Focused Magmatism Beneath Uturuncu Volcano, Bolivia: Insights from Seismic Tomography and Deformation Modeling GEOSPHERE; V

Total Page:16

File Type:pdf, Size:1020Kb

Focused Magmatism Beneath Uturuncu Volcano, Bolivia: Insights from Seismic Tomography and Deformation Modeling GEOSPHERE; V Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Focused magmatism beneath Uturuncu volcano, Bolivia: Insights from seismic tomography and deformation modeling GEOSPHERE; v. 13, no. 6 Ekaterina Kukarina1,2, Michael West3, Laura Hutchinson Keyson3, Ivan Koulakov1,2, Leonid Tsibizov1,2, and Sergey Smirnov4,5 1A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, Prospekt Koptyuga, 3, Novosibirsk, 630090, Russia doi:10.1130/GES01403.1 2Novosibirsk State University, Pirogova Street, 2, Novosibirsk, 630090, Russia 3Geophysical Institute, University of Alaska Fairbanks, 903 N Koyukuk Dr., Fairbanks, Alaska 99709, USA 9 figures; 2 tables 4V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Prospekt Koptyuga, 3, Novosibirsk, 630090, Russia 5Tomsk State University, 36 Lenin Ave, Tomsk, 634050, Russia CORRESPONDENCE: ekaterina _kukarina@mail .ru CITATION: Kukarina, E., West, M., Hutchinson ABSTRACT modest, the scale of these eruptions makes them significant. They imprint Keyson, L., Koulakov, I., Tsibizov, L., and Smirnov, S., 2017, Focused magmatism beneath Uturuncu geol ogy around the world, capture the imagination of the public, and repre- volcano, Bolivia: Insights from seismic tomography We have carried out a tomographic inversion for seismic velocity in the sent a formative process in continental earth science. and deformation modeling: Geosphere, v. 13, no. 6, vicinity of Uturuncu volcano (Bolivia) based on a 33-station temporary seis- Perhaps more importantly, the scale of these eruptions indicates the ex- p. 1855–1866, doi:10.1130/GES01403.1. mic network deployment. We combine travel times from earthquakes in the istence of prodigious magmatic systems in the crust beneath them. Decades shallow crust with those from earthquakes on the subducting Nazca plate of field studies have demonstrated that, indeed, surface volcanism is but one Received 29 July 2016 Revision received 11 August 2017 to broadly constrain velocities throughout the crust using the LOTOS tomog- manifestation of a larger subsurface process that is ultimately responsible for Accepted 19 September 2017 raphy algorithm. The reliability and resolution of the tomography is verified constructing much of the Earth’s continental crust. Crustal magmatism consists Published online 19 October 2017 using a series of tests on real and synthetic data. The resulting three-dimen- of both intrusive and extrusive processes. While there is little debate that both sional distributions of Vp, Vs, and Vp/Vs reveal a large tooth-shaped anomaly intrusive and extrusive magmatism contribute to the formation of continental rooted in the deep crust and stopping abruptly 6 km below the surface. This crust, the relationship between the two is less clear (e.g., Bachmann et al., 2007). feature exhibits very high values of Vp/Vs (up to 2.0) extending to ~80 km Specifically, it is unclear whether large ignimbrite eruptions are necessarily depth. To explain the relationship of this anomaly with the surface uplift ob- paired with the formation of new plutons (e.g., Glazner et al., 2004). Alterna- served in interferometric synthetic aperture radar (InSAR) data, we propose tively, perhaps large intrusions are less prone to eruption because they ther- two scenarios. In the first, the feature is a pathway for liquid volatiles that con- mally weaken the crust, making it more accommodating to in situ magmas (e.g., vert to gas, due to decompression, at ~6 km depth, causing a volume increase. Jellinek and DePaolo, 2003). All of these reasons provide relevance for the study This expansion drives seismicity in the overlying crust. In the second model, of volcanic systems capable of hosting large caldera-forming eruptions. this anomaly is a buoyant pulse of magma within the batholith, ascending Uturuncu volcano (Bolivia) is one such location. It is part of the Altiplano- due to gravitational instability. We propose a simplified numerical simula- Puna volcanic complex (white dashed line in Fig. 1), above the central Andes tion to demonstrate how this second model generally supports many of the subduction zone and the downgoing Nazca plate. It sits near the border junc- observations. We conclude that both of these scenarios might be valid and ture between Chile, Argentina, and Bolivia. In the late Miocene, a “flare-up” of complement each other for the Uturuncu case. Based on joint analysis of the ignimbrite volcanism is recorded throughout the Altiplano-Puna volcanic com- tomography