Handbook of Psychopharmacology

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of Psychopharmacology Handbook of Psychopharmacology Volume 7 Principles of Behavioral Pharmacology Handbook of Psychopharmacology SECTION I: BASIC NEUROPHARMACOLOGY Volume 1 Biochemical Principles and Techniques in Neuropharmacology Volume 2 Principles of Receptor Research Volume 3 Biochemistry of Biogenic Amines Volume 4 Amino Acid Neurotransmitters Volume 5 Synaptic Modulators Volume 6 Biogenic Amine Receptors SECTION II: BEHAVIORAL PHARMACOLOGY IN ANIMALS Volume 7 Principles of Behavioral Pharmacology Volume 8 Drugs, Neurotransmitters, and Behavior Volume 9 Chemical Pathways in the Brain SECTION III: HUMAN PSYCHOPHARMACOLOGY Volume 10 N euro leptics and Schizophrenia Volume 11 Stimulants Volume 12 Drugs of Abuse Volume 13 Biology of Drug Effects in Affective Disorders Volume 14 Anxiety and Affective Disorders: Drug Actions in Man Volume 7 Principles of Behavioral Pharmacology Edited by Leslie L. Iversen Department of Pharmacology University of Cambridge Susan D. Iversen Department of Psychology University of Cambridge and Solomon H. Snyder Departments of Pharmacology and Psychiatry The Johns Hopkins University School of Medicine PLENUM PRESS • NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Main entry under title: Handbook of psychopharmacology. Includes bibliographies and indexes. CONTENTS: v. 1. Biochemical principles and techniques in neuropharmacology. -v. 2. Principles of receptor research.-v. 3. Biochemistry of biogenic amines.-v. 4. Amino acid neurotransmitters.-v. 5. Synaptic modulators.-v. 6. Biogenic amine receptors.-v. 7. Principles of behavioral pharmacology. 1. Psychopharmacology. I. Iversen, Leslie Lars. II. Iversen, Susan D., 1940- III. Snyder, Solomon H., 1938- [DNLM: 1. Psychopharmacology. QV77 H236j RC483.H36 615.78 75-6851 lSBN-13: 978-1-4613-4216-8 e-lSBN-13: 978-1-4613-4214-4 DOl: 10.1007/978-1-4613-4214-4 © 1977 Plenum Press, New York Softcover reprint of the hardcover 1st edition 1977 A Division of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written pennission from the Publisher CONTRIBUTORS TO VOLUME 7 P. L. BROADHURST, Department oj Psychology, University oj Birmingham, Birming­ ham, England BYRON A. CAMPBELL, Department oj Psychology, Princeton University, Princeton, New Jersey M. R. A. CHANCE, Sub-Department oj Ethology, University oj Birmingham, Birmingham, England P. B. DEWS, Laboratory oj Psychobiology, Department oj Psychiatry, Harvard Medical School, Boston, Massachusetts Jo DEWEESE, Laboratory oj Psychobiology, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts R. T. KELLEHER, Haroard Medical School, New England Regional Primate Research Center, S01Jihborough, Massachusetts R. KUMAR, Institute oj Psychiatry, De Crespigny Park, London, England PAUL D. MABRY, Department oj Psychology, Princeton University, Princeton, New Jersey J. H. MACKINTOSH, Sub-Department oj Ethology, University oj Birmingham, Birmingham, England JOHN F. MARSHALL, The Psychobiology Program, Departmer/Js oj Psychology and Psychiatry, University oj Pittsburgh, Pittsburgh, Pennsylvania J. W. McKEARNEY, Worcester FourukJJion for Experimental Biology, Shrewsbury, Massachusetts PETER M. MILNER, Department oj Psychology, McGiU University, Montreal, Quebec, Canada W. H. MORSE, Laboratory oj Psychobiology, Haroard Medical School, Boston, Massachusetts STATA NORTON, Department oj Pharmacology and Ralph L. Smith Mental Retardation Research Center, University oj Kansas Medical Center, Kansas City, Kansas T. W. ROBBINS, Psychological Laboratory, University oj Cambridge, Cambridge, England v vi CONTRIBUTORS TO VOLUME 7 A. P. SILVERMAN, Central Toxicology Laboratory, Imperini Chemical Industries Ltd., Alderley Park, Cheshire, England 1. P. STOLERMAN, MRC Neuropharmacology Unit, The Medical School, Birming­ ham, England PHILIP TEITELBAUM, Department of Psychology, University oj Illinois, Champaign, Illinois LUIGI V ALZELLI, Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy PREFACE The first six volumes of the Handbook reviewed basic neuropharmacology, drawing on expertise in biochemistry, pharmacology and electrophysiology. The next three volumes focus attention on the functional importance of these basic neuropharmacological mechanisms for normal behavior. In order to study this interface in the intact functioning organism, appropriate methods for describing and quantifying behavior