Riding the Citrus Trail: When Is a Mandarin a Tangerine?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Following Carcinogenic Essential Oils Should Not Be Used In
Aromatherapy Undiluted- Safety and Ethics Copyright © Tony Burfield and Sylla Sheppard-Hanger (2005) [modified from a previous article “A Brief Safety Guidance on Essential Oils” written for IFA, Sept 2004]. Intro In the last 20 years aromatherapy has spread its influence to the household, toiletries and personal care areas: consumer products claiming to relax or invigorate our psyche’s have invaded our bathrooms, kitchen and living room areas. The numbers of therapists using essential oils in Europe and the USA has grown from a handful in the early 1980’s to thousands now worldwide. We have had time to add to our bank of knowledge on essential oils from reflecting on many decades of aromatherapeutic development and history, the collection of anecdotal information from practicing therapists, as well as from clinical & scientific investigations. We have also had enough time to consider the risks in employing essential oils in therapy. In the last twenty years, many more people have had accidents, been ‘burnt’, developed rashes, become allergic, and become sensitized to our beloved tools. Why is this? In this paper, we hope to shed light on this issue, clarify current safety findings, and discuss how Aromatherapists and those in the aromatherapy trade (suppliers, spas, etc.) can interpret this data for continued safe practice. After a refresher on current safety issues including carcinogenic and toxic oils, irritant and photo-toxic oils, we will look at allergens, oils without formal testing, pregnancy issues and medication interactions. We will address the increasing numbers of cases of sensitization and the effect of diluting essential oils. -
Reaction of Tangerines Genotypes to Elsinoe Fawcettiiunder
Reaction of tangerines genotypes to Elsinoe fawcettii under natural infection conditions Crop Breeding and Applied Biotechnology 11: 77-81, 2011 Brazilian Society of Plant Breeding. Printed in Brazil Reaction of tangerines genotypes to Elsinoe fawcettii under natural infection conditions Marcelo Claro de Souza1*, Eduardo Sanches Stuchi2 and Antonio de Goes3 Received 11 February 2010 Accepted 30 September 2010 ABSTRACT - A citrus scab disease, caused by Elsinoe fawcettii, is currently found in all citrus areas throughout Brazil. That being, given the importance of this casual agent, the behavior of tangerines and hybrids influenced by this pathogen was evaluated under natural infection conditions. This study was performed with plants around 15 years old without irrigation; 100 fruits of three plants were collected during harvest season, using a grade scale varying from 0 (absence of symptoms) to 6 (severe symptoms) the level of disease severity was determined. Among the cultivars, citrus scab resistance was observed in Citrus deliciosa, C. tangerina, C. nobilis; a mandarin hybrid (C. nobilis x C. deliciosa) and a satsuma hybrid (C. unshiu x C. sinensis). Among the other genotypes, symptoms were observed with levels of severity ranging from 1 to 3, indicating moderate resistance. Key words: Citrus scab, citrus crop, resistant varieties. INTRODUCTION In Brazil, E. fawcettii is responsible for citrus scab. The disease is widespread in many humid, citrus-cultivating In many citrus production areas around the world, areas around the world and decreases fruit values on the Elsinoe fawcettii is one of the main fungi diseases found. fresh-fruit market (Feichtenberger et al. 1986). In young It attacks a wide variety of citrus species and cultivars, plants or under severe infection, it may cause significant resulting in scab disease on leaves, twigs, and fruits (Timmer fruit drop. -
Essential Oils, Bioactive Compounds and Antioxidant Capacity
medicines Article Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity Min-Hung Chen 1, Kai-Min Yang 2, Tzou-Chi Huang 1 and Mei-Li Wu 1,* 1 Department of Food Science, National Pingtung University of Science & Technology, Pingtung 90090, Taiwan; [email protected] (M.-H.C.); [email protected] (T.