The Microzooplankton Community During Winter in NE Atlantic Waters and Its Potential Impact on Condition and Growth of Larval Atlantic Herring (Clupea Harengus)

Total Page:16

File Type:pdf, Size:1020Kb

The Microzooplankton Community During Winter in NE Atlantic Waters and Its Potential Impact on Condition and Growth of Larval Atlantic Herring (Clupea Harengus) The microzooplankton community during winter in NE Atlantic waters and its potential impact on condition and growth of larval Atlantic herring (Clupea harengus) Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Department of Biology Institute for Hydrobiology and Fisheries Science at the University of Hamburg submitted by Franziska Bils Hamburg November 2017 Franziska Bils The microzooplankton community during winter in NE Atlantic waters and its potential impact on condition and growth of larval Atlantic herring (Clupea harengus) Dissertation Evaluators of the dissertation: Prof. PhD. Myron A. Peck Dr. Marta Moyano Date of oral defense: 2018/01/26 CONTENTS Contents List of figures ................................................................................................................... IV List of tables .................................................................................................................. VIII Summary .......................................................................................................................... 1 Zusammenfassung ............................................................................................................ 5 1. General Introduction .................................................................................................... 9 1.1 Microzooplankton in the oceanic realm ......................................................................... 9 1.1.1 Unicellular microzooplankton (PZP) and the microbial loop ............................. 10 1.1.2 Metazoan microzooplankton (MZP) .................................................................. 14 1.1.3 Sampling and analyzing microzooplankton ........................................................ 15 1.2 The microzooplankton-ichthyoplankton link ................................................................ 16 1.2.1 Tools to investigate the microzooplankton – ichthyoplankton link ................... 18 1.3 The microzooplankton-ichthyoplankton link in NE Atlantic herring as a case study ... 20 1.3.1 Plankton community in the NE Atlantic ............................................................. 21 1.3.2 Herring in the NE Atlantic ................................................................................... 21 1.3.3 Atlantic herring fisheries and the importance of early life stages ..................... 22 1.3.4 The microzooplankton-larval herring link in the NE Atlantic ............................. 24 1.4 Goals and outline of the thesis...................................................................................... 25 1.5 References ..................................................................................................................... 29 2. Winter protozooplankton community in the North Sea examined using a routine fisheries survey (Manuscript 1) ................................................................................... 37 2.1 Abstract ......................................................................................................................... 38 2.2 Introduction ................................................................................................................... 39 2.3 Material & Methods ...................................................................................................... 40 2.3.1 Sampling ............................................................................................................. 40 2.3.2 PZP biomass, abundance and community composition .................................... 42 2.3.3 Data analysis ....................................................................................................... 43 2.4 Results ........................................................................................................................... 44 2.4.1 Area of study and plankton sampling ................................................................ 44 2.4.2 PZP abundance and carbon biomass ................................................................. 46 I CONTENTS 2.5 Discussion ...................................................................................................................... 51 2.6 Acknowledgements ....................................................................................................... 56 2.7 References ..................................................................................................................... 56 2.8 Supporting information ................................................................................................. 63 3. Exploring the microzooplankton-ichthyoplankton link: A combined field and modeling study of Atlantic herring (Clupea harengus) in the Irish Sea (Manuscript 2) ................. 65 3.1 Abstract ......................................................................................................................... 66 3.2 Introduction ................................................................................................................... 67 3.3 Method .......................................................................................................................... 69 3.3.1 Area of study and plankton sampling ................................................................ 69 3.3.2 Hydrographic conditions .................................................................................... 71 3.3.3 Protozooplankton identification and community composition analysis ........... 71 3.3.4 Larval herring nutritional condition ................................................................... 