must be developed. The past twenty years have witnessed a revolution in the study of behavior which has taken us away from the often fruitless theoretical arguments to descriptive behaviorism. Technical achievements in the design of apparatus and the recording of behavior played an important role in these developments, and the resultant behavioral methods have been accepted and found useful in studying the effects of drugs. The development of psycho­ pharmacology as a discipline owes as much to these behavioral methods as it does to the basic neuropharmacological techniques pioneered for in vitro studies. In the first section of Volume 7, an effort has been made to provide reviews both of theory and practice in behavioral science. Milner's chapter deals with the concept of motivation in a theoretical framework. By contrast, the chapters by Morse et al. and Dews and DeWeese provide a more descriptive view of the various ways in which aversive stimuli control behavior and the importance of schedules of reinforcement in determining the profile of responding in the animal. The equal importance of observational behav­ ioral methods is well illustrated by Mackintosh et al., and a more detailed treatment of the analysis of sequences of behavior is provided by Norton. Other contributors illustrate how a variety of these behavioral approaches and methods may be combined in the analysis of a particular problem. Marshall and Teitelbaum do this admirably for motivation, and Kumar discusses the progress that has been made in developing animal models of certain human behavioral disorders. In the remaining section of Volume 7, attention is paid to the general factors that determine the proftle of behavioral responses in the individual and their potential for modification by drugs. This represents an immensely VII viii PREFACE important and growing area in psychopharmacology. Genetic factors, devel­ opmental experience, social experience, and drug experience have been selected for review. Global descriptions of behavior often seem far removed from the detailed workings of brain neuropharmacology. In Volume 8 this chasm is bridged. In some areas we are beginning to understand how function at the neuronal level is related to overt behavior. This is so in the case of eating, drinking, sex, sleep, and memory, and the volume provides reviews in these areas. Certain areas, however, remain highly controversial, and it was consid­ ered important to represent the unresolved as well as the resolved issues. The neural and neuropharmacological basis of reinforcement is one such problem, and Routtenberg and Stein et ai. provide provocative reviews from two points of view. An effort has also been made to include reference to more diffuse areas of behavioral control such as behavioral inhibition. Warburton and Gray review this topic from different theoretical positions and illustrate how difficult it is to devise specific behavioral tests for certain nervous functions. Yet it may be that these more global levels of control al e of immense importance in behavioral integration. Finally, in Volume 9 the structural basis of neuropharmacology is considered. Are neuropharmacological systems, for example, a particular class of receptor or neurotransmitter, localized in the brain? And if so, how do we go about unraveling the details of this organization? Histochemical techniques for localizing acetylcholine, catecholamine, and indoleamine path­ ways in the brain are reviewed and information presented on our current knowledge of the anatomical distribution of these transmitter pathways in the central nervous system. Alternative methods using radioautography and immunofluorescence are also considered. These techniques are already proving to be of immense importance in studying neurotransmitter localiza­ tion at the neuronal level and, in particular, in the study of novel neuromo­ dulators such as the peptides, where conventional histochemical methods are not available. Lesion techniques have traditionally played an important role in unraveling neural organization and continue to do so in conjunction with the specific histological techniques. The problems associated with lesion techniques are also considered. This volume is a fair reflection of the current state of knowledge regarding the anatomical basis of neuropharmacology and is invaluable to those seeking to understand the basis of behavior and its modification of psychotropic drugs. L.L.1. S.D. I. S.H.S. CONTENTS METHODS FOR STUDYING UNCONDITIONED AND CONDITIONED BEHAVIOR CHAPTER 1 The Contribution of Ethological Techniques to the Study of Drug Effects J. H. MACKINTOSH, M. R. A. CHANCE, and A. P. SILVERMAN 1. Introduction ....................................... 3 2. Behavior of Laboratory Rodents ...................... 5 2.1. Exploration .................................... 6 2.2. Eating and Drinking ............................ 6 2.3. Digging and Nest-Building