-C.H.) 2 Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-8-770-3202 (ext. 7064); Fax: +886-8-774-0378 Academic Editor: Eleni Skaltsa Received: 13 March 2017; Accepted: 4 May 2017; Published: 8 May 2017 Abstract: Background: The calamondin (Citrus microcarpa Bunge) and the kumquat (Fortunella crassifolia Swingle) are two small-size citrus fruits that have traditionally been consumed in Taiwan; however, there has been a lack of scientific research regarding the active compounds and functionalities of these fruits. Methods: Analysis of volatile composition of essential oil and phytosterol was carried out using Gas Chromatography–Mass Spectrometry (GC-MS). Flavonoid and limonoid were analyzed by High Performance Liquid Chromatography (HPLC). Moreover, antioxidant capacity from their essential oils and extracts were assessed in vitro. Results: The compositions of the essential oils of both fruits were identified, with the results showing that the calamondin and kumquat contain identified 43 and 44 volatile compounds, respectively. In addition, oxygenated compounds of volatiles accounted for 4.25% and 2.04%, respectively, consistent with the fact that oxygenated compounds are generally found in high content in citrus fruits. -
Detection of Orange Essential Oil, Isopropyl Myristate, and Benzyl Alcohol in Lemon Essential Oil by FTIR Spectroscopy Combined with Chemometrics
foods Article Detection of Orange Essential Oil, Isopropyl Myristate, and Benzyl Alcohol in Lemon Essential Oil by FTIR Spectroscopy Combined with Chemometrics Nur Cebi 1,*, Osman Taylan 2, Mona Abusurrah 3 and Osman Sagdic 1 1 Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34210 Istanbul,˙ Turkey; [email protected] 2 Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; [email protected] 3 Department of Management Information Systems, College of Business Administration, Taibah University, Madinah 42353, Saudi Arabia; [email protected] * Correspondence: [email protected] Abstract: Essential oils are high-valued natural extracts that are involved in industries such as food, cosmetics, and pharmaceutics. The lemon essential oil (LEO) has high economic importance in the food and beverage industry because of its health-beneficial characteristics and desired flavor properties. LEO, similar to other natural extracts, is prone to being adulterated through economic motivations. Adulteration causes unfair competition between vendors, disruptions in national economies, and crucial risks for consumers worldwide. There is a need for cost-effective, rapid, reliable, robust, and eco-friendly analytical techniques to detect adulterants in essential oils. The cur- rent research developed chemometric models for the quantification of three adulterants (orange essential oil, benzyl alcohol, and isopropyl myristate) in cold-pressed LEOs by using hierarchical cluster analysis (HCA), principal component regression (PCR), and partial least squares regression (PLSR) based on FTIR spectra. The cold-pressed LEO was successfully distinguished from adulter- Citation: Cebi, N.; Taylan, O.; ants by robust HCA. PLSR and PCR showed high accuracy with high R2 values (0.99–1) and low Abusurrah, M.; Sagdic, O. -
Tropical Horticulture: Lecture 32 1
Tropical Horticulture: Lecture 32 Lecture 32 Citrus Citrus: Citrus spp., Rutaceae Citrus are subtropical, evergreen plants originating in southeast Asia and the Malay archipelago but the precise origins are obscure. There are about 1600 species in the subfamily Aurantioideae. The tribe Citreae has 13 genera, most of which are graft and cross compatible with the genus Citrus. There are some tropical species (pomelo). All Citrus combined are the most important fruit crop next to grape. 1 Tropical Horticulture: Lecture 32 The common features are a superior ovary on a raised disc, transparent (pellucid) dots on leaves, and the presence of aromatic oils in leaves and fruits. Citrus has increased in importance in the United States with the development of frozen concentrate which is much superior to canned citrus juice. Per-capita consumption in the US is extremely high. Citrus mitis (calamondin), a miniature orange, is widely grown as an ornamental house pot plant. History Citrus is first mentioned in Chinese literature in 2200 BCE. First citrus in Europe seems to have been the citron, a fruit which has religious significance in Jewish festivals. Mentioned in 310 BCE by Theophrastus. Lemons and limes and sour orange may have been mutations of the citron. The Romans grew sour orange and lemons in 50–100 CE; the first mention of sweet orange in Europe was made in 1400. Columbus brought citrus on his second voyage in 1493 and the first plantation started in Haiti. In 1565 the first citrus was brought to the US in Saint Augustine. 2 Tropical Horticulture: Lecture 32 Taxonomy Citrus classification based on morphology of mature fruit (e.g. -
Cuban Tree Frog He's a Bad Boy!!