73 3.3.5 Microzooplankton-ichthyoplankton link ............................................................ 73 3.4 Results ........................................................................................................................... 75 3.4.1 Hydrographic conditions .................................................................................... 75 3.4.2 Micro- and small mesozooplankton abundance and biomass ........................... 76 3.4.3 Protozooplankton community structure............................................................ 80 3.4.4 Herring larvae abundance and nutritional condition ......................................... 82 3.4.5 Microzooplankton-ichthyoplankton link ............................................................ 83 3.5 Discussion ...................................................................................................................... 86 3.5.1 Microzooplankton community composition ...................................................... 86 3.5.2 Spatial distribution of microzooplankton and small mesozooplankton ............ 87 3.5.3 Microzooplankton-herring larvae link ................................................................ 88 3.6 Conclusions .................................................................................................................... 91 3.7 Acknowledgements ....................................................................................................... 92 3.8 Funding .......................................................................................................................... 92 3.9 References ..................................................................................................................... 92 4. The impact of microzooplankton on the nutritional condition and growth of marine fish larvae using stable isotope analysis (δ13C and δ15N) (Manuscript 3) ............................. 99 II CONTENTS 4.1 Abstract ....................................................................................................................... 100 4.2 Introduction ................................................................................................................. 101 4.3 Methods ...................................................................................................................... 103 4.3.1 Plankton and herring larvae sampling.............................................................. 103 4.3.2 Plankton abundance ......................................................................................... 105 4.3.3 Biochemical analysis ......................................................................................... 106 4.3.4 Data analysis ..................................................................................................... 108 4.4 Results ......................................................................................................................... 109 4.4.1 Environmental conditions and larval prey abundances ................................... 109 4.4.2 Herring larvae abundance and distribution ..................................................... 114 4.4.3 Herring larvae trophic position ........................................................................ 115 4.4.4 Herring larvae nutritional condition and growth rate ..................................... 118 4.5 Discussion .................................................................................................................... 120 4.5.1 Larvae spawned later in the year (winter – Downs) rely more on PZP than on MZP to cover their energetic demands ..................................................... 120 4.5.2 Larval herring target different prey items depending on larval size and spawning ground........................................................................................ 123 4.5.3 The survival
Recommended publications
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Highlights • the Type Species of Cochlodinium, C. Strangulatum, Is
    1 Highlights • The type species of Cochlodinium, C. strangulatum, is widespread, but was mistaken for large cells of Gyrodinium. • First molecular data of a Cochlodinium heterotrophic species, the generic type Cochlodinium strangulatum. • The morphology and molecular phylogeny of Cochlodinium polykrikoides is distantly related to the generic type. • New genus, Margalefidinium gen. nov., and combinations for Cochlodinium polykrikoides and allied species. 2 Molecular characterization and morphology of Cochlodinium strangulatum, the type species of Cochlodinium, and Margalefidinium gen. nov. for C. polykrikoides and allied species (Gymnodiniales, Dinophyceae) Fernando Gómeza,*, Mindy L. Richlenb, Donald M. Andersonb a Carmen Campos Panisse 3, E-11500 Puerto de Santa María, Spain b Woods Hole Oceanographic Institution, Woods Hole MA 02543-1049, USA * Corresponding author: E-mail address: [email protected] (F. Gómez) 3 ABSTRACT Photosynthetic species of the dinoflagellate genus Cochlodinium such as C. polykrikoides, one of the most harmful bloom-forming dinoflagellates, have been extensively investigated. Little is known about the heterotrophic forms of Cochlodinium, such as its type species, Cochlodinium strangulatum. This is an uncommon, large (~200 µm long), solitary, and phagotrophic species, with numerous refractile bodies, a central nucleus enclosed in a distinct perinuclear capsule, and a cell surface with fine longitudinal striae and a circular apical groove. The morphology of C. polykrikoides and allied species is different from the generic type. It is a bloom-forming species with single, two or four-celled chains, small cell size (25–40 µm long) with elongated chloroplasts arranged longitudinally and in parallel, anterior nucleus, eye-spot in the anterior dorsal side, and a cell surface smooth with U-shaped apical groove.