results and available geochemical and petrological information, plex. Since 10 Ma, >30 caldera forming eruptions have occurred here. At least we have constructed a model of the Uturuncu magma system that illustrates ten of these eruptions left a mark on the global scale (Salisbury et al., 2010). the main stages of phase transitions and melting. These ignimbrite strata cover most of the area around Uturuncu providing a clear, if ominous, reminder of eruptions in the geologic past. Uturuncu lavas consist of andesites and dacites. Rock compositions show INTRODUCTION that dacites are likely formed during andesite fractional crystallization with segregation of noritic cumulates, and zonal phenocrysts of orthopyroxene and Massive caldera-forming eruptions represent rare but catastrophic events. plagioclase indicate the subsequent mixing of dacitic and andesitic magmas Strong explosive eruptions in recent human history—including Mount Tam- (Sparks et al., 2008). bora in Indonesia (A.D. 1815) (Stothers, 1984) and Huaynaputina in Peru (A.D. Argon-argon (39Ar/40Ar) dating show that the volcano was active 890–270 For permission to copy, contact Copyright 1601) (de Silva and Zielinski, 1998)—were locally devastating and impacted k.y. ago, and the eruption activity included lava doming and flows (Sparks Permissions, GSA, or [email protected]. lives in other countries. Though the actual risk from eruptions of this type is et al., 2008; Salisbury et al., 2010). The influence of glaciers is seen on the © 2017 Geological Society of America GEOSPHERE | Volume 13 | Number 6 Kukarina et al. | Uturuncu tomography Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/13/6/1855/3990626/1855.pdf 1855 by guest on 01 October 2021 Research Paper Figure 1. Shaded-relief map of Uturuncu volcano (Bolivia) and surroundings. White dashed line represents the border of the Altiplano-Puna volcanic complex (APVC). Black solid line shows the Altiplano-Puna magma body (APMB) boundaries. Grey lines are political boundaries. Red square is the study region. White area on the right panel shows the inflating area; dashed lines are approximate isolines of defor- mation velocity (after Fialko and Pearse, 2012). The contour interval between the lines is ~2 mm/year. summit lavas, confirming the absence of Holocene effusive activity. The lavas layer is a sill-structured magma body beneath the entire Altiplano-Puna volcanic contain various xenoliths: gabbroids, cumulates, and basement rocks (horn- complex, and proposed a special term for it—the Altiplano-Puna magma body. fels, sandstones, limestones). Two fumarole fields are active at the Uturuncu Based on gravity inversion, integrated with the available geophysical, geologi- summit. They produce significant amounts of sulfur, with gas temperatures cal, and petrological observations, del Potro et al. (2013) proposed that partially <80 °C (Sparks et al., 2008). With the absence of modern cooling lava domes, molten felsic bodies ascend as diapirs through the hot ductile middle to upper the fumaroles are a primary indicator for an active magmatic reservoir. crust. They claimed specifically that these features are likely rooted in, and ex- Uturuncu has received considerable attention in recent years following the tend up from, the Altiplano-Puna magma body near Uturuncu. A joint inversion recognition that it was inflating at 1–2 cm/yr during the late 1990s in a manner of surface wave data and receiver functions (Ward et al., 2014) suggests a more consistent with magma accumulation at depths of 10–20 km (Pritchard and distributed zone on the order of 10 km thick and an estimated potential volume Simons, 2002). The radially symmetric inflation, surrounded by a ring of slight of ~500,000 km3. Ambient noise tomography (Jay et al., 2012) suggested the deflation, was later interpreted by Fialko and Pearse (2012) as evidence for a potential for magma above sea level just north of the Uturuncu summit. diapir sourced by the mid-crustal magma layer. The authors posited that this Each of these techniques provides one view of the magmatic system, diapir accumulates magma beneath Uturuncu by drawing it out of the sur- shaped by the selective resolution of that particular approach. For example, rounding region, thus creating the long-wavelength subsidence as well as the ambient noise tomography images structure in the upper crust, but cannot re- narrower uplift feature. trieve features at deeper levels where the major magma sources are expected. This combination of subsidence and uplift changes strain patterns on ex- Receiver function methods provide information on the interface geometry, but isting fractures and in hydrothermal systems near sea level, generating vol- suffer from depth tradeoffs with velocity parameters. cano-tectonic earthquakes that often manifest as swarms. This was supported The analysis presented in
