Commentary Altered DNA Methylation and Genome Instability

Total Page:16

File Type:pdf, Size:1020Kb

Commentary Altered DNA Methylation and Genome Instability Proc. Natl. Acad. Sci. USA Vol. 94, pp. 2103–2105, March 1997 Commentary Altered DNA methylation and genome instability: A new pathway to cancer? Peter A. Jones and Mark L. Gonzalgo University of Southern CaliforniayNorris Comprehensive Cancer Center, Los Angeles, CA 90033 DNA methylation is a mechanism for changing the base The importance of this work is that it suggests an alternative sequence of DNA without altering its coding function. As a pathway for the inactivation of tumor suppressors. A weakness heritable, yet reversible, epigenetic change, it has the potential is that many of these studies have used data obtained from the of altering gene expression and has profound developmental analysis of a few restriction enzyme sites whose relevance to and genetic consequences. The methylation reaction itself is gene control remains undetermined. This situation developed mechanistically complex and involves the flipping of the target because of difficulties in sequencing genomic DNA for 5-meth- cytosine out of the intact double helix, so that the transfer of ylcytosine distribution. In this regard, it is difficult to overstate the methyl group from S-adenosylmethionine can occur in a the contribution of Frommer et al. (14) who have simplified cleft in the enzyme (1). Cytosine methylation is inherently genomic sequencing by the use of bisulfite treatment, making mutagenic, which presumably has led to the 80% suppression the analysis of DNA methylation patterns a fairly routine task. of the CpG methyl acceptor site in eukaryotic organisms, The coupling of this precise and focused approach with the which methylate their genomes. It contributes strongly to the nondirected genome scanning techniques such as that devel- generation of polymorphisms and germ-line mutations, and to oped by Ushijima et al. (5) and others (7–9) is likely to lead to transition mutations that inactivate tumor-suppressor genes rapid progress in this field. (2). Despite a 10- to 40-fold increase in the rate of transitions Almost all studies to date have focused on changes in at methylated versus unmethylated cytosines (3), methylation methylation status of endogenous genes in transformed cells is not only tolerated in several eukaryotes, but is actually relative to their presumed normal counterparts. In the other required for the embryonic development of mammals (4). The related paper in this issue, Lengauer et al. (15) have taken a reasons 5-methylcytosine is essential for development remain different approach by introducing exogenous CpG-rich se- obscure, but most probably relate to the well documented quences in the form of retroviruses into colon cancer cell lines ability of methylation, particularly the methylation of CpG-rich and have come up with an entirely unexpected result. The promoters, to block transcriptional activation. Indeed, there is authors show that two distinct expression patterns were ob- growing evidence that methylation plays a pivotal role in key served in the transfectants. Five out of 10 lines failed to express developmental processes such as genomic imprinting and the retrovirally encoded b-galactosidase gene, and these lines 2 stabilization of X-chromosome inactivation. It therefore is not were all deficient in DNA mismatch repair (MMR ). On the 1 surprising that alterations in this essential epigenetic system other hand, cells competent for repair (MMR ) efficiently might play a role in carcinogenesis (see Fig. 1 for examples). expressed the gene. Importantly, gene expression could be 2 Two papers in this issue of the Proceedings add new evidence induced in the MMR cells by subsequent treatment with to support the notion that alterations in the DNA methylation 5-azacytidine, a well known inhibitor of DNA methylation machinery are among the most common changes associated (16). This result, together with Southern blot analysis showing partial methylation of restriction enzyme sites in MMR2 but with neoplasia and may have a causative role at an early stage 1 in carcinogenesis. In their report, Ushijima et al. (5) have not MMR lines, suggests the existence of two distinct phe- notypes, i.e., MMR2, MET1 (where MET1 means methyl- modified the powerful representation difference analysis 1 2 (RDA) technique pioneered by Wigler and colleagues (6) to ation proficient) and MMR , MET . characterize and clone DNA fragments that show methylation The correlation between the MMR phenotype and expres- changes during murine hepatocarcinogenesis. This method sion is clear, but it will take some time to resolve the precise adds to the growing number of genome scanning approaches, role of the observed de novo methylation in gene silencing. The authors confirmed the presence of methylation, using the including restriction landmark genomic scanning (7) and meth- powerful bisulfite genomic sequencing method discussed ear- ylation-sensitive arbitrarily primed PCR (8, 9), which all have lier, and observed a low, but measurable, level of methylation identified frequently altered