Diplomarbeit Fossile Galaxiensysteme

Total Page:16

File Type:pdf, Size:1020Kb

Diplomarbeit Fossile Galaxiensysteme DIPLOMARBEIT Titel der Diplomarbeit Fossile Galaxiensysteme angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag. rer. nat.) Verfasser: Eveline Glaßner Matrikel-Nummer: 9500110 Studienrichtung: Astronomie A413 Betreuer: Ao. Univ.-Prof. Dr. Werner Zeilinger Wien, Juni 2009 Zusammenfassung In meiner Arbeit wurden dynamische Endstadien von Galaxiensystemen, sog. Fos- sile Galaxiensysteme untersucht. Sie zeichnen sich durch eine massereiche zentrale Elliptische Galaxie aus, die von deutlich leuchtkraftschw¨acheren Galaxien umgeben ist. Diese Galaxien sind in einen diffusen, r¨aumlich ausgedehnten R¨ontgenhalo ein- gebettet, der auf ein ehemaliges Galaxiensystem schließen l¨asst. Insgesamt wurden 49 solcher Systeme untersucht, wobei nur 45 die Definition eines Fossilen Systems erfullen.¨ Die Auswahl setzt sich aus zwei Katalogen zusammen. Der erste Katalog stellt eine Zusammenfassung aller entdeckten Fossilen Systeme bis 2005 dar, der zweite stammt aus der Suche in der Sloan Digital Sky Survey im Jahre 2007. Als Erstes wurde die zentrale Elliptische Galaxie nach ihren photometrischen Eigen- schaften untersucht. Dies umfasst ein Fl¨achenhelligkeitsprofil, die Elliptizit¨at, den Positionswinkel und die Fourier-Koeffizienten h¨oherer Ordnung der Isophoten, die fur¨ die Bestimmung der Form (boxy bzw. disky) der Elliptischen Galaxie herange- zogen wurden. Es zeigt sich eine etwa gleichm¨aßige Aufteilung zwischen boxy und disky Elliptischen Galaxien. Der zweite Teil umfasst die spektrale Analyse der Elliptischen Galaxien. Weniger als die H¨alfte aller Elliptischen Galaxien zeigen nukleare Aktivit¨aten. Der dritte Schwerpunkt befasst sich mit der Analyse der Umgebung Fossiler Sys- teme. Bis zu einem Radius von 5 Mpc ausgehend von der zentralen Elliptischen Galaxie wurde nach weiteren Galaxien mit spektral bestimmten Rotverschiebungen gesucht. Dasselbe erfolgte auch fur¨ benachbarte Galaxiensysteme. Etwa ein Funftel¨ aller Fossilen Systeme besitzen weitere Galaxiensysteme in ihrer Umgebung. Weiters ergibt die Umgebungs-Analyse bei zwei Drittel aller Fossilen Systeme mit genugend¨ hoher Anzahl an vorhandenen Galaxien eine filamentartige Struktur. Bei der Unter- suchung der Ausrichtung der zentralen Elliptischen Galaxien zeigt sich bei fast allen Systemen mit Galaxienfilamenten ein anti-Holmberg“-Effekt, d.h. die umgebenden " Galaxien ordnen sich in der Ebene entlang der großen Halbachse der E-Galaxie an. Dies wurde bereits theoretisch vorausgesagt. III IV Abstract In my thesis I have analyzed dynamical endpoints of galaxy systems, so called fossil galaxy systems. They are charakterized by a massive central elliptical galaxy, which is surrounded by clearly fainter galaxies. These galaxies are embedded in a diffuse, spatially extended X-ray halo, which gives evidence of a formerly existing galaxy system. A total number of 49 such systems was examined, where only 45 fulfill the definition of a fossil galaxy system. The sample is described in two catalogues. The first one is a summary of all identified fossil systems until 2005, the second one arises from a search in the Sloan Digital Sky Survey in 2007. In the first part of the thesis, the photometic properties of the central elliptical galaxy were examined. This includes the surface brightness profile, the ellipticity, the position angle profile and the higher order Fourier coefficients of the isophotes, which were taken for determination