Recommended publications
  • Insights from the P Wave Travel Time Tomography in the Upper Mantle Beneath the Central Philippines
    remote sensing Article Insights from the P Wave Travel Time Tomography in the Upper Mantle Beneath the Central Philippines Huiyan Shi 1 , Tonglin Li 1,*, Rui Sun 2, Gongbo Zhang 3, Rongzhe Zhang 1 and Xinze Kang 1 1 College of Geo-Exploration Science and Technology, Jilin University, No.938 Xi Min Zhu Street, Changchun 130026, China; [email protected] (H.S.); [email protected] (R.Z.); [email protected] (X.K.) 2 CNOOC Research Institute Co., Ltd., Beijing 100028, China; [email protected] 3 State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; [email protected] * Correspondence: [email protected] Abstract: In this paper, we present a high resolution 3-D tomographic model of the upper mantle obtained from a large number of teleseismic travel time data from the ISC in the central Philippines. There are 2921 teleseismic events and 32,224 useful relative travel time residuals picked to compute the velocity structure in the upper mantle, which was recorded by 87 receivers and satisfied the requirements of teleseismic tomography. Crustal correction was conducted to these data before inversion. The fast-marching method (FMM) and a subspace method were adopted in the forward step and inversion step, respectively. The present tomographic model clearly images steeply subduct- ing high velocity anomalies along the Manila trench in the South China Sea (SCS), which reveals a gradual changing of the subduction angle and a gradual shallowing of the subduction depth from the north to the south.
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • The East African Rift System in the Light of KRISP 90
    ELSEVIER Tectonophysics 236 (1994) 465-483 The East African rift system in the light of KRISP 90 G.R. Keller a, C. Prodehl b, J. Mechie b,l, K. Fuchs b, M.A. Khan ‘, P.K.H. Maguire ‘, W.D. Mooney d, U. Achauer e, P.M. Davis f, R.P. Meyer g, L.W. Braile h, 1.0. Nyambok i, G.A. Thompson J a Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968-0555, USA b Geophysikalisches Institut, Universitdt Karlwuhe, Hertzstrasse 16, D-76187Karlsruhe, Germany ’ Department of Geology, University of Leicester, University Road, Leicester LEl 7RH, UK d U.S. Geological Survey, Office of Earthquake Research, 345 Middlefield Road, Menlo Park, CA 94025, USA ’ Institut de Physique du Globe, Universite’ de Strasbourg, 5 Rue Ret& Descartes, F-67084 Strasbourg, France ‘Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90024, USA ’ Department of Geology and Geophysics, University of Wuconsin at Madison, Madison, WI 53706, USA h Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA i Department of Geology, University of Nairobi, P.O. Box 14576, Nairobi, Kenya ’ Department of Geophysics, Stanford University, Stanford, CA 94305, USA Received 21 September 1992; accepted 8 November 1993 Abstract On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/ teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of NO-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Iv BOLIVIA the Top of the World
    iv BOLIVIA The top of the world Bolivia takes the breath away - with its beauty, its geographic and cultural diversity, and its lack of oxygen. From the air, the city of La Paz is first glimpsed between two snowy Andean mountain ranges on either side of a plain; the spread of the joined-up cities of El Alto and La Paz, cradled in a huge canyon, is an unforgettable sight. For passengers landing at the airport, the thinness of the air induces a mixture of dizziness and euphoria. The city's altitude affects newcomers in strange ways, from a mild headache to an inability to get up from bed; everybody, however, finds walking up stairs a serious challenge. The city's airport, in the heart of El Alto (literally 'the high place'), stands at 4000 metres, not far off the height of the highest peak in Europe, Mont Blanc. The peaks towering in the distance are mostly higher than 5000m, and some exceed 6000m in their eternally white glory. Slicing north-south across Bolivia is a series of climatic zones which range from tropical lowlands to tundra and eternal snows. These ecological niches were exploited for thousands of years, until the Spanish invasion in the early sixteenth century, by indigenous communities whose social structure still prevails in a few ethnic groups today: a single community, linked by marriage and customs, might live in two or more separate climes, often several days' journey away from each other on foot, one in the arid high plateau, the other in a temperate valley.