Recommended publications
  • Introduction to Psychopharmacology
    1 Introduction to Psychopharmacology CHAPTER OUTLINE • Psychopharmacology • Why Read a Book on Psychopharmacology? • Drugs: Administered Substances That Alter Physiological Functions • Psychoactive Drugs: Described by Manner of Use • Generic Names, Trade Names, Chemical Names, and Street Names for Drugs • Drug Effects: Determined by Dose • Pharmacology: Pharmacodynamics, Pharmacokinetics, and Pharmacogenetics • Psychoactive Drugs: Objective and Subjective Effects • Study Designs and the Assessment of Psychoactive Drugs • Validity: Addressing the Quality and Impact of an Experiment • Animals and Advancing Medical Research • Researchers Consider Many Ethical Issues When Conducting Human Research • From Actions to Effects: Therapeutic Drug Development • Chapter Summary sychoactive substances have made an enormous impact on society. Many people regularly drink alcohol or smoke tobacco. Millions of Americans take P prescribed drugs for depression or anxiety. As students, scholars, practitioners, and everyday consumers, we may find that learning about psychoactive substances can be invaluable. The chapters in this book provide a thorough overview of the Domajor not classes of psychoactive copy, drugs, including post, their actions inor the body distributeand their effects on behavior. 1 Copyright ©2018 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 2 Drugs and the Neuroscience of Behavior Psychopharmacology Psychopharmacology Psychopharmacology is the study of how drugs affect mood, perception, think- Study of how drugs ing, or behavior. Drugs that achieve these effects by acting in the nervous system affect mood, perception, thinking, or behavior are called psychoactive drugs. The term psychopharmacology encompasses two large fields: psychology and pharmacology. Thus, psychopharmacology attempts to Psychoactive drugs Drugs that affect mood, relate the actions and effects of drugs to psychological processes.
    [Show full text]
  • From Sacred Plants to Psychotherapy
    From Sacred Plants to Psychotherapy: The History and Re-Emergence of Psychedelics in Medicine By Dr. Ben Sessa ‘The rejection of any source of evidence is always treason to that ultimate rationalism which urges forward science and philosophy alike’ - Alfred North Whitehead Introduction: What exactly is it that fascinates people about the psychedelic drugs? And how can we best define them? 1. Most psychiatrists will define psychedelics as those drugs that cause an acute confusional state. They bring about profound alterations in consciousness and may induce perceptual distortions as part of an organic psychosis. 2. Another definition for these substances may come from the cross-cultural dimension. In this context psychedelic drugs may be recognised as ceremonial religious tools, used by some non-Western cultures in order to communicate with the spiritual world. 3. For many lay people the psychedelic drugs are little more than illegal and dangerous drugs of abuse – addictive compounds, not to be distinguished from cocaine and heroin, which are only understood to be destructive - the cause of an individual, if not society’s, destruction. 4. But two final definitions for psychedelic drugs – and those that I would like the reader to have considered by the end of this article – is that the class of drugs defined as psychedelic, can be: a) Useful and safe medical treatments. Tools that as adjuncts to psychotherapy can be used to alleviate the symptoms and course of many mental illnesses, and 1 b) Vital research tools with which to better our understanding of the brain and the nature of consciousness. Classifying psychedelic drugs: 1,2 The drugs that are often described as the ‘classical’ psychedelics include LSD-25 (Lysergic Diethylamide), Mescaline (3,4,5- trimethoxyphenylathylamine), Psilocybin (4-hydroxy-N,N-dimethyltryptamine) and DMT (dimethyltryptamine).
