Investigating Factors That Regulate the Direct Drp1-Mff Interaction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seq2pathway Vignette
seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway. -
Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Structural Insights Into Oligomerization and Mitochondrial Remodeling of Dynamin 1-Like Protein
Structural insights into oligomerization and mitochondrial remodeling of dynamin 1-like protein Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt von Dipl.-Ing. Chris Fröhlich aus der Lutherstadt Eisleben Berlin 2013 ii Die vorliegende Arbeit wurde im Zeitraum April 2009 bis März 2013 am Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch unter Anleitung von PROF. DR. OLIVER DAUMKE angefertigt. 1. Gutachter: Prof. Dr. Udo Heinemann 2. Gutachter: Prof. Dr. Oliver Daumke Tag der Disputation: 29.07.2013 iii … to boldly go where no man has gone before. iv Contents ___________________________________________________________________________ Contents Contents ................................................................................................................................................... v List of Figures ........................................................................................................................................... ix List of Tables ............................................................................................................................................ xi 1. Introduction ..................................................................................................................................... 1 1.1. Mitochondria .......................................................................................................................... -
Supporting Information
Supporting Information Pouryahya et al. SI Text Table S1 presents genes with the highest absolute value of Ricci curvature. We expect these genes to have significant contribution to the network’s robustness. Notably, the top two genes are TP53 (tumor protein 53) and YWHAG gene. TP53, also known as p53, it is a well known tumor suppressor gene known as the "guardian of the genome“ given the essential role it plays in genetic stability and prevention of cancer formation (1, 2). Mutations in this gene play a role in all stages of malignant transformation including tumor initiation, promotion, aggressiveness, and metastasis (3). Mutations of this gene are present in more than 50% of human cancers, making it the most common genetic event in human cancer (4, 5). Namely, p53 mutations play roles in leukemia, breast cancer, CNS cancers, and lung cancers, among many others (6–9). The YWHAG gene encodes the 14-3-3 protein gamma, a member of the 14-3-3 family proteins which are involved in many biological processes including signal transduction regulation, cell cycle pro- gression, apoptosis, cell adhesion and migration (10, 11). Notably, increased expression of 14-3-3 family proteins, including protein gamma, have been observed in a number of human cancers including lung and colorectal cancers, among others, suggesting a potential role as tumor oncogenes (12, 13). Furthermore, there is evidence that loss Fig. S1. The histogram of scalar Ricci curvature of 8240 genes. Most of the genes have negative scalar Ricci curvature (75%). TP53 and YWHAG have notably low of p53 function may result in upregulation of 14-3-3γ in lung cancer Ricci curvatures. -
A Mutation in the Mitochondrial Fission Gene Dnm1l Leads to Cardiomyopathy
A Mutation in the Mitochondrial Fission Gene Dnm1l Leads to Cardiomyopathy Houman Ashrafian1, Louise Docherty2, Vincenzo Leo3, Christopher Towlson2, Monica Neilan2, Violetta Steeples1, Craig A. Lygate1, Tertius Hough3, Stuart Townsend3, Debbie Williams4, Sara Wells4, Dominic Norris4, Sarah Glyn-Jones5, John Land6, Ivana Barbaric7, Zuzanne Lalanne4, Paul Denny4, Dorota Szumska1, Shoumo Bhattacharya1, Julian L. Griffin5, Iain Hargreaves6, Narcis Fernandez-Fuentes3, Michael Cheeseman4, Hugh Watkins1, T. Neil Dear2,3,4* 1 Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 2 Mammalian Genetics of Disease Unit, School of Medicine, University of Sheffield, Sheffield, United Kingdom, 3 Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom, 4 Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom, 5 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom, 6 Neurometabolic Unit, National Hospital, London, United Kingdom, 7 Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom Abstract Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part -