methylation sites in cancer cells. in the viral long terminal repeat (LTR). The methylation The new methodologies are important in that they not only patterns were heterogeneous, and some LTR molecules were identify changes, but allow for the cloning of the relevant unmethylated, which might have contributed to the low levels fragments of DNA. The data from these nondirected ap- of expression seen in some of the transfectants. proaches all show that it is not simply the overall levels of DNA Both the Ushijima and Lengauer studies extend previous methylation that are altered in cancer, but rather that profound observations that methylation patterns are commonly altered changes occur in the distribution of methyl groups. in tumor cells, but do not address the question of how the de The above studies have been paralleled by approaches novo methylation of CpG islands occurs. De novo methylation focusing on the de novo methylation of the promoter regions of CpG islands occurs in both endogenous sequences and of specific tumor suppressor genes. In several cases including retrovirally introduced LTRs during development (17). Un- Rb, p16, and VHL, the promoters are CpG rich and fulfill the fortunately, virtually nothing is known about how this is criteria for CpG islands, thus providing a rationale for believ- accomplished in normal or transformed cells, but it may well ing that they might be subject to methylation silencing (10–13). require the participation of an as-yet unknown de novo meth- ylase in addition to the copying or ‘‘maintenance’’ enzyme Copyright q 1997 by THE NATIONAL ACADEMY OF SCIENCES OF THE USA isolated and characterized by Bestor and colleagues (18). The 0027-8424y97y942103-3$2.00y0 existence of such an enzyme seems almost a certainty, because PNAS is available online at http:yywww.pnas.org. ES cells with a complete knockout of the maintenance enzyme 2103 Downloaded by guest on September 26, 2021 2104 Commentary: Jones and Gonzalgo Proc. Natl. Acad. Sci. USA 94 (1997) defect’’ (MET2) directly facilitates the gain and loss of whole chromosomes leading to the genomic instability necessary for cancer development and progression. On the other hand, cells that are MMR2 are hypothesized to have a normal methyl- ation proficiency and generate the required instability by the alternative pathway of mismatch repair deficiency. The hypothesis that DNA methylation and chromosomal integrity and segregation are linked has some experimental support. Feinberg et al. (22) found that colon tumors often have reduced 5-methylcytosine contents relative to normal tissues. They also observed that the three patients in their study with the highest levels of the modified base in their normal colonic epithelia all had Lynch syndrome (HNPCC). This observation, made before the discovery that HNPCC was due to the MMR2 phenotype, suggests that the in vitro data obtained by Lengauer et al. (15) may indeed reflect the in vivo situation. Evidence that methylation may promote retention of chromosomes also has been provided by Hsieh (23), who found that methylated plasmids are maintained with higher efficien- cies than their unmethylated counterparts in transfected cells. However, other observations seem, at first sight, to be con- tradictory to this hypothesis. First, DNA hypermethylation (read de novo methylation) rather than hypomethylation pre- cedes allelic loss in neural tumors (24). Also, the elegant studies of Laird et al. (25) demonstrated that lowering the level of maintenance methylase by genetic or pharmacological means led to a significant decrease rather than an increase in the number of polyps in mice harboring the min mutation. Perhaps the difference lies in the nature of the ‘‘methylation defect’’ in the two systems. The methylation pattern present in a cell is likely to be determined by the interplay of a de novo methylase, a maintenance methylase, and possibly a demeth- ylase. The specific player is known in the transgenic experi- FIG. 1. Models for the role of 5-methylcytosine in cancer. [1] ments but unknown in the tumor systems. Until the relation- Signature mutations in the form of C 3 T transitions at methylated CpG sites are the hallmark of hydrolytic deamination of 5-methylcy- ships between these activities are understood, it may not be tosine and commonly produce mutations in tumor suppressor genes possible to resolve this apparent discrepancy. Also, because such as p53. [2] Abnormal silencing of tumor suppressor genes can methylation presumably plays multiple roles in carcinogenesis occur through the epigenetic effects of DNA methylation at CpG (Fig. 1), it may be that different pathways are selected with islands, which may be localized to the promoters of growth regulatory differing degrees of penetration in diverse situations. genes such as p16, Rb, and VHL. [3] Induction of chromosomal The two new studies published today therefore add inter- instability may result from the inability of a cell to carry out de novo esting new dimensions to our understanding of the importance methylation as proposed in the report by Lengauer et al. (15). Circles of this essential epigenetic modification in cancer.