of the form (boxy resp. disky) of the elliptical galaxy. The examination shows an equal distribution into boxy and disky elliptical galaxies. The second part contains the spectral analysis of the elliptical galaxies. Less than half of all elliptical galaxies show nuclear activity. The third section of the examination covers the analysis of the environment of fossil systems. A search for galaxies with spectroscopic redshifts was performed out to a radius of 5 Mpc from the central elliptical galaxy. The same examination was carried out for surrounding galaxy systems. About one fifth of all fossil systems shows other galaxy systems in their neighborhood. Furthermore, this study points out a filamentary structure for two thirds of all fossil systems with a significant number of galaxies. By examining the orientation of the central elliptical galaxies, I found that almost all systems with galaxies in filaments show an anti-Holmberg\ " effect. That means, the surrounding galaxies lie in a plane along the semi-major axis of the elliptical galaxy. This was already theoretical predicted before. V VI Inhaltsverzeichnis 1 Einfuhrung¨ 1 1.1 Kosmologie . 1 1.2 Galaxiengruppen und Haufen . 3 1.3 Galaxien . 5 1.3.1 Morphologie . 5 1.3.2 Spektrale Unterscheidungen . 6 1.3.3 Morphologische Beschreibung Elliptischer Galaxien . 9 2 Fossile Galaxiensysteme 13 2.1 Allgemeines . 13 2.2 Definition eines Fossilen Systems . 13 2.3 Definition von OLEGs und IOLEGs . 15 3 Beobachtungserkenntnisse Fossiler Systeme 17 3.1 Entdeckte Fossile Systeme . 17 3.1.1 Kataloge Fossiler Systeme . 17 3.1.2 Detailliert untersuchte Fossile Systeme . 19 3.1.3 Eigens studierte Fossile Systeme . 21 3.2 Eigenschaften der zentralen Elliptischen Galaxie . 21 3.2.1 Nukleare Aktivit¨at . 23 3.2.2 Morphologie . 23 3.2.3 Ausrichtung . 25 3.2.4 Isophoten . 26 3.3 System-Eigenschaften . 26 3.3.1 Gr¨oßen . 26 3.3.2 Leuchtkraftfunktion . 27 VII VIII INHALTSVERZEICHNIS 3.3.3 Skalierungsrelationen . 30 3.4 Entstehungsszenarien . 30 3.4.1 Altes Standard-Szenario . 30 3.4.2 Kein Merging-Vorgang . 33 3.4.3 Fossiles System als Substruktur . 33 4 Theorie zu Fossilen Systemen 37 4.1 Entstehung und Entwicklung Fossiler Systeme . 37 4.2 Entwicklung der zentralen Elliptischen Galaxie . 40 5 Datenquellen 45 5.1 SDSS . 45 5.2 NED . 47 6 Datenauswertung 49 6.1 Photometrische Analyse der zentralen E-Galaxie . 49 6.1.1 Berechnung der Helligkeitskalibrationsdaten . 49 6.1.2 Photometrische Analyse mit IRAF . 50 6.1.3 Boxy- und Diskyness der Elliptischen Galaxie . 54 6.1.4 Positionswinkel . 55 6.2 Umgebung des Fossilen Systems . 55 6.2.1 Berechnung der Entfernung . 56 6.2.2 Eingrenzung der Objekte . 57 7 Ergebnisse 59 7.1 FS01 . 60 7.2 FS02 . 64 7.3 FS03 . 68 7.4 FS04 . 72 7.5 FS05 . 76 7.6 FS06 . 80 7.7 FS07 . 84 7.8 FS08 . 88 7.9 FS09 . 91 INHALTSVERZEICHNIS IX 7.10 FS10 . 95 7.11 FS11 . 99 7.12 FS12 . 102 7.13 FS13 . 106 7.14 FS14 . 110 7.15 FS15 . 113 7.16 FS16 . 117 7.17 FS17 . 120 7.18 FS18 . 124 7.19 FS19 . 128 7.20 FS20 . 132 7.21 FS21 . 136 7.22 FS22 . 139 7.23 FS23 . 143 7.24 FS24 . 147 7.25 FS25 . 150 7.26 FS26 . 154 7.27 FS27 . 158 7.28 FS28 . 161 7.29 FS29 . 165 7.30 FS30 . 169 7.31 FS31 . 173 7.32 FS32 . 177 7.33 FS33 . 180 7.34 FS34 . 184 7.35 FS50 . 188 7.36 FS51 . 190 7.37 FS52 . 192 7.38 FS53 . 194 7.39 FS54 . 197 7.40 FS55 . 201 7.41 FS56 . 202 7.42 FS57 . 205 X INHALTSVERZEICHNIS 7.43 FS58 . 208 7.44 FS59 . 212 7.45 FS60 . 215 7.46 FS61 . 218 7.47 FS62 . 222 7.48 FS63 . 224 7.49 FS64 . 226 8 Diskussion 229 8.1 Ergebnisse der photometischen Analyse . ..