Novel Absorption Detection Techniques for Capillary Electrophoresis Yongjun Xue Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1994 Novel absorption detection techniques for capillary electrophoresis Yongjun Xue Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Xue, Yongjun, "Novel absorption detection techniques for capillary electrophoresis " (1994). Retrospective Theses and Dissertations. 10526. https://lib.dr.iastate.edu/rtd/10526 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be fi-om any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note wiU indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Expression of DDX11 and DNM1L at the 12P11 Locus Modulates Systemic Lupus Erythematosus Susceptibility
International Journal of Molecular Sciences Article Expression of DDX11 and DNM1L at the 12p11 Locus Modulates Systemic Lupus Erythematosus Susceptibility Mohammad Saeed 1 , Alejandro Ibáñez-Costa 2 , Alejandra María Patiño-Trives 2, Laura Muñoz-Barrera 2, Eduardo Collantes Estévez 2 , María Ángeles Aguirre 2 and Chary López-Pedrera 2,* 1 ImmunoCure, Karachi 75500, Pakistan; [email protected] 2 Rheumatology Service, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba, 14004 Cordoba, Spain; [email protected] (A.I.-C.); [email protected] (A.M.P.-T.); [email protected] (L.M.-B.); [email protected] (E.C.E.); [email protected] (M.Á.A.) * Correspondence: [email protected] Abstract: Objectives: This study employed genetic and functional analyses using OASIS meta- analysis of multiple existing GWAS and gene-expression datasets to identify novel SLE genes. Methods: Four hundred and ten genes were mapped using SNIPPER to 30 SLE GWAS loci and investigated for expression in three SLE GEO-datasets and the Cordoba GSE50395-dataset. Blood eQTL for significant SNPs in SLE loci and STRING for functional pathways of differentially expressed genes were used. Confirmatory qPCR on SLE monocytes was performed. The entire 12p11 locus was investigated for genetic association using two additional GWAS. Expression of 150 genes at Citation: Saeed, M.; Ibáñez-Costa, A.; this locus was assessed. Based on this significance, qPCRs for DNM1L and KRAS were performed. Patiño-Trives, A.M.; Muñoz-Barrera, Results: Fifty genes were differentially expressed in at least two SLE GEO-datasets, with all probes L.; Collantes Estévez, E.; Aguirre, M.Á.; López-Pedrera, C. -
The Possible Mechanism by Which Dehydroepiandrosterone Improves Ovarian Reserve in Patients Having Diminished Ovarian Reserve (Dor) Dr
Archives of Reproductive Medicine and Sexual Health Volume 1, Issue 1, 2018, PP: 4-13 Immune Regulation: The Possible Mechanism by which Dehydroepiandrosterone Improves Ovarian Reserve in Patients Having Diminished Ovarian Reserve (Dor) Dr. Kulvinder Kochar Kaur, MD1*, Dr. Gautam Allahbadia, MD (Obstt & Gynae), D.N.B2 Dr. Mandeep Singh M.D.DM.(Std)(Neurology)3 1 2 Scientific Director, Dr Kulvinder Kaur Centre for Human Reproduction, Punjab, India. Scientific3 Director, Rotunda-A*[email protected] Centre for Human reproduction,m Mumbai, India. Consultant Neurologist, Swami Satyanand Hospital, Jalandhar, Punjab, India. *Corresponding Author: Dr. Kulvinder Kochar Kaur, MD, Scientific Director, Dr Kulvinder Kaur Centre for Human Reproduction, Punjab, India. Abstract Diminished ovarian reserve (DOR) or poor ovarian reserve (POR) is becoming a worldwide problem and becoming an important cause of infertility. There has been concentration on this subject by the laboratories of Gleicher et al and to some extent Solano ME et al who found importance of androgenic steroids in DOR. For the last decade role of DHEA has been studied, be it their secretion getting reduced with age from the adrenal gland or importance of improving results in in vitro fertilization in cases of DOR. It has a proinflammatory effect on immune function which opposes cortisol. It acts as an immune regulator in various tissues including ovaries. In mammals it also improves Th1 immune response. Treatment with DHEA selectively increases T lymphocytes, upregulating CD8+T lymphocyte population in ovaries while down regulating CD4+T lymphocyte population and thus balance of the CD4+/CD8+ population is maintained. Further Gleicher et al studied regarding the disturbed autoimmune status along with studying triple CGG repeats in fragile X mental retardation 1(FXMR1) gene besides role of autoimmune antibodies in case of premature ovarian insufficiency (POI). -
Effects of Gestational Nutrition on Post-Natal Fertility in Sheep Peter Smith