Recommended publications
  • Dna Methylation Post Transcriptional Modification
    Dna Methylation Post Transcriptional Modification Blistery Benny backbiting her tug-of-war so protectively that Scot barrel very weekends. Solanaceous and unpossessing Eric pubes her creatorships abrogating while Raymundo bereave some limitations demonstrably. Clair compresses his catchings getter epexegetically or epidemically after Bernie vitriols and piffling unchangeably, hypognathous and nourishing. To explore quantitative and dynamic properties of transcriptional regulation by. MeSH Cochrane Library. In revere last check of man series but left house with various gene expression profile of the effect of. Moreover interpretation of transcriptional changes during COVID-19 has been. In transcriptional modification by post transcriptional repression and posted by selective breeding industry: patterns of dna methylation during gc cells and the study of dna. DNA methylation regulates transcriptional homeostasis of. Be local in two ways Post Translational Modifications of amino acid residues of histone. International journal of cyclic gmp in a chromatin dynamics: unexpected results in alternative splicing of reusing and diagnosis of dmrs has been identified using whole process. Dam in dna methylation to violent outbursts that have originated anywhere in england and post transcriptional gene is regulated at the content in dna methylation post transcriptional modification of. A seven sample which customers post being the dtc company for analysis. Fei zhao y, methylation dynamics and modifications on lysine is an essential that. Tag-based our Generation Sequencing. DNA methylation and histone modifications as epigenetic. Thc content of. Lysine methylation has been involved in both transcriptional activation H3K4. For instance aberrance of DNA methylation andor demethylation has been. Chromosome conformation capture from 3C to 5C and will ChIP-based modification.
    [Show full text]
  • DNA Methylation, Imprinting and Cancer
    European Journal of Human Genetics (2002) 10, 6±16 ã 2002 Nature Publishing Group All rights reserved 1018-4813/02 $25.00 www.nature.com/ejhg REVIEW DNA methylation, imprinting and cancer Christoph Plass*,1 and Paul D Soloway*,2 1Division of Human Cancer Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, OH 43210, USA; 2Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, NY 14263, USA It is well known that a variety of genetic changes influence the development and progression of cancer. These changes may result from inherited or spontaneous mutations that are not corrected by repair mechanisms prior to DNA replication. It is increasingly clear that so called epigenetic effects that do not affect the primary sequence of the genome also play an important role in tumorigenesis. This was supported initially by observations that cancer genomes undergo changes in their methylation state and that control of parental allele-specific methylation and expression of imprinted loci is lost in several cancers. Many loci acquiring aberrant methylation in cancers have since been identified and shown to be silenced by DNA methylation. In many cases, this mechanism of silencing inactivates tumour suppressors as effectively as frank mutation and is one of the cancer-predisposing hits described in Knudson's two hit hypothesis. In contrast to mutations which are essentially irreversible, methylation changes are reversible, raising the possibility of developing therapeutics based on restoring the normal methylation state to cancer-associated genes. Development of such therapeutics will require identifying loci undergoing methylation changes in cancer, understanding how their methylation influences tumorigenesis and identifying the mechanisms regulating the methylation state of the genome.