    [Show full text]
  • Behavioral Epigenetics and the Developmental Origins of Child Mental Health Disorders
    Journal of Developmental Origins of Health and Disease (2012), 3(6), 395–408. REVIEW & Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2012 doi:10.1017/S2040174412000426 Behavioral epigenetics and the developmental origins of child mental health disorders B. M. Lester1,2,3,4*, C. J. Marsit5, E. Conradt1,4, C. Bromer6 and J. F. Padbury3,4 1Brown Center for the Study of Children at Risk at Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA 2Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA 3Department of Pediatrics, Warren Alpen Medical School of Brown University, Providence, RI, USA 4Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA 5Departments of Pharmacology & Toxicology and Community & Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA 6Department of Neuroscience, Brown University, Providence, RI, USA Advances in understanding the molecular basis of behavior through epigenetic mechanisms could help explain the developmental origins of child mental health disorders. However, the application of epigenetic principles to the study of human behavior is a relatively new endeavor. In this paper we discuss the ‘Developmental Origins of Health and Disease’ including the role of fetal programming. We then review epigenetic principles related to fetal programming and the recent application of epigenetics to behavior. We focus on the neuroendocrine system and develop a simple heuristic stress-related model to illustrate how epigenetic changes in placental genes could predispose the infant to neurobehavioral profiles that interact with postnatal environmental factors potentially leading to mental health disorders.
    [Show full text]
  • Behavioral Neuroscience and Psychopharmacology
    Behavioral Neuroscience and Psychopharmacology The Behavioral Neuroscience and Psychopharmacology area of concentration is designed to train students broadly in the general theoretical principles and technical approaches used to investigate the neurobehavioral mechanisms of alcohol and drug abuse. Psychopharmacological approaches to understanding basic principles of learning are also emphasized. Students receive a concentrated lab experience using either animal models (quail, mice or rats) or human subjects. Faculty in the program use different levels of analysis including cell culture models, neurochemical assays, developmental toxicology, classical conditioning of drug effects, operant conditioning, human behavioral pharmacology, and cognitive approaches to behavior. Students are expected to receive in depth training in at least one level of analysis although training that integrates more than one level of analysis is strongly encouraged. PROGRAM REQUIREMENTS COURSE REQUIREMENTS (1) Statistics sequence: PSY 610 - Experimental design PSY 611 - Correlational design (2) PSY 780 - Directed BNP studies PSY 780A - first year students only PSY 780B - first year and beyond (3) Any three proseminars selected from the following areas: Learning Cognitive processes Developmental Psychology Sensation & Perception Physiological Psychology (4) Four electives (a minimum of one of these must be outside of the Psychology Department) (see listing of some possible options on page **). (5) Additional course work as recommended by the advisory committee RESEARCH REQUIREMENTS It is expected that all students in the BNP area will be involved in research thorough out their course of study towards the Ph.D. The area has two formalized requirements that are designed to train the student in conducting research: (1) Master's thesis (2) Dissertation ALLIED AREA REQUIREMENT Each student is expected to develop an allied area to gain expertise in some area outside of the student's main research specialty.
    [Show full text]
  • Before They Called It Psychopharmacology* Heinz E
    NEUROPSYCHOPHARMACOLOGY 1993-VOL. 8, NO. 4 291 SPECIAL LECTURE Before They Called It Psychopharmacology* Heinz E. Lehmann, M.D. BEFORE THEY CALLED IT Johns Hopkins, who called the domain of psychophar­ PSYCHOPHARMACOLOGY macology "certainly very meager." Macht conducted pharmacologic experiments with opium narcotics and It is a great privilege and honor to be here today, giv­ coal tar analgesics on reaction time, tapping speed, etc., ing the second annual lecture on the history of psy­ much as Kraepelin as early as 1883 had done in Wundt's chopharmacology. My friend Frank Ayd did such an laboratory with alcohol and caffeine, calling it then Phar­ admirable job with his lecture last year, on the early macopsychologie (Macht 1920). history, that I have had a hard problem finding gaps W. Freeman, in 1931, wrote a more general paper to fill. What I have finally chosen to do is to trace for in the Journal of the American Medical Association on you some of the early history, complete with anecdotes, what he called psychochemistry, and in 1935 Thorner which preceded our modern notions of psychology and wrote the fIrst paper resembling our modern concept pharmacology and then to tell you something of my of the term with "Psychopharmacology of Sodium own experiences and findings in the psychiatric world Amytal in Catatonia." I will discuss this paper in more of the 1940s and 1950s, a world that was remarkably detail later . After a careful search of the modern litera­ different and simplistic compared to today. I also in­ ture, I came to the conclusion that official general use tend to give you a subjective "oral history" of my own of the term psychopharmacology in publications dates stumbling attempts to make some sense out of the only to 1960, following a paper by Ross and Cole enti­ vague and somewhat chaotic potpourri of ideas and tled "Psychopharmacology," when also psychophar­ pharmacologic approaches to psychiatric problems a macology appears for the fIrst time as a free-standing half century ago.