Recommended publications
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • 195 9Apj. . .130. .629B the HERCULES CLUSTER OF
    .629B THE HERCULES CLUSTER OF NEBULAE* .130. G. R. Burbidge and E. Margaret Burbidge 9ApJ. Yerkes and McDonald Observatories Received March 26, 1959 195 ABSTRACT The northern of two clusters of nebulae in Hercules, first listed by Shapley in 1933, is an irregular group of about 75 bright nebulae and a larger number of faint ones, distributed over an area about Io X 40'. A set of plates of parts of this cluster, taken by Dr. Walter Baade with the 200-inch Hale reflector, is shown and described. More than three-quarters of the bright nebulae have been classified, and, of these, 69 per cent are spirals or irregulars and 31 per cent elliptical or SO. Radial velocities for 7 nebulae were obtained by Humason, and 10 have been obtained by us with the 82-inch reflector. The mean red shift is 10775 km/sec. From this sample, the total kinetic energy of the nebulae has been esti- mated. By measuring the distances between all pairs on a 48-inch Schmidt enlargement, the total poten- tial energy has been estimated. From these results it is concluded that, if the cluster is to be in a stationary state, the average galactic mass must be ^1012Mo. Three possibilities are discussed: that the masses are indeed as large as this, that there is a large amount of intergalactic matter, and that the cluster is expanding. The data for the Coma and Virgo clusters are also reviewed. It is concluded that both the Hercules and the Virgo clusters are probably expanding, but the situation is uncertain in the case of the Coma cluster.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • The Hubble Catalog of Variables (HCV)? A
    Astronomy & Astrophysics manuscript no. hcv c ESO 2019 September 25, 2019 The Hubble Catalog of Variables (HCV)? A. Z. Bonanos1, M. Yang1, K. V. Sokolovsky1; 2; 3, P. Gavras4; 1, D. Hatzidimitriou1; 5, I. Bellas-Velidis1, G. Kakaletris6, D. J. Lennon7; 8, A. Nota9, R. L. White9, B. C. Whitmore9, K. A. Anastasiou5, M. Arévalo4, C. Arviset8, D. Baines10, T. Budavari11, V. Charmandaris12; 13; 1, C. Chatzichristodoulou5, E. Dimas5, J. Durán4, I. Georgantopoulos1, A. Karampelas14; 1, N. Laskaris15; 6, S. Lianou1, A. Livanis5, S. Lubow9, G. Manouras5, M. I. Moretti16; 1, E. Paraskeva1; 5, E. Pouliasis1; 5, A. Rest9; 11, J. Salgado10, P. Sonnentrucker9, Z. T. Spetsieri1; 5, P. Taylor9, and K. Tsinganos5; 1 1 IAASARS, National Observatory of Athens, Penteli 15236, Greece e-mail: [email protected] 2 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 3 Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia 4 RHEA Group for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 5 Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 15784, Greece 6 Athena Research and Innovation Center, Marousi 15125, Greece 7 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain 8 ESA, European Space Astronomy Centre, Villanueva de la Canada, 28692 Madrid, Spain 9 Space Telescope Science Institute, Baltimore, MD 21218, USA 10 Quasar Science Resources for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 11 The Johns Hopkins University, Baltimore, MD 21218, USA 12 Institute of Astrophysics, FORTH, Heraklion 71110, Greece 13 Department of Physics, Univ.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Arp Catalogue.Xlsx