    [Show full text]
  • Functional Implications of DNA Methylation in Adipose Biology
    Diabetes Volume 68, May 2019 871 Functional Implications of DNA Methylation in Adipose Biology Xiang Ma and Sona Kang Diabetes 2019;68:871–878 | https://doi.org/10.2337/dbi18-0057 The twin epidemics of obesity and type 2 diabetes (T2D) variants have not been tested for causality, and even if are a serious health, social, and economic issue. The proven causal, they cannot fully explain many clinical dysregulation of adipose tissue biology is central to the features such as high heritability, high discordance in adult development of these two metabolic disorders, as adi- monozygotic twins, and the close relationship with envi- pose tissue plays a pivotal role in regulating whole-body ronmental factors (2–5). Therefore, it has long been metabolism and energy homeostasis (1). Accumulating speculated that nongenetic variation, such as epigenetic evidence indicates that multiple aspects of adipose bi- alterations, plays a role in pathogenesis. This notion has PERSPECTIVES IN DIABETES ology are regulated, in part, by epigenetic mechanisms. been borne out by a recent epigenome-wide association The precise and comprehensive understanding of the study that linked alterations in DNA methylation to whole- epigenetic control of adipose tissue biology is crucial to body insulin sensitivity (6). identifying novel therapeutic interventions that target DNA methylation is a reversible epigenetic mark in- epigenetic issues. Here, we review the recent findings volving the covalent transfer of a methyl group to the C-5 on DNA methylation events and machinery in regulating the developmental processes and metabolic function of position of a cytosine residue by DNA methyltransferases adipocytes. We highlight the following points: 1) DNA (DNMTs), usually in the context of a cytosine-guanine methylation is a key epigenetic regulator of adipose dinucleotide (CpG) doublet.
    [Show full text]
  • Cpg Islands and the Regulation of Transcription
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW CpG islands and the regulation of transcription Aime´e M. Deaton and Adrian Bird1 The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom Vertebrate CpG islands (CGIs) are short interspersed DNA In spite of their link with transcription, the functional sequences that deviate significantly from the average significance of CGIs is only just beginning to emerge. CGI genomic pattern by being GC-rich, CpG-rich, and pre- promoters turn out to have distinctive patterns of tran- dominantly nonmethylated. Most, perhaps all, CGIs are scription initiation and chromatin configuration. Their sites of transcription initiation, including thousands that regulation involves proteins (some of which specifically are remote from currently annotated promoters. Shared bind nonmethylated CpG) that influence the modifica- DNA sequence features adapt CGIs for promoter function tion status of CGI chromatin. In addition, the CpG moieties by destabilizing nucleosomes and attracting proteins that themselves are sometimes subject to cytosine methylation, create a transcriptionally permissive chromatin state. which correlates with stable shutdown of the associated Silencing of CGI promoters is achieved through dense promoter. Here we examine the properties shared by ver- CpG methylation or polycomb recruitment, again using tebrate CGIs and how transcription is regulated at these their distinctive DNA sequence composition. CGIs are sites. Recent related reviews include Illingworth and Bird therefore generically equipped to influence local chroma- (2009), Mohn and Schubeler (2009), and Blackledge and tin structure and simplify regulation of gene activity. Klose (2011). Vertebrate genomes are methylated predominantly at the Evolutionary conservation of CGIs dinucleotide CpG, and consequently are CpG-deficient owing to the mutagenic properties of methylcytosine CGIs are distinct in vertebrates due to their lack of DNA (Coulondre et al.