    [Show full text]
  • Psychopharmacology, Neuropharmacology & Toxicology Expertise
    Psychopharmacology, Neuropharmacology & Toxicology Expertise October 2013 Dr Ken Gillman MBBS Re: MAOI anti-depressant drugs MRC Psych Dear Doctor and Colleague, Expert in A patient who wishes to consider treatment with MAOI anti- Psycho- depressant drugs (e.g. “Parnate”, “Nardil”) has obtained this letter pharmacology from my website. I am Dr Ken Gillman MRCPsych, a retired Serotonin academic & clinical psychiatrist. I have published many papers about toxicity psycho-pharmacology and am internationally acknowledged as an Neuroleptic expert on serotonin syndrome (aka serotonin toxicity) and drug-drug malignant interactions generally. You may verify my publications via the NLM syndrome at: Drug http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&term=Gillman interactions P MAOIs or at Google scholar (which also shows their high citation frequency) at: TCAs http://scholar.google.com.au/citations?user=ea6KeD0AAAAJ&hl=en SSRIs and you can get the free pdf from the British Journal of Pharmacology website of one of my recent major reviews ‘Tricyclic antidepressant pharmacology and therapeutic drug interactions updated’. http://onlinelibrary.wiley.com/doi/10.1038/sj.bjp.0707253/pdf I have also recently published a review of the MAOIs, ‘Advances pertaining to the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors. J Clin Psychopharmacol, 2011. 31(1): p. 66-74’ I have had extensive experience of using monoamine oxidase inhibitor (MAOI) drugs (Nardil/phenelzine & Parnate/tranylcypromine) for severe and atypical depression and have written about this since these drugs are somewhat maligned and because reduced knowledge and awareness of them makes many doctors shy away from using them when they might be of considerable utility and benefit.
    [Show full text]
  • Social Work and Neurosciences: Speeches and Theoretical Contributions
    ISSN 2411-9563 (Print) European Journal of Social Science August 2018 ISSN 2312-8429 (Online) Education and Research Vol 5 No 2 DOI: 10.2478/ejser-2018-0046 Open Access. © 2018 João Cabral Sacadura and Helena Neves Almeida. This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License Social Work and Neurosciences: Speeches and Theoretical Contributions M.ª João Cabral Sacadura, PhD Student, Catholic University of Portugal and University of Coimbra, Portugal Helena Neves Almeida, PhD Professor and Researcher. Faculty of Psychology and Education Sciences University of Coimbra, Portugal Abstract The concept of “neuroscience” sometimes referred to as “the last frontier of biology” (Squire et al., 2008, p. 3) was introduced in the mid-1960s and is now recognized as a multidisciplinary field that analyzes the nervous system to understand the biological basis of human behavior. The ongoing developments and the arising production regarding the deepening of the structure, functions and functioning of the brain and its interaction with the environment enabled the identification of key elements reaching an unprecedented level of knowledge in the history of humankind. The multidisciplinary scientific approach, including non-clinical areas such as music, philosophy, education, mathematics, economics and physics, has also contributed to its further deepening. In the light of this scenario of interdependencies and disciplinary alliances, the discipline of the social and human sciences – social work – whose subject is conceived “from and for the practice” (Parton, 1996) in the day-to-day work with challenging social problems of various types and with different publics. Therefore, the present article aims to analyze what has been done to date since 2001, namely the input and contributions of authors and researchers in the field as well as to understand the input of neuroscience developments in their education and research.