    ATLAS OF PECULIAR GALAXIES CATALOGUE 1 ATLAS OF PECULIAR GALAXIES CATALOGUE Object Name Mag RA Dec Constellation ARP 1 NGC 2857 12.2 09:24:37 49:21:00 Ursa Major ARP 2 13.2 16:16:18 47:02:00 Hercules ARP 3 13.4 22:36:34 ‐02:54:00 Aquarius ARP 4 13.7 01:48:25 ‐12:22:00 Cetus ARP 5 NGC 3664 12.8 11:24:24 03:19:00 Leo ARP 6 NGC 2537 12.3 08:13:14 45:59:00 Lynx ARP 7 14.5 08:50:17 ‐16:34:00 Hydra ARP 8 NGC 0497 13 01:22:23 ‐00:52:00 Cetus ARP 9 NGC 2523 11.9 08:14:59 73:34:00 Camelopardalis ARP 10 13.8 02:18:26 05:39:00 Cetus ARP 11 14.4 01:09:23 14:20:00 Pisces ARP 12 NGC 2608 12.2 08:35:17 28:28:00 Cancer ARP 13 NGC 7448 11.6 23:00:02 15:59:00 Pegasus ARP 14 NGC 7314 10.9 22:35:45 ‐26:03:00 Pisces Austrinus ARP 15 NGC 7393 12.6 22:51:39 ‐05:33:00 Aquarius ARP 16 M66 8.9 11:20:14 12:59:00 Leo ARP 17 14.7 07:44:32 73:49:00 Camelopardalis ARP 17 07:44:38 73:48:00 Camelopardalis ARP 18 NGC 4088 10.5 12:05:35 50:32:00 Ursa Major ARP 19 NGC 0145 13.2 00:31:45 ‐05:09:00 Cetus ARP 20 14.4 04:19:53 02:05:00 Taurus ARP 21 14.7 11:04:58 30:01:00 Leo Minor ARP 22 14.9 11:59:29 ‐19:19:00 Corvus ARP 22 NGC 4027 11.2 11:59:30 ‐19:15:00 Corvus ARP 23 NGC 4618 10.8 12:41:32 41:09:00 Canes Venatici ARP 24 NGC 3445 12.6 10:54:36 56:59:00 Ursa Major ARP 24 12.8 10:54:45 56:57:00 Ursa Major ARP 25 NGC 2276 11.4 07:27:13 85:45:00 Cepheus ARP 26 M101 7.9 14:03:12 54:21:00 Ursa Major ARP 27 NGC 3631 10.4 11:21:02 53:10:00 Ursa Major ARP 28 NGC 7678 11.8 23:28:27 22:25:00 Pegasus ARP 29 NGC 6946 8.8 20:34:52 60:09:00 Cygnus ARP 30 NGC 6365 12.2 17:22:42 62:10:00
    [Show full text]
  • Oregon Star Party Advanced Observing List
    Welcome to the OSP Advanced Observing List In a sincere attempt to lure more of you into trying the Advanced List, each object has a page telling you what it is, why it’s interesting to observe, and the minimum size telescope you might need to see it. I’ve included coordinates, the constellation each object is located in, and either a chart or photo (or both) showing what the object looks like and how it’s situated in the sky. All you have to do is observe and enjoy the challenge. Stretch your skill and imagination - see something new, something unimaginably old, something unexpected Even though this is a challenging list, you don’t need 20 years of observing experience or a 20 inch telescope to be successful – although in some cases that will help. The only way to see these cool objects for yourself is to give them a go. Howard Banich, The minimum aperture listed for each object is a rough estimate. The idea is to Chuck Dethloff and show approximately what size telescope might be needed to successfully observe Matt Vartanian that particular object. The range is 3 to 28 inches. collaborated on this The visibility of each object assumes decently good OSP observing conditions. year’s list. Requirements to receive a certificate 1. There are 14 objects to choose from. Descriptive notes and/or sketches that clearly show you observed 10 objects are needed to receive the observing certificate. For instance, you can mark up these photos and charts with lines and arrows, and add a few notes describing what you saw.