    [Show full text]
  • Descargar Resumen Ejecutivo
    Presentación Uno de los principales objetivos del Gobierno del Presidente Sebastián Quiero destacar y agradecer la activa participación que tuvieron tanto Piñera es la construcción de una sociedad de oportunidades, seguridades actores públicos como privados en la elaboración del presente plan, todos y valores, donde cada chilena y chileno pueda tener una vida feliz y plena. ellos con el único objetivo de fomentar las potencialidades de la región. El Ministerio de Obras Públicas contribuye a esta misión entregando Quiero especialmente agradecer a los ex ministros Hernán de Solminihac servicios de infraestructura y gestión del recurso hídrico, comprometidos y Laurence Golborne por el gran impulso que dieron a la materialización con la aspiración de ser el primer país de América Latina que logre de estos planes. La etapa siguiente requiere de los mayores esfuerzos de alcanzar el desarrollo antes que termine esta década. trabajo conjunto, coordinado, tras una visión de región y de desarrollo futuro, para materializar durante la próxima década la cartera de estudios, Para eso el Ministerio de Obras Públicas decidió establecer una carta de programas y proyectos que se detallan en este documento. navegación al año 2021, que se materializa en la elaboración de un Plan de Infraestructura y Gestión del Recurso Hídrico para cada una de las En esta oportunidad presento a los actores públicos y privados de la quince regiones de Chile, con la finalidad de orientar nuestras inversiones Región de Antofagasta, en la Macrozona Norte, el Plan de Infraestructura públicas en beneficio directo del desarrollo social, económico y cultural y Gestión del Recurso Hídrico al 2021 de la ciudadanía.
    [Show full text]
  • Geophysical Journal International
    Geophysical Journal International Geophys. J. Int. (2017) 209, 1892–1905 doi: 10.1093/gji/ggx133 Advance Access publication 2017 April 1 GJI Seismology Surface wave imaging of the weakly extended Malawi Rift from ambient-noise and teleseismic Rayleigh waves from onshore and lake-bottom seismometers N.J. Accardo,1 J.B. Gaherty,1 D.J. Shillington,1 C.J. Ebinger,2 A.A. Nyblade,3 G.J. Mbogoni,4 P.R.N. Chindandali,5 R.W. Ferdinand,6 G.D. Mulibo,6 G. Kamihanda,4 D. Keir,7,8 C. Scholz,9 K. Selway,10 J.P. O’Donnell,11 G. Tepp,12 R. Gallacher,7 K. Mtelela,6 J. Salima5 and A. Mruma4 1Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA. E-mail: [email protected] 2Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118,USA 3Department of Geosciences, The Pennsylvania State University, State College, PA 16802,USA 4Geological Survey of Tanzania, Dodoma, Tanzania 5Geological Survey Department of Malawi, Zomba, Malawi 6Department of Geology, University of Dar es Salaam, Dar es Salaam, Tanzania 7National Oceanography Centre Southampton, University of Southampton, Southampton S017 1BJ, United Kingdom 8Dipartimento di Scienzedella Terra, Universita degli Studi di Firenze, Florence 50121,Italy 9Department of Earth Sciences, Syracuse University, New York, NY 13210,USA 10Department of Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia 11School of Earth and Environment, University of Leeds, Leeds, LS29JT, United Kingdom 12Alaska Volcano Observatory, U.S. Geological Survey, Anchorage, AK 99775,USA Accepted 2017 March 28. Received 2017 March 13; in original form 2016 October 12 SUMMARY Located at the southernmost sector of the Western Branch of the East African Rift System, the Malawi Rift exemplifies an active, magma-poor, weakly extended continental rift.