Dear Extension Friends, August 2014 We hope you are enjoying your summer by taking the proper precau- Inside this issue: tions to prevent sunburn and heat exhaustion. If you find yourself needing a Cuban Treefrog 1 break from the heat, you are welcome to visit Dr. Kyle Brown for gardening information and advice in the comfort of the air-conditioned office (1pm to Citrus Species and 2 5pm, Monday through Friday). Hybrids Best Regards, Join Us On Facebook! Bamboo Control 3 UF IFAS Extension Baker County Garden Spot Fruit Tree 4 Alicia R. Lamborn https://www.facebook.com/ Calendar: August Horticulture Extension Agent UFIFASBakerCountyGardenSpot Baker County Extension Service CUBAN TREE FROG HE’S A BAD BOY!! A Cuban Tree Frog has been found in Baker County recently. Please keep an eye out for this invasive pest as he eats native tree frogs and smaller lizards and snakes. Should you find one, bring to the Extension Office for positive identification. Make a Tree Frog Hangout from a 3 foot length of 1.25 inch diameter PVC pipe, stand upright in ground near house or shrubs. Check it often to see if you have this Bad Boy! For more information on the Cuban tree frog, see the following UF/ IFAS publications: http://edis.ifas.ufl.edu/uw259 http://edis.ifas.ufl.edu/uw346 Photo Credits: Steven Johnson, University of Florida The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information, and other services only to individ- uals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions, or affiliations. -
1D3fc8bde9f6b59ed96a39c48a1
Molecules 2013, 18, 10639-10647; doi:10.3390/molecules180910639 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Communication Volatile Constituents and Antioxidant Activity of Peel, Flowers and Leaf Oils of Citrus aurantium L. Growing in Greece Eirini Sarrou 1,*, Paschalina Chatzopoulou 2, Kortessa Dimassi-Theriou 1 and Ioannis Therios 1 1 Laboratory of Pomology, School of Horticulture, Aristotle University of Thessaloniki 54124, Greece; E-Mails: [email protected] (K.D.-T.); [email protected] (I.T.) 2 Hellenic Agricultural Organization - Demeter (former NAGREF), Department of Aromatic and Medicinal Plants, Thessaloniki 57001, Greece; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +30-2310-998-603; Fax: +30-2310-472-497. Received: 24 June 2013; in revised form: 23 August 2013 / Accepted: 28 August 2013 / Published: 2 September 2013 Abstract: The volatile constituents of the essential oils of the peel, flower (neroli) and leaves (petitgrain) of bitter orange (Citrus aurantium L.) growing in Greece were studied by GC-MS. The analytical procedures enabled the quantitative determination of 31 components. More specifically, the components of the essential oils identified were: twelve in the peel, twenty-six in the flowers, and twenty and sixteen in old and young leaves, respectively. The major constituents of the different parts of Citrus aurantium L. essential oils were: β-pinene (0.62%–19.08%), limonene (0.53%–94.67%), trans-β-ocimene (3.11%–6.06%), linalool (0.76%–58.21%), and α-terpineol (0.13%–12.89%). The DPPH test demonstrated that the essential oils in the old leaves had the maximum antioxidant activity, followed by the flowers, young leaves and the peel in that order. -
Citrus Fruits 2020 Summary (August 2020) 3 USDA, National Agricultural Statistics Service
United States Department of Citrus Fruits Agriculture National 2020 Summary Agricultural Statistics Service August 2020 ISSN: 1948-9048 Contents Utilized Citrus Production – United States Chart ................................................................................................................... 6 Citrus Value of Production – United States Chart .................................................................................................................. 6 Citrus Narrative ....................................................................................................................................................................... 7 Citrus Acreage, Production, Utilization, and Value – States and United States: 2017-2018, 2018-2019, and 2019-2020 ........................................................................................................................................................................ 8 Citrus Acreage, Production, Utilization, and Value by Crop – United States: 2017-2018, 2018-2019, and 2019-2020 ........................................................................................................................................................................ 9 Orange Acreage, Yield, Utilization, Price, and Value by Type – States and United States: 2017-2018, 2018-2019, and 2019-2020 ................................................................................................................................................... 10 Bearing Acres of Oranges – United States Chart ................................................................................................................. -
Safety Assessment of Citrus-Derived Peel Oils As Used in Cosmetics
