four rounded prominences (superior and inferior colliculi) MRI T2WI Midbrain.. MRI Sagittal T1WI MRI axial T2WI 1 4 3 2 2 1 1 superior colliculus 2 inferior colliculus 3 cerebral peduncle 4 interpeduncular cistern Midbrain.. Internal features: substantia nigra separates crus cerebri ventrally from tegmentum posteriorly. Red nuclei are dorsal to substantia nigra at the level of superior colliculi Pons.. Radiological Features: CT+ • The bulbous anterior part consists mainly of fibres continuous on each side with middle cerebellar peduncle • Basilar artery lies in groove anteriorly Petrous bone • Posterior surface of the pons forms the upper part of the floor of the 4th ventricle. • Bony anterior relation: clivus centrally and petrous temporal bones laterally Basilar artery Pons.. MRI axial T2WI MRI Sagittal T1WI 2 p p 1 3 1 P pons 1 4th ventricle 2 basilar artery 3 middle cerebellar peduncle Medulla oblongata. -
Internal Structure of the Brain Stem
INTERNAL STRUCTURE OF THE BRAIN STEM Done by: Lulwah Alturki Areej Alrajeh Revised by: Anjod Almuhareb هذا العمل ﻻ يعتبر مصدر رئيسي للمذاكرة وإنما للمرجعة فقط :تنويه [email protected] OBJECTIVES • Distinguish the internal structure of the components of the brain stem in different levels and the specific criteria of each level. • 1. Medulla oblongata (closed, mid and open medulla) • 2. Pons (caudal and rostral). • 3. Mid brain ( superior and inferior colliculi). • Describe the Reticular formation (structure, function and pathway) being an important content of the brain stem. Internal structures of medulla oblongata (closed) Medulla Mid Medulla (open) Medulla Caudal Rostral pyramid pyramid pyramid Spinal Nucleus of Gracile & Cuneate nuclei Inferior Olivary Nucleus Trigeminal (Trigeminal → Internal arcuate fibers Control of movement sensory nucleus): → sensory Decussation Medial longitudinal fasciculus continuation of Substantia Links vestibular nuclei with nuclei of extraocular ms.(3,4&6) to Gelatinosa help cordination head&eye movement Motor Decussation Medial leminiscus Lower part of floor of 4th ventricle By: pyramidal fibers ( ascending internal Inferior Cerebellar Peduncle arcuate fiber ) Connect M.O with cerebellum *un crossed fibers → thalamus Cochlear nuclei from the ventral Dorsal motor Nucleus of Vagus *Hypoglossal corticospinal tract. Nucleus Vestibular nuclei complex (equilibrium) Solitary Nucleus Receive taste sensation from tongue 7&9&10 medial lemniscus Nucleus Ambiguus :give motor f. to constrictor of pharynx & int.ms. Of larynx Internal structures of Pons CAUDAL PART ROSTRAL(cranial) PONS Trapezoid Body Superior Medullary Velum acoustic fibres from cochlear nuclei to ascend into midbrain as lateral lemniscus and terminate in inferior colliculus). pontocerebellar fibres pass to cerebllum through middle cerebellar peduncle pontine nuclei receive cortico pontine fibers.