    [Show full text]
  • Multiple Galaxies - F
    Multiple Galaxies - F. Zwicky file:///e|/moe/HTML/March02/Zwicky/Zwicky.htm MULTIPLE GALAXIES F. Zwicky Table of Contents DEFINITIONS REMARKS ON THE HISTORY OF THE SUBJECT A. Small Groups of Galaxies Clusters of Galaxies Recent Advances Instrumentation WIDELY SEPARATED INTERCONNECTED GALAXIES The Triple System IC 3481, Anon, IC 3483 KEENAN's System Another Remarkable Filamentary Structure WILD'S Triple Galaxy The Basic Types of Structures Some Conclusions LONG EXTENSIONS AND SPURS OF SINGLE AND OF MULTIPLE GALAXIES NGC 4038-4039 NGC 750-751 A System in Leo NGC 4651 and Dwarf Companion NGC 3628 and Faint Extensions Spiral Galaxy with One Long Arm SOME SPECIAL PROBLEMS The Milky Way System and the Magellanic Clouds The Andromeda Nebula and its Companions New Clues on the Sense of Rotation of Spiral Galaxies Multiple Galaxies in Clusters and in the General Field OUTLOOK AND PROGRAMS REFERENCES 1. DEFINITIONS The meaning of the term multiple galaxies obviously can be clear only if we know what an individual galaxy is. Unfortunately it is not at the present time possible to give an exact definition of a galaxy as a physical stellar system which is in practice operationally useful. Theoretically one might postulate that any agglomeration of stars, gases and solid particles constitutes a galaxy if its various material components cannot escape directly from this agglomeration. A stellar system or galaxy is therefore a cohesive unit of stars, dust and gases within which only a fraction of its components possess velocities high enough to allow them to escape and to make their way to the vast intergalactic spaces.
    [Show full text]
  • Hubble Law Page 1
    AS102 - Day Laboratory Exercise #7: Hubble Law Page 1 DAY LABORATORY EXERCISE #7: HUBBLE LAW Goals: To determine the relationship of a galaxy’s distance with its spectral shift. To gain an understanding of the large scale nature of the Universe. Equipment: Galaxy photographs, Galaxy and calibration spectra, rulers, calculators. Methods: Compile a database of information concerning a sample of galaxies. Graph the information to identify any possible relationships between measured quantities. Introduction - In the first quarter of this century, astronomy was truly beginning to take off as new technologies and new scientific theories were developed. Due to advances in engineering, astronomers could now build large telescopes, capable of detecting extremely faint objects. Photography allowed recording their images for analysis. With the invention of quantum mechanics in the 1920’s, the spectra of stars and galaxies were for the first time beginning to be understood. Armed with new knowledge and the tools to expand that knowledge further, the astronomers Edwin Hubble and Milton Humason began observing galaxies. Galaxies were a very interesting class of objects to study, and at this time it was unknown whether galaxies were indeed outside the Milky Way or merely nebulae within our own galaxy. The evidence gathered by Humason and Hubble would assist in settling this debate, and also would provide the first step towards revealing the nature of the Universe as a whole. Humason and Hubble photographed a large number of distant galaxies and recorded their spectra. In addition to providing information regarding the composition of the galaxies, these spectra also provided information concerning the galaxies’ spectral shifts.