Effects of Gestational Nutrition on Post-Natal Fertility in Sheep Peter Smith A thesis submitted for the degree of Doctor of Philosophy at the University of Otago, Dunedin, New Zealand January 2017 ii Abstract Changes to feed availability resulting from global climate change have the potential to exacerbate fertility issues already facing the NZ livestock industry. Appropriate feeding levels during gestation is gaining more attention as a number of studies have illustrated that underfeeding during gestation can have negative impacts on the fertility of female offspring. However, the mechanisms underlying this relationship remain obscure. Therefore, the aims of this study were to firstly establish a model in sheep whereby restricted gestational nutrition influenced fertility of the female offspring. A second aim was to identify potential mechanisms underlying the relationship between restricted gestational nutrition and postnatal fertility. Ewes were provided with either a maintenance diet, or a 0.6 of maintenance diet for the first 55 days of gestation. Thereafter, all ewes were fed ad-lib for the remainder of gestation. Fetuses were collected at days 55 and 75 of gestation to examine fetal ovarian development using stereology, and RNAseq was used to examine gene expression. Steroid profiles were generated from both maternal and fetal (day 75 only) plasma samples. Female offspring were monitored from birth until 19 months of age. From these offspring, the time of onset of puberty was recorded, indicators of fertility (ovulation rate and antral follicle counts) were assessed at 8 and 19 months of age, and key hormone profiles were generated at 19 months of age. -
Initiation of Follicular Atresia: Gene Networks During Early Atresia in Pig Ovaries
156 1 REPRODUCTIONRESEARCH Initiation of follicular atresia: gene networks during early atresia in pig ovaries Jinbi Zhang, Yang Liu, Wang Yao, Qifa Li, Honglin Liu and Zengxiang Pan College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China Correspondence should be addressed to H L Liu or Z X Pan; Email: [email protected] or [email protected] Abstract In mammals, more than 99% of ovarian follicles undergo a degenerative process known as atresia. The molecular events involved in atresia initiation remain incompletely understood. The objective of this study was to analyze differential gene expression profiles of medium antral ovarian follicles during early atresia in pig. The transcriptome evaluation was performed on cDNA microarrays using healthy and early atretic follicle samples and was validated by quantitative PCR. Annotation analysis applying current database (Sus scrofa 11.1) revealed 450 significantly differential expressed genes between healthy and early atretic follicles. Among them, 142 were significantly upregulated in early atretic with respect to healthy group and 308 were downregulated. Similar expression trends were observed between microarray data and quantitative RT-PCR confirmation, which indicated the reliability of the microarray analysis. Further analysis of the differential expressed genes revealed the most significantly affected biological functions during early atresia including blood vessel development, regulation of DNA-templated transcription in response to stress and negative regulation of cell adhesion. The pathway and interaction analysis suggested that atresia initiation associates with (1) a crosstalk of cell apoptosis, autophagy and ferroptosis rather than change of typical apoptosis markers, (2) dramatic shift of steroidogenic enzymes, (3) deficient glutathione metabolism and (4) vascular degeneration. -
Rapamycin Ameliorates Defects in Mitochondrial Fission and Mitophagy in Glioblastoma Cells
International Journal of Molecular Sciences Article Rapamycin Ameliorates Defects in Mitochondrial Fission and Mitophagy in Glioblastoma Cells Paola Lenzi 1,† , Rosangela Ferese 2,† , Francesca Biagioni 2 , Federica Fulceri 3 , Carla L. Busceti 2, Alessandra Falleni 3 , Stefano Gambardella 2,4, Alessandro Frati 2,5 and Francesco Fornai 1,2,* 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; [email protected] 2 I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy; [email protected] (R.F.); [email protected] (F.B.); [email protected] (C.L.B.); [email protected] (S.G.); [email protected] (A.F.) 3 Department of Clinical and Experimental Medicine University of Pisa, via Roma 55, 56126 Pisa, Italy; [email protected] (F.F.); [email protected] (A.F.) 4 Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Piazza S. Andrea 34, 61029 Urbino (PU), Italy 5 Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Roma, Italy. * Correspondence: [email protected] or [email protected] † These authors equally contributed to the present work. Abstract: Glioblastoma (GBM) cells feature mitochondrial alterations, which are documented and quantified in the present study, by using ultrastructural morphometry. Mitochondrial impairment, which roughly occurs in half of the organelles, is shown to be related to mTOR overexpression and autophagy suppression. The novelty of the present study consists of detailing an mTOR-dependent mitophagy occlusion, along with suppression of mitochondrial fission. These phenomena contribute Citation: Lenzi, P.; Ferese, R.; to explain the increase in altered mitochondria reported here.