    [Show full text]
  • Marine Phytoplankton Atlas of Kuwait's Waters
    Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas of Kuwait’s of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie ISBN: 99906-41-24-2 Kuwait Institute for Scientific Research P.O.Box 24885, Safat - 13109, Kuwait Tel: (965) 24989000 – Fax: (965) 24989399 www.kisr.edu.kw Marine Phytoplankton Atlas of Kuwait’s Waters Published in Kuwait in 2009 by Kuwait Institute for Scientific Research, P.O.Box 24885, 13109 Safat, Kuwait Copyright © Kuwait Institute for Scientific Research, 2009 All rights reserved. ISBN 99906-41-24-2 Design by Melad M. Helani Printed and bound by Lucky Printing Press, Kuwait No part of this work may be reproduced or utilized in any form or by any means electronic or manual, including photocopying, or by any information or retrieval system, without the prior written permission of the Kuwait Institute for Scientific Research. 2 Kuwait Institute for Scientific Research - Marine phytoplankton Atlas Kuwait Institute for Scientific Research Marine Phytoplankton Atlas of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie Kuwait Institute for Scientific Research Kuwait Kuwait Institute for Scientific Research - Marine phytoplankton Atlas 3 TABLE OF CONTENTS CHAPTER 1: MARINE PHYTOPLANKTON METHODOLOGY AND GENERAL RESULTS INTRODUCTION 16 MATERIAL AND METHODS 18 Phytoplankton Collection and Preservation Methods 18 Sample Analysis 18 Light Microscope (LM) Observations 18 Diatoms Slide Preparation
    [Show full text]
  • Monitoring Groningen Sea Ports Non-Indigenous Species and Risks from Ballast Water in Eemshaven and Delfzijl
    Monitoring Groningen Sea Ports Non-indigenous species and risks from ballast water in Eemshaven and Delfzijl Authors: D.M.E. Slijkerman, S.T. Glorius, A. Gittenberger¹, B.E. van der Weide, O.G. Bos, Wageningen University & M. Rensing¹, G.A. de Groot² Research Report C045/17 A ¹ GiMaRiS ² Wageningen Environmental Research Monitoring Groningen Sea Ports Non-indigenous species and risks from ballast water in Eemshaven and Delfzijl Authors: D.M.E. Slijkerman, S.T. Glorius, A. Gittenberger1, B.E. van der Weide, O.G. Bos, M. Rensing1, G.A. de Groot2 1GiMaRiS 2Wageningen Environmental Research Publication date: June 2017 Wageningen Marine Research Den Helder, June 2017 Wageningen Marine Research report C045/17 A Monitoring Groningen Sea Ports, Non-indigenous species and risks from ballast water in Eemshaven and Delfzijl; D.M.E. Slijkerman, S.T. Glorius, A. Gittenberger, B.E. van der Weide, O.G. Bos, M. Rensing, G.A. de Groot, 2017. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C045/17 A. 81 pp. Keywords: Harbour monitoring, Non- Indigenous Species, eDNA, metabarcoding, Ballast water This report is free to download from https://doi.org/10.18174/417717 Wageningen Marine Research provides no printed copies of reports. This project was funded by “Demonstratie Ballast Waterbehandelings Barge kenmerk WF220396”, under the Subsidy statute by Waddenfonds 2012, and KB project HI Marine Portfolio (KB-24-003- 012). Client: DAMEN Green Solutions Attn.: Dhr. R. van Dinteren Industrieterrein Avelingen West 20 4202 MS Gorinchem Acknowledgements and partners Wageningen Marine Research is ISO 9001:2008 certified. © 2016 Wageningen Marine Research Wageningen UR Wageningen Marine Research The Management of Wageningen Marine Research is not responsible for resulting institute of Stichting Wageningen damage, as well as for damage resulting from the application of results or Research is registered in the Dutch research obtained by Wageningen Marine Research, its clients or any claims traderecord nr.
    [Show full text]
  • An Ecological Characterization of the Tampa Bay Watershed
    Biological Report 90(20) December 1990 An Ecological Characterization of the Tampa Bay Watershed Fish and Wildlife Service and Minerals Management Service u.s. Department of the Interior Chapter 6. Fauna N. Scott Schomer and Paul Johnson 6.1 Introduction on each species, as well as the limited scope.of this document, often excludes such information from our Generally speaking, animal species utilize only a discussion. Where possible, references to more limited number of habitats within a restricted geo­ detailed infonnation on local fish and wildlife condi­ graphic range. Factors that regulate habitat use and tions are included. geographic range include the behavior, physiology, and anatomy ofthe species; competitive, trophic, and 6.2 Invertebrates symbiotic interactions with other species; and forces that influence species dispersion. Such restrictions may be broad, as in the ca.