    [Show full text]
  • Psychedelic Resting-State Neuroimaging: a Review and Perspective on Balancing Replication and Novel Analyses
    Psychedelic resting-state neuroimaging: a review and perspective on balancing replication and novel analyses Drummond E-Wen McCulloch1, Gitte Moos Knudsen1,2, Frederick Streeter Barrett3, Manoj Doss3, Robin Lester Carhart-Harris4,5, Fernando E. Rosas5,6,7, Gustavo Deco8,9,10,11,12, Katrin H. Preller13, Johannes G. Ramaekers14, Natasha L. Mason14, Felix Müller15, Patrick MacDonald Fisher1 1Neurobiology Research Unit, Rigshospitalet, 2100 Copenhagen, Denmark 2Institute of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark 3Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 4Neuroscape, Weill Institute for Neurosciences, University of California San Francisco, USA 5Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2DD, UK 6Data Science Institute, Imperial College London, London SW7 2AZ, UK 7Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK 8Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain, 9Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain, 10Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain, 11Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 12School of Psychological Sciences, Monash University, Melbourne, Australia 13Pharmaco-Neuroimaging
    [Show full text]
  • Integrating Psychology with Psychopharmacology
    Special Section Integrating Psychology with Psychopharmacology Special Section Editor: Joseph J. Zielinski, PhD e will encounter diagnostic conundrums in our daily practice whether we know it or not. As psychologists, we need to answer for ourselves whether we are Wprepared to service patients who consult us with complex medical problems or medical problems presenting as “psychological” symptoms. The aging of our population will make this an increasing occurrence. Our psychiatrist colleagues sometimes overlook medical issues and ignore laboratory diagnostics, failing to inspire confidence from our patients. Primary care physicians readily admit that they are less than confident when pre- scribing psychotropic medications due to the necessary broadness of their training. Whether or not psychologists prescribe, and I think we should, we need appropriate train- ing in both physical diagnosis and psychotropics in order to help diagnose previously undi- agnosed medical illnesses. We also need to respond confidently when we encounter side effects in our patients already on medication. We have been living with a shared delusion that our patients do not have or do not develop medical illnesses while they are in psy- chotherapy with us. We know that the DSM-IV is more a medical classification than a diagnostic system. However, its diagnostic flow chart has great utility. Its diagnostic algorithm is an explicit, sequential consideration of the following diagnostic entities: medical illness, substance abuse, and mood disorders, before considering other diagnoses. Chance favors the pre- pared mind. Consider the following cases from the author’s own practice. A 50-year old office worker was suspected of substance abuse because of falling asleep after lunch.
    [Show full text]
  • Neuropsychopharmacology - Mirjam A.F.M
    PHARMACOLOGY – Vol. I - Neuropsychopharmacology - Mirjam A.F.M. Gerrits and Jan M. van Ree NEUROPSYCHOPHARMACOLOGY Mirjam A.F.M. Gerrits and Jan M. van Ree Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands Keywords: psychopharmacology, neuropharmacology, central nervous system, antipsychotics, schizophrenia, antidepressants, mood stabilizers, anxiolytics, benzodiazepines Contents 1. Introduction 2. Chemical synaptic transmission in the central nervous system 3. Psychopharmacology and psychotropic drugs 4. Antipsychotics 4.1. Schizophrenia 4.2. Etiology and Pathogenesis of Schizophrenia 4.3. Antipsychotic Drugs 4.3.1. Mechanism of Action 4.3.2. Side Effects of Antipsychotics 4.3.3. Novel Targets for Antipsychotic Drug Action 5. Antidepressants and mood stabilizers 5.1. Etiology and Pathogenesis of Affective Disorders 5.2. Antidepressive Drugs and Mood-stabilizers 5.2.1. Monoamine Oxidase Inhibitors 5.2.2. Tricyclic Antidepressants 5.2.3. Selective 5-HT Uptake Inhibitors 5.2.4. Newer, ‘Atypical’ Antidepressant Drugs 5.2.5. Mood-stabilizers 6. Anxiolytics 6.1. Benzodiazepines 6.1.1. Mechanism of Action 6.1.2. Therapeutic and Side Effects 6.1.3. Pharmacokinetic Aspects Acknowledgements GlossaryUNESCO – EOLSS Bibliography Biographical SketchesSAMPLE CHAPTERS Summary Neuropsychopharmacology is a broad and growing field that is related to several disciplines, including neuropharmacology, psychopharmacology and fundamental neuroscience. It comprises research on the action of psychoactive drugs on different levels. This ranges from molecular and biochemical characterization, to behavioral effects in experimental animals, and finally to clinical application. Over the years, the developments in the neuropsychopharmacological field have led to advances in our ©Encyclopedia of Life Support Systems (EOLSS) PHARMACOLOGY – Vol.