    [Show full text]
  • Dynamics and Function of DNA Methylation in Plants
    REVIEWS Dynamics and function of DNA methylation in plants Huiming Zhang1,2*, Zhaobo Lang1,2 and Jian- Kang Zhu 1,2,3* Abstract | DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so- called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions. DNA methylation at the 5ʹ position of cytosine contrib- and regulatory factors are generally not lethal. However, utes to the epigenetic regulation of nuclear gene expres- DNA methylation appears to be more crucial for devel- sion and to genome stability1,2. Epigenetic changes, opment and environmental- stress responses in plants including DNA methylation, histone modifications and that have more complex genomes. Recent findings histone variants and some non- coding RNA (ncRNA) have uncovered important
    [Show full text]
  • Simplified Methylrad Sequencing to Detect Changes in DNA
    epigenomes Article Simplified MethylRAD Sequencing to Detect Changes in DNA Methylation at Enhancer Elements in Differentiating Embryonic Stem Cells Debapriya Saha 1 , Allison B. Norvil 1, Nadia A. Lanman 2,3 and Humaira Gowher 1,2,* 1 Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; [email protected] (D.S.); [email protected] (A.B.N.) 2 Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; [email protected] 3 Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA * Correspondence: [email protected] Received: 13 August 2020; Accepted: 28 September 2020; Published: 1 October 2020 Abstract: Differential DNA methylation is characteristic of gene regulatory regions, such as enhancers, which mostly constitute low or intermediate CpG content in their DNA sequence. Consequently, quantification of changes in DNA methylation at these sites is challenging. Given that DNA methylation across most of the mammalian genome is maintained, the use of genome-wide bisulfite sequencing to measure fractional changes in DNA methylation at specific sites is an overexertion which is both expensive and cumbersome. Here, we developed a MethylRAD technique with an improved experimental plan and bioinformatic analysis tool to examine regional DNA methylation changes in embryonic stem cells (ESCs) during differentiation. The transcriptional silencing of pluripotency genes (PpGs) during ESC differentiation is accompanied by PpG enhancer (PpGe) silencing mediated by the demethylation of H3K4me1 by LSD1. Our MethylRAD data show that in the presence of LSD1 inhibitor, a significant fraction of LSD1-bound PpGe fails to gain DNA methylation. We further show that this effect is mostly observed in PpGes with low/intermediate CpG content.
    [Show full text]
  • Genetics Week 8 Resource March 8-12 Hi Everyone! As We Begin Week 8 of Genetics, Many Students Begin to Have Some Trouble with T
    Genetics Week 8 Resource March 8-12 Hi Everyone! As we begin Week 8 of Genetics, many students begin to have some trouble with the material being covered. Take comfort in this: genetics is an EFFORT class!!!If you put in the work, study smart, and push yourself to do your best, I am confident you can finish the course with the grade you want. Keep in mind that the Tutoring Center offers many services that you can take advantage of! Also, make sure you come to Genetics group tutoring, every Tuesday at 6:30-7:30 You can check the Baylor tutoring website (baylor.edu/tutoring) for more information or to schedule a free, private, one-on-one tutoring appointment! Keywords: Translation, Gene Regulation, Operons Review! Chapter 15 The DNA code is degenerate! o 64 possible codons (3 nucleotides that can each be ATCG) but only 20 amino acids o This means that a specific amino acid is coded for by more than one codon How to know how many amino acids come from a gene: Only count the nucleotides between the start and stop codon (including the start codon but NOT the stop codon)- why is that? Hint: think about how translation works! Each amino acid has three nucleotides (codon). Here are some amazing genetics videos made by the tutoring center to help understand the processes of transcription and replication-these are found on the tutoring website! Molecular components of translation: https://youtu.be/l3ayESyldd0 Process of translation: https://youtu.be/J-m2F7V04Kk All figures, diagrams, and information are sourced from Pierce Genetics 7ed, unless otherwise stated.