<re of the common crow, 6.2.1 Freshwater Invertebrates which prospers in a wide variety of settings over a Data on freshwater invertebrate communities in va.')t geographic area; or narrow as in the case of the the Tampa Bay area are reported by Cowen et a1. mangrove terrapin, which is found in only one habitat (1974) in the lower Hillsborough River, Cowell et aI. and only in the near tropics of the western hemi­ (1975) in Lake Thonotosassa; Dames and Moore sphere. Knowledge of animal-species occurrence (1975) in the Alafia and Little Manatee Rivers; and within habitat') is fundamental to understanding and Ross and Jones (1979) at numerous locations within managing
    [Show full text]
  • Atlas of Modern Dinoflagellate Cyst Distributions in the Black Sea Corridor: from Aegean to Aral Seas, Including Marmara, Black, Azov and Caspian Seas
    1 Marine Micropaleontology Achimer June 2017, Volume 134, Pages 1-152 http://dx.doi.org/10.1016/j.marmicro.2017.05.004 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00387/49824/ © 2017 Elsevier B.V. All rights reserved. Atlas of modern dinoflagellate cyst distributions in the Black Sea Corridor: From Aegean to Aral Seas, including Marmara, Black, Azov and Caspian Seas Mudie Peta J. 1, Marret Fabienne 2, *, Mertens Kenneth 3, Shumilovskikh Lyudmila 4, Leroy Suzanne A.G. 2, 5 1 Geological Survey of Canada, Box 1008, Dartmouth, NS B2Y 4A2, Canada 2 School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK 3 Research Unit Palaeontology, Ghent University, Krijgslaan 281 S8, 9000 Gent, Belgium 4 Department of Palynology and Climate Dynamics, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany 5 CEREGE, Technopôle de l’Arbois BP 80, 13545, Aix-en-Provence, cedex 4, France * Corresponding author : Fabienne Marret, email address : [email protected] Abstract : We present the first comprehensive taxonomic and environmental study of dinoflagellate cysts in 185 surface sediment samples from the Black Sea Corridor (BSC) which is a series of marine basins extending from the Aegean to the Aral Seas (including Marmara, Black, Azov and Caspian Seas). For decades, these low-salinity, semi-enclosed or endorheic basins have experienced large-scale changes because of intensive agriculture and industrialisation, with consequent eutrophication and increased algal blooms. The BSC atlas data provide a baseline for improved understanding of linkages between surface water conditions and dinoflagellate cyst (dinocyst) distribution, diversity and morphological variations. By cross-reference to dinocyst occurrences in sediment cores with radiocarbon ages covering the past c.
    [Show full text]
  • Phytoplankton of Tampa Bay - a Review
    PHYTOPLANKTON OF TAMPA BAY - A REVIEW Karen A. Steidinger Florida Department of Natural Resources Bureau of Marine Research 100 Eighth Avenue S.E. St. Petersburg, FL 33701 William E. Gardiner Department of Biology University of South Florida Tampa, FL 33620 INTRODUCTION (Fogg 1965; Loftus et al. 1972; Tundisi Phytoplankton in brackish and 197 1, Herbiand and KuGiller 198 1, and marine habitats, such as estuaries, others). Photosynthetic microorganisms consists of dour principal microalgal less than 20 urn, even Iess than 2 urn, can groups: phytomicroflagellates (7 or more account for 20-90% of the planktonic classes), diatoms, dinoflagellates, and inorganic C uptake, but at the same time blue-green algae. These groups are they can have high respiration rates and representative of several size classes: function in remineralization cycles, thus picoplank ton (0.2 to 2 urn), ul traplank ton being important in detrital food webs (less than 5 urn), nannoplankton (3 to 20 because of their dissolved organic uptake urn or less than 20 urn), and capabilities (Porneroy 1974, Li et g. microplankton (20 to 200 urn). 1983). Number of species and assoxated Occasionally, there are larger species abundance trends in estuaries usually such as Noctituca, which can be 1-2 mm reveal an inverse relationship in'diameter. These algal groups can be horizontally with increasing salinity from found in both the water column and the head to the mouth (Hulburt 1965; sediments of estuaries, yet specific Kinne 1963, and. others). DefeIice and species are usually planktonic or benthic Lynts (1978) also noted an increase in in the prevailing vegetative stage.
