Label-Free Biomedical Imaging of Lipids UNIT 30.3 by Stimulated Raman Scattering Microscopy Prasanna V. Ramachandran,1,2,5 Ayse Sena Mutlu,3,5 and Meng C. Wang1,3,4,6 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 2Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 3Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 4Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 5These authors contributed equally to this work 6Corresponding author (
[email protected]) Advances in modern optical microscopy have provided unparalleled tools to study intracellular structure and function, yet visualizing lipid molecules within a cell remains challenging. Stimulated Raman Scattering (SRS) microscopy is a recently developed imaging modality that addresses this challenge. By selectively imaging the vibration of chemical moieties enriched in lipids, this technique allows for rapid imaging of lipid molecules in vivo without the need for perturbative extrinsic labels. SRS microscopy has been effectively employed in the study of fat metabolism, helping uncover novel regulators of lipid storage. This unit provides a brief introduction to the principle of SRS microscopy, and describes methods for its use in imaging lipids in cells, tissues, and whole organisms. C 2015 by John Wiley & Sons, Inc. Keywords: lipid r lipid droplets r metabolism r stimulated Raman scattering r microscopy r C. elegans r cell culture r tissue section How to cite this article: Ramachandran, P.V., Mutlu, A.S., and Wang, M.C. 2015. Label-Free Biomedical Imaging of Lipids by Stimulated Raman Scattering Microscopy. Curr. Protoc. Mol. Biol.