    [Show full text]
  • A Second DNA Methyltransferase Repair Enzyme in Escherichia Coli (Ada-Alb Operon Deletion/O'-Methylguanine/04-Methylthyne/Suicide Enzyme) G
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 3039-3043, May 1988 Genetics A second DNA methyltransferase repair enzyme in Escherichia coli (ada-alB operon deletion/O'-methylguanine/04-methylthyne/suicide enzyme) G. WILLIAM REBECK, SUSAN COONS, PATRICK CARROLL, AND LEONA SAMSON* Charles A. Dana Laboratory of Toxicology, Harvard School of Public Health, Boston, MA 02115 Communicated by Elkan R. Blout, December 28, 1987 (receivedfor review November 9, 1987) ABSTRACT The Escherichia coli ada-akB operon en- ada gene encodes a 39-kDa DNA methyltransferase with two codes a 39-kDa protein (Ada) that is a DNA-repair methyl- active sites, one that removes methyl groups from O6- transferase and a 27-kDa protein (AlkB) of unknown function. methylguanine (06-MeGua) or 04-methylthymine (04- By DNA blot hybridization analysis we show that the alkyla- MeThy) and one that removes methyl groups from methyl tion-sensitive E. cofi mutant BS23 [Sedgwick, B. & Lindahl, T. phosphotriester lesions (7, 12-15). The Ada protein is one of (1982) J. Mol. Biol. 154, 169-1751 is a deletion mutant lacking several gene products to be induced as E. coli adapt to the entire ada-aik operon. Despite the absence ofthe ada gene become alkylation-resistant upon exposure to low doses of and its product, the cells contain detectable levels of a DNA- alkylating agents (3, 12, 13). The repair of methyl phospho- repair methyltransferase activity. We conclude that the meth- triester lesions converts the Ada protein into a positive yltransferase in BS23 cells is the product of a gene other than regulator ofthe ada gene, and this adaptive response (16) and ada.
    [Show full text]
  • The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis
    J Lipid Atheroscler. 2020 Sep;9(3):419-434 Journal of https://doi.org/10.12997/jla.2020.9.3.419 Lipid and pISSN 2287-2892·eISSN 2288-2561 Atherosclerosis Review The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis Han-Teo Lee ,1,2,* Sanghyeon Oh ,1,2,* Du Hyun Ro ,1,2,3,* Hyerin Yoo ,1,2 Yoo-Wook Kwon 4,5 1Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea 2Interdisciplinary Program in Stem Cell Biology, Graduate School of Medicine, Seoul National University, Seoul, Korea 3Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea 4Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea Received: May 8, 2020 5Department of Medicine, College of Medicine, Seoul National University, Seoul, Korea Revised: Sep 14, 2020 Accepted: Sep 15, 2020 Correspondence to ABSTRACT Yoo-Wook Kwon Biomedical Research Institute, Seoul National Atherosclerosis, which is the most common chronic disease of the coronary artery, constitutes University Hospital, 103 Daehak-ro, Jongno- a vascular pathology induced by inflammation and plaque accumulation within arterial vessel gu, Seoul 03080, Korea. E-mail: [email protected] walls. Both DNA methylation and histone modifications are epigenetic changes relevant for atherosclerosis. Recent studies have shown that the DNA methylation and histone *Han-Teo Lee, Sanghyeon Oh and Du Hyun Ro modification systems are closely interrelated and mechanically dependent on each other. contributed equally to this work. Herein, we explore the functional linkage between these systems, with a particular emphasis Copyright © 2020 The Korean Society of Lipid on several recent findings suggesting that histone acetylation can help in targeting DNA and Atherosclerosis.
    [Show full text]
  • Inhibition of EZH2 Prevents Fibrosis and Restores Normal Angiogenesis in Scleroderma
    Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma Pei-Suen Tsoua, Phillip Campbella, M. Asif Amina, Patrick Coita, Shaylynn Millera, David A. Foxa, Dinesh Khannaa,b, and Amr H. Sawalhaa,c,1 aDivision of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; bScleroderma Program, University of Michigan, Ann Arbor, MI 48109; and cCenter for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved December 20, 2018 (received for review July 30, 2018) Scleroderma (SSc) is a complex disease that involves activation of EGFR and PDGFR pathways through up-regulation of PTEN the immune system, vascular complications, and tissue fibrosis. The (8, 16). In addition, miR-132, MeCP2, and EZH2 operate in histone methyltransferase enhancer of zeste homolog 2 (EZH2) regulatory epigenetic relay pathways that result in transcriptional mediates trimethylation of lysine 27 of histone 3 (H3K27me3), which repression of PPARγ, ultimately leading to stimulation of myofi- acts as a repressive epigenetic mark. Both EZH2 and H3K27me3 were broblast transdifferentiation (17, 19). elevated in SSc dermal fibroblasts and endothelial cells compared In this study, we focused on the involvement of EZH2 in SSc with healthy controls. EZH2 inhibitor DZNep halted fibrosis both in angiogenesis and fibrosis, utilizing dermal ECs and fibroblasts vitro and in vivo. In SSc fibroblasts, DZNep dose-dependently reduced isolated from healthy controls and SSc patients. We first estab- the expression of profibrotic genes and inhibited migratory activity lished the expression profile of EZH2 in both cell types in SSc, of SSc fibroblasts.