    [Show full text]
  • Redalyc.Especies De Dinoflagelados Atecados (Dinophyta) De La Costa
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Maciel-Baltazar, Ebodio; Hernández-Becerril, David U. Especies de dinoflagelados atecados (Dinophyta) de la costa de Chiapas, sur del Pacífico mexicano Revista de Biología Marina y Oceanografía, vol. 48, núm. 2, agosto-, 2013, pp. 245-259 Universidad de Valparaíso Viña del Mar, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=47928716005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista de Biología Marina y Oceanografía Vol. 48, Nº2: 245-259, agosto 2013 Artículo Especies de dinoflagelados atecados (Dinophyta) de la costa de Chiapas, sur del Pacífico mexicano Species of athecate dinoflagellates (Dinophyta) from coasts of Chiapas, southern Mexican Pacific Ebodio Maciel-Baltazar1 y David U. Hernández-Becerril2 1Laboratorio Estatal de Salud Pública, Instituto de Salud del Estado de Chiapas, Blvd. Salomón Gonzales Blanco 3452, Tuxtla Gutiérrez, 29040, Chiapas, México 2Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apdo. postal 70-305, Ciudad Universitaria, Coyoacán, 04510, México, D.F., México. [email protected] Abstract.- Athecate dinoflagellates have been poorly studied in the plankton of Mexican marine waters, mainly because of their fragility, as they may become deformed using nets and strong fixatives. However, their biodiversity and ecological role might be important in the planktonic realm. As part of routine phytoplankton monitoring in the Chiapas coasts, Mexico, in the southern Mexican Pacific, samples were obtained during 2009 by net (20 μm mesh) in vertical hauls (up to 15 m), fixed with Lugol’s solution and studied by light microscope (bright field and phase contrast).
    [Show full text]
  • Small Pigmented Eukaryote Assemblages of the Western Tropical
    www.nature.com/scientificreports OPEN Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge Sophie Charvet1,2*, Eunsoo Kim2, Ajit Subramaniam1, Joseph Montoya3 & Solange Duhamel1,2,4* Small pigmented eukaryotes (⩽ 5 µm) are an important, but overlooked component of global marine phytoplankton. The Amazon River plume delivers nutrients into the oligotrophic western tropical North Atlantic, shades the deeper waters, and drives the structure of microphytoplankton (> 20 µm) communities. For small pigmented eukaryotes, however, diversity and distribution in the region remain unknown, despite their signifcant contribution to open ocean primary production and other biogeochemical processes. To investigate how habitats created by the Amazon river plume shape small pigmented eukaryote communities, we used high-throughput sequencing of the 18S ribosomal RNA genes from up to fve distinct small pigmented eukaryote cell populations, identifed and sorted by fow cytometry. Small pigmented eukaryotes dominated small phytoplankton biomass across all habitat types, but the population abundances varied among stations resulting in a random distribution. Small pigmented eukaryote communities were consistently dominated by Chloropicophyceae (0.8–2 µm) and Bacillariophyceae (0.8–3.5 µm), accompanied by MOCH-5 at the surface or by Dinophyceae at the chlorophyll maximum. Taxonomic composition only displayed diferences in the old plume core and at one of the plume margin stations. Such results refect the dynamic interactions of the plume and ofshore oceanic waters and suggest that the resident small pigmented eukaryote diversity was not strongly afected by habitat types at this time of the year. Te Amazon River plume (ARP) results from the massive freshwater discharge of the Amazon River into the western tropical North Atlantic Ocean and at its peak can cover an area greater than 1 million km1,2.
    [Show full text]
  • Diversity and Phylogeny of Gymnodiniales (Dinophyceae) from the NW Mediterranean Sea Revealed by a Morphological and Molecular Approach
    Diversity and phylogeny of Gymnodiniales (Dinophyceae) from the NW Mediterranean Sea revealed by a morphological and molecular approach Albert Reñé *, Jordi Camp, Esther Garcés Institut de Ciències del Mar (CSIC) Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona (Spain) * Corresponding author. Tel.: +34 93 230 9500; fax: +34 93 230 9555. E-mail address: [email protected] Abstract The diversity and phylogeny of dinoflagellates belonging to the Gymnodiniales were studied during a 3-year period at several coastal stations along the Catalan coast (NW Mediterranean) by combining analyses of their morphological features with rDNA sequencing. This approach resulted in the detection of 59 different morphospecies, 13 of which were observed for the first time in the Mediterranean Sea. Fifteen of the detected species were HAB producers; four represented novel detections on the Catalan coast and two in the Mediterranean Sea. Partial rDNA sequences were obtained for 50 different morphospecies, including novel LSU rDNA sequences for 27 species, highlighting the current scarcity of molecular information for this group of dinoflagellates. The combination of morphology and genetics allowed the first determinations of the phylogenetic position of several genera, i.e., Torodinium and many Gyrodinium and Warnowiacean species. The results also suggested that among the specimens belonging to the genera Gymnodinium, Apicoporus, and Cochlodinium were those representing as yet undescribed species. Furthermore, the phylogenetic data suggested taxonomic incongruences for some species, i.e., Gyrodinium undulans and Gymnodinium agaricoides. Although a species complex related to G. spirale was detected, the partial LSU rDNA sequences lacked sufficient resolution to discriminate between various other Gyrodinium morphospecies.