    [Show full text]
  • The Peculiar Motions of Early-Type Galaxies in Two Distant Regions VII
    Mon. Not. R. Astron. Soc. 321, 277±305 (2001) The peculiar motions of early-type galaxies in two distant regions ± VII. Peculiar velocities and bulk motions Matthew Colless,1w R. P. Saglia,2 David Burstein,3 Roger L. Davies,4 Robert K. McMahan, Jr5 and Gary Wegner6 1Research School of Astronomy & Astrophysics, The Australian National University, Weston Creek, Canberra, ACT 2611, Australia 2Institut fuÈr Astronomie und Astrophysik, Scheinerstraûe 1, D-81679 Munich, Germany 3Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA 4Department of Physics, University of Durham, South Road, Durham DH1 3LE 5Department of Physics and Astronomy, University of North Carolina, CB#3255 Phillips Hall, Chapel Hill, NC 27599-3255, USA 6Department of Physics and Astronomy, Dartmouth College, Wilder Lab, Hanover, NH 03755, USA Accepted 2000 August 31. Received 2000 August 31; in original form 2000 May 23 ABSTRACT We present peculiar velocities for 85 clusters of galaxies in two large volumes at distances between 6000 and 15 000 km s21 in the directions of Hercules±Corona Borealis and Perseus±Pisces±Cetus (the EFAR sample). These velocities are based on Fundamental Plane (FP) distance estimates for early-type galaxies in each cluster. We fit the FP using a maximum likelihood algorithm which accounts for both selection effects and measurement errors, and yields FP parameters with smaller bias and variance than other fitting procedures. We obtain a best-fitting FP with coefficients consistent with the best existing determinations. We measure the bulk motions of the sample volumes using the 50 clusters with the best- determined peculiar velocities.
    [Show full text]
  • Galaxy Overlap Observing Book
    Galaxy Overlap Observing Book With SDSS/galaxyzoo.org spiral/spiral pairs Part 4: 15-24 hours (225-360 degrees) Version: 15 August 2010 final before rejections N=526; Ntot=2227 Object name: SDSS J150036.86+161020.3 Source: galaxyzoo.org SDSS ID 587742577532797204 Position: decimal ra=225.15359003, dec=16.17232353 Redshifts 0.037653 (N, NED) SDSS photometry ugriz 16.85 15.00 14.17 13.76 13.46 SDSS explorer http://cas.sdss.org/astro/en/tools/explore/obj.asp? id=587742577532797204 Other data: UGC 9652 SDSS Image Object name:SDSS J150040.00+220200.8 Source: galaxyzoo.org/011109 SDSS ID 587739811028467792 Position: decimal ra=225.1667007, dec=22.03358327 Redshifts 0.063 (SW) SDSS photometry ugriz 18.25 16.56 15.78 15.33 15.00 SDSS explorer http://cas.sdss.org/astro/en/tools/explore/obj.asp? id=587739811028467792 Other data SDSS Image Object name:SDSS J150105.92+430816.6 Source: galaxyzoo.org/thread SDSS ID 587732484372693317 Position: decimal ra=225.27467594, dec=43.1379529, Redshifts SDSS photometry ugriz 22.74 21.82 21.61 21.79 21.63 SDSS explorer http://cas.sdss.org/astro/en/tools/explore/obj.asp? id=587732484372693317 Other data SDSS Image Object name:SDSS J150153.48+353239.5 Source: galaxyzoo.org/030909 SDSS ID 587736586042212586 Position: decimal ra=225.47285373, dec=35.54431728 Redshifts 0.0496 SDSS photometry ugriz 18.73 17.51 16.89 16.49 16.25 SDSS explorer http://cas.sdss.org/dr7/en/tools/explore/obj.asp? id=587736586042212586 Other data: or polar ring? SDSS Image Object name: SDSS J150219.80-021752.6 Source: galaxyzoo.org/082108
    [Show full text]