    [Show full text]
  • Role of Transcription Complexes in the Formation of the Basal Methylation Pattern in Early Development
    Role of transcription complexes in the formation of the basal methylation pattern in early development Razi Greenfielda,1, Amalia Tabiba,1, Ilana Kesheta, Joshua Mossa, Ofra Sabaga, Alon Gorenb, and Howard Cedara,2 aDepartment of Developmental Biology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, 91120 Jerusalem, Israel; and bDepartment of Medicine, University of California, San Diego, La Jolla, CA 92093 Edited by Kevin Struhl, Harvard Medical School, Boston, MA, and approved September 4, 2018 (received for review March 21, 2018) Following erasure in the blastocyst, the entire genome undergoes identical, to that of the preimplantation embryo (ICM) (4, 10) de novo methylation at the time of implantation, with CpG islands were chosen to scientifically evaluate the role of DNA methyl- being protected from this process. This bimodal pattern is then ation itself, independent of other variables. preserved throughout development and the lifetime of the Using this dual cell-culture system, it was now possible to ask organism. Using mouse embryonic stem cells as a model system, whether it is indeed positioning of the transcription machinery we demonstrate that the binding of an RNA polymerase complex before implantation that determines what regions will be pro- on DNA before de novo methylation is predictive of it being tected from subsequent de novo methylation. To this end, we protected from this modification, and tethering experiments used an antibody against RNA polymerase (RNAP II) to carry demonstrate that the presence of this complex is, in fact, sufficient out ChIP-sequencing (Seq) in the unmethylated TKO ES cells to prevent methylation at these sites.
    [Show full text]
  • Cytosine Methylation Does Not Affect Binding of Transcription Factor Spl (DNA Methylation/Metaliothionein Gene Expression/"GC Box") MAUREEN A
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 2066-2070, April 1988 Biochemistry Cytosine methylation does not affect binding of transcription factor Spl (DNA methylation/metaliothionein gene expression/"GC box") MAUREEN A. HARRINGTON*, PETER A. JONES*, MASAYOSHI IMAGAWAt, AND MICHAEL KARINt *Department of Biochemistry and Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles, CA 90033; and tSchool of Medicine, Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093 Communicated by Peter B. Dervan, November 23, 1987 (received for review June 9, 1987) ABSTRACT DNA methylation may be a component of a the methylation signal. What remains unclear, however, is multilevel control mechanism that regulates eukaryotic gene whether methylation also alters the direct binding of specific expression. We used synthetic oligonucleotides to investigate transcription factors to defined promoter elements. the effect of cytosine methylation on the binding of the Tjian and coworkers originally described (14-16) and transcription factor Spl to its target sequence (a G+C-rich subsequently purified from HeLa cell nuclear extracts (17) a sequence known as a "GC box"). Concatemers of double- transcription factor, Spl, that specifically recognizes the stranded 14-mers containing a GC box successfully competed simian virus 40 early promoter. Subsequent studies revealed with the human metallothionein iHA promoter for binding to the decanucleotide consensus Spl binding sequence to be Spl in DNase I protection experiments. The presence of 5- methylcytosine in the CpG sequence of the GC box did not 5' TCGGCGGGGC 3' (the "GC box"). GC boxes have influence Spl binding. The result was confirmed using double- been identified in the 5' region of several eukaryotic genes, stranded 20-mers containing 16 base pairs of complementary including the human metallothionein (hMT) IIA, IA, and IB sequence.
    [Show full text]