    [Show full text]
  • Standards and Practices for Reporting Plankton and Other Particle
    Standards and practices for reporting plankton and other particle observations from images Technical Manual AUTHORS Aimee Neeley Emmanuel Devred NASA Goddard Space Flight Center/Science Systems Fisheries and Oceans Canada and Applications Inc. Lee Karp-Boss Stace Beaulieu University of Maine Woods Hole Oceanographic Institution Marc Picheral Chris Proctor French National Centre for Scientific Research NASA Goddard Space Flight Center/Science Systems and Applications Inc. Nicole Poulton Bigelow Laboratory for Ocean Sciences Ivona Cetinić NASA Goddard Space Flight Center/Universities Collin Roesler Bowdoin College Space Research Association Adam Shepherd Joe Futrelle Woods Hole Oceanographic Institution Woods Hole Oceanographic Institution Inia Soto Ramos EDITORS NASA Goddard Space Flight Center/Universities Heather Benway Space Research Association Woods Hole Oceanographic Institution Heidi Sosik Mai Maheigan Woods Hole Oceanographic Institution Wood Hole Oceanographic Institution BIBLIOGRAPHIC CITATION: Neeley, A., Beaulieu, S., Proctor, C., Cetinić, I., Futrelle, J., Soto Ramos, I., Sosik, H., Devred, E., Karp-Boss, L., Picheral, M., Poulton, N., Roesler, C., and Shepherd, A.. 2021: Standards and practices for reporting plankton and other particle observations from images. 38pp. DOI: 10.1575/1912/27377. ACKNOWLEDGMENTS This report was an outcome of a working group supported by the Ocean Carbon and Biogeochemistry (OCB) project office, which is funded by the US National Science Foundation (OCE1558412) and the National Aeronautics and Space Administration (NNX17AB17G). AN, SB, and CP conceived and drafted the document. IC, IST, JF and HS contributed to the main body of the document as well as the example files. All members of the working group contributed to the content of the document, including the conceptualization of the data table and metadata format.
    [Show full text]
  • Diversity and Potential Activity Patterns of Planktonic Eukaryotic Microbes in a Mesoeutrophic Coastal Area (Eastern English Channel)
    RESEARCH ARTICLE Diversity and potential activity patterns of planktonic eukaryotic microbes in a mesoeutrophic coastal area (eastern English Channel) Sara Rachik1, Urania Christaki1, Luen Luen Li1, Savvas Genitsaris2, Elsa Breton1, SeÂbastien Monchy1* 1 Univ. Littoral CoÃte d'Opale, CNRS, Univ. Lille, UMR, LOG, Laboratoire d'OceÂanologie et de GeÂosciences, a1111111111 Lille, France, 2 International Hellenic University, School of Economics, Business Administration & Legal Studies, Thessaloniki, Greece a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract The diversity of planktonic eukaryotic microbes was studied at a coastal station of the eastern English Channel (EEC) from March 2011 to July 2015 (77 samples) using high throughput OPEN ACCESS sequencing (454-pyrosequencing and Illumina) of the V2-V3 hypervariable region of the 18S Citation: Rachik S, Christaki U, Li LL, Genitsaris S, Breton E, Monchy S (2018) Diversity and potential SSU rDNA gene. Similar estimations of OTU relative abundance and taxonomic distribution for activity patterns of planktonic eukaryotic microbes the dominant higher taxonomic groups (contributing >1% of the total number of OTUs) were in a mesoeutrophic coastal area (eastern English observed with the two methods (Kolmogorov-Smirnov p-value = 0.22). Eight super-groups Channel). PLoS ONE 13(5): e0196987. https://doi. were identified throughout all samples: Alveolata, Stramenopiles, Opisthokonta, Hacrobia, org/10.1371/journal.pone.0196987 Archeaplastida, Apusozoa, Rhizaria, and Amoebozoa (ordered by decreasing OTU richness). Editor: Gabriel Moreno-Hagelsieb, Wilfrid Laurier To gain further insight into microbial activity in the EEC, ribosomal RNA was extracted for sam- University, CANADA ples from 2013±2015 (30 samples). Analysis of 18S rDNA and rRNA sequences led to the Received: January 10, 2018 detection of 696 and 700 OTUs, respectively.
    [Show full text]