Safety Assessment of Citrus-Derived Peel Oils as Used in Cosmetics Status: Final Report Release Date: September 30, 2014 Panel Meeting Date: September 8-9, 2014 The 2014 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Christina Burnett, Senior Scientific Analyst/Writer and Monice Fiume, Assistant Director/Senior Scientific Analyst. Cosmetic Ingredient Review 1620 L Street NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] ABSTRACT The CIR Expert Panel assessed the safety of 14 Citrus-derived peel oil ingredients and concluded that these ingredients are safe for use in cosmetic products when finished products, excluding rinse-off products, do not contain more than 0.0015% (15 ppm) 5-methoxypsoralen (5-MOP), and when formulated to be non-sensitizing and non-irritating. The citrus-derived peel oil ingredients are most frequently reported to function in cosmetics as fragrances and/or skin conditioning agents. The Panel reviewed the available animal and clinical data to determine the safety of these ingredients. Because final product formulations may contain multiple botanicals, each containing similar constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. -
Easton Area HS Instrumental Music Program Fruit Sale
Easton Area HS Instrumental Music Program Fruit Sale To order online with a credit card visit http://FreshFruitOrder.org/EAHSmusic “The Healthy Choice for Fundraising” CALIFORNIA NAVEL ORANGES Item #1 Item #2 Seedless, flavorful, uniform in appearance with a slightly thicker skin $46.00 Per 4/5 BU $29.00 Per 2/5 BU and easy to peel. Their size is somewhat smaller than Florida Navels. 72 or 88 per box (38-40 lbs.) 36 or 44 Per Box (18-20 lbs.) Count may vary according to fruit size. All fruit sold by Weight. JUICE ORANGES Item #3 Item #4 Thin skinned for easy squeezing or hand eating. $46.00 Per 4/5 BU $29.00 Per 2/5 BU 64-125 Per Box (38-40 lbs.) 32-65 Per Box (18-20 lbs.) Count may vary according to fruit size. All fruit sold by Weight. TANGELOS Item #5 Item #6 Medium size, oval shape. $46.00 Per 4/5 BU $29.00 Per 2/5 BU A Tangerine-Grapefruit Hybrid. 64-125 Per Box (38-40 lbs.) 32-65 Per Box (18-20 lbs.) Count may vary according to fruit size. All fruit sold by Weight. RED GRAPEFRUIT Item #7 Item #8 Yellow peel with areas of pink to red blush. $46.00 Per 4/5 BU $29.00 Per 2/5 BU Segments have pink to reddish tinge. Few seeds. 27-48 Per Box (38-40 lbs.) 14-24 Per Box (18-20 lbs.) Count may vary according to fruit size. All fruit sold by Weight. NAVEL/GRAPEFRUIT MIX BOX Item #9 Big Seller for Small Families! $36.00 Per 2/5 BU California Navel Oranges & Grapefruit (10-20 Navels, 8-12 Grapefruit). -
Mandarin Orange Pudding Cake
Mandarin Orange Pudding Cake A variation on the Lemon Pudding Cake in The Beekman 1802 Heirloom Cookbook, with directions reworded a little by me. Ingredients: 1 tbsp. grated mandarin orange zest (from about 6 small mandarin oranges) 2/3 c. + 1 tbsp. sugar 1/4 c. flour 1 c. milk 1/4 c. mandarin orange juice (from some of the mandarin oranges you zested) 2 tbsp. lemon juice (from about 1 lemon) 1/4 c. cream 3 tbsp. butter, melted and then cooled 3 eggs, separated 1/4 tsp. salt whipped cream, fresh mandarin oranges or other fruit, and mint for serving (optional) Directions: Preheat the oven to 350 degrees. Butter an 8 x 8 square pan and find a larger pan big enough for the square pan to sit in. Bring a kettle of water up to boil, or boil water in a pot (about half the water you'd use for a pound of pasta). In the meantime, combine the mandarin orange zest and 2/3 c. of the sugar. Using the back of a spoon, smoosh the zest into the sugar. Whisk in the flour, milk, mandarin orange juice, lemon juice, cream, melted butter and egg yolks until smooth. In a different bowl, beat the egg whites with the salt until they're foamy. Add the remaining 1 tablespoon sugar. Beat on high speed until soft peaks form. Gently fold the egg whites into the mandarin orange mixture by placing the egg whites in the mandarin orange bowl and repeatedly scooping the mixture over the egg whites. -
FEMA GRAS Assessment of Natural Flavor Complexes Citrus-Derived
Food and Chemical Toxicology 124 (2019) 192–218 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox FEMA GRAS assessment of natural flavor complexes: Citrus-derived T flavoring ingredients Samuel M. Cohena, Gerhard Eisenbrandb, Shoji Fukushimac, Nigel J. Gooderhamd, F. Peter Guengeriche, Stephen S. Hechtf, Ivonne M.C.M. Rietjensg, Maria Bastakih, ∗ Jeanne M. Davidsenh, Christie L. Harmanh, Margaret McGowenh, Sean V. Taylori, a Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198- 3135, USA b Food Chemistry & Toxicology, Kühler Grund 48/1, 69126 Heidelberg, Germany c Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan d Dept. of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom e Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA f Masonic Cancer Center, Dept. of Laboratory Medicine and Pathology, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th St. SE, Minneapolis, MN, 55455, USA g Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands h Flavor and Extract Manufacturers Association, 1101 17th Street, NW Suite 700, Washington, DC, 20036, USA i Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, NW Suite 700, Washington, DC,20036,USA ARTICLE INFO ABSTRACT Keywords: In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation Citrus of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication isthe Natural flavor complex first in a series and summarizes the evaluation of54 Citrus-derived NFCs using the procedure outlined in Smith Botanical et al.