    [Show full text]
  • Today in Psychopharmacology and Neuropharmacology Jie Wu* Barrow Neurological Institute and St
    mac har olo P gy : & O y r p t e s i n Biochemistry & Pharmacology: Open Wu, Biochem & Pharmacol 2013, S1 A m c e c h DOI: 10.4172/2167-0501.S1-e001 e c s o i s B Access ISSN: 2167-0501 Editorial Open Access Today in Psychopharmacology and Neuropharmacology Jie Wu* Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA Psychopharmacology and Neuropharmacology are two rapidly area (VTA), an important brain reward center. Devin Taylor et al. developing branches of pharmacology. Psychopharmacology focuses described a significant effect of nicotine on VTA GABA neuron firing on the actions and effects of psychoactive drugs that have potential or in anesthetized mice, mouse VTA slices, and single GABA neurons effective therapy for mental health disorders. Neuropharmacology is freshly isolated from mouse VTA. They found that systemic or local the study of how drugs affect nervous system functions from molecular, administration of nicotine or α7 nicotine acetylcholine receptor cellular, synaptic, network and behavioral levels; in turn treating a variety (nAChR) agonists increased VTA GABA neuronal firing. This effect of neurological diseases. Both of these branches are closely associated is likely mediated by α7 nAChRs located on glutamatergic terminals/ since they are concerned with the interactions with neurotransmitters, boutons on VTA GABA neurons. These two research articles will help neuropeptides, neuromodulators, enzymes, receptor proteins, second us better understand mechanisms of nicotine reward and reinforcement messengers, co-transporters and ion channels in the central and occurring through the receptors, synapses and neuronal circuits peripheral nervous systems.
    [Show full text]
  • Psychopharmacology: How Drugs Affect Behavior (PSYC 362) Mr
    Psychopharmacology: How Drugs Affect Behavior (PSYC 362) Mr. John E. Kelsey Winter, 2011 Office Hours: 9-10 T & 9:30-11:30 Th Office: Pettengill 359 (6184) 8:00 MWF and by appointment Required Text: Meyer, J. M., & Quenzer, L. F. (2005). Psychopharmacology: Drugs, the Brain, and Behavior. Sunderland, MA: Sinauer. Reserved Reading: On back Jan. 10 Introduction 12 Basic Pharmacology: Pharmacokinetics and pharmacodynamics (Ch 1, esp. 21-31) 14 Basic Neuroscience: Nerve action potentials and synaptic transmission (Ch 2, esp. 40-47; Ch 3) 21 Acetylcholine and Alzheimer’s (Ch 6, 140-151; Marighetto et al., 2008) 24 Dopamine, Parkinson’s, and Norepinephrine (Ch 5; Schapira, 2008; Kelsey et al., 2009) Quiz 28 Serotonin, Glutamate, and GABA (Ch 6, 151-160; Ch 7; Ch 14, 358-363; Didriksen et al., 2007) 31 Drug Classification and Schedules; Anxiolytics/Sedatives (Ch 1, 22-23; Chs 4 & 17; Low et al., 2000; Davis et al., 2005; Kindt et al., 2009) Feb. 4 Alcohol (Ch 9; Gross et al., 2001; Maisto et al., 2004) 11* Exam 1 9 Stimulants: Cocaine and Amphetamine (Ch 11; Tahsili-Fahadan et al., 2010; Fiorino & Phillips, 1999) 14 Nicotine and Caffeine (Ch 12; Bannon et al., 1998; Rollema et al., 2007) 18 Opiates: Pain (Ch 10, 246-260; Fields, 2009) 28* Addiction (Ch 10, 260-272; Redila & Chavkin, 2008) Mar. 7 Addiction: Dopamine hypothesis (Ch 8; Koya et al., 2009) Paper 1 due 9 Role of conditioning/learning (Siegel, 2008; Kenny, 2007) 11 Treatment (Sigmon, 2007) . 14 Marijuana and Cannabinoids (Ch 13; Murray et al., 2007) 16 Exam 2 18 Antipsychotics: Dopamine
    [Show full text]