    [Show full text]
  • Compositional Zoning of the Bishop Tuff
    JOURNAL OF PETROLOGY VOLUME 48 NUMBER 5 PAGES 951^999 2007 doi:10.1093/petrology/egm007 Compositional Zoning of the Bishop Tuff WES HILDRETH1* AND COLIN J. N. WILSON2 1US GEOLOGICAL SURVEY, MS-910, MENLO PARK, CA 94025, USA 2SCHOOL OF GEOGRAPHY, GEOLOGY AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF AUCKLAND, PB 92019 AUCKLAND MAIL CENTRE, AUCKLAND 1142, NEW ZEALAND Downloaded from https://academic.oup.com/petrology/article/48/5/951/1472295 by guest on 29 September 2021 RECEIVED JANUARY 7, 2006; ACCEPTED FEBRUARY 13, 2007 ADVANCE ACCESS PUBLICATION MARCH 29, 2007 Compositional data for 4400 pumice clasts, organized according to and the roofward decline in liquidus temperature of the zoned melt, eruptive sequence, crystal content, and texture, provide new perspec- prevented significant crystallization against the roof, consistent with tives on eruption and pre-eruptive evolution of the4600 km3 of zoned dominance of crystal-poor magma early in the eruption and lack of rhyolitic magma ejected as the BishopTuff during formation of Long any roof-rind fragments among the Bishop ejecta, before or after onset Valley caldera. Proportions and compositions of different pumice of caldera collapse. A model of secular incremental zoning is types are given for each ignimbrite package and for the intercalated advanced wherein numerous batches of crystal-poor melt were plinian pumice-fall layers that erupted synchronously. Although released from a mush zone (many kilometers thick) that floored the withdrawal of the zoned magma was less systematic than previously accumulating rhyolitic melt-rich body. Each batch rose to its own realized, the overall sequence displays trends toward greater propor- appropriate level in the melt-buoyancy gradient, which was self- tions of less evolved pumice, more crystals (0Á5^24 wt %), and sustaining against wholesale convective re-homogenization, while higher FeTi-oxide temperatures (714^8188C).
    [Show full text]
  • GY 111: Physical Geology
    UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 9: Extrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) The chemical composition of the crust 2) Crystallization of molten rock 3) Bowen's Reaction Series Web notes 8 Chemical Composition of the Crust Element Wt% % of atoms Oxygen 46.6 60.5 Silicon 27.7 20.5 Aluminum 8.1 6.2 Iron 5.0 1.9 Calcium 3.6 1.9 Sodium 2.8 2.5 Potassium 2.6 1.8 Magnesium 2.1 1.4 All other elements 1.5 3.3 Crystallization of Magma http://myweb.cwpost.liu.edu/vdivener/notes/igneous.htm Bowen’s Reaction Series Source http://www.ltcconline.net/julian Igneous Rock Composition Source: http://hyperphysics.phy-astr.gsu.edu Composition Formation Dominant Silica content Temperature Minerals Ultramafic Very high Olivine, pyroxene Very low (<45%) Mafic High Olivine, pyroxene, low Ca-plagioclase Intermediate Medium Na-Plagioclase, moderate amphibole, biotite Felsic Medium-low Orthoclase, quartz, high (>65%) muscovite, biotite Igneous Rock Texture Extrusive Rocks (Rapid Cooling; non visible* crystals) Intrusive Rocks (slow cooling; 100 % visible crystals) *with a hand lens Igneous Rock Texture Igneous Rock Texture Today’s Agenda 1) Pyro-what? (air fall volcanic rocks) 2) Felsic and Intermediate Extrusive Rocks 3) Mafic Extrusive Rocks Web notes 9 Pyroclastic Igneous Rocks Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”. Clastic means particles; both are of Greek origin. Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”. Clastic means particles; both are of Greek origin. Pyroclastic rocks are usually erupted from composite volcanoes (e.g., they are produced via explosive eruptions from viscous, “cool” lavas) Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”.
    [Show full text]
  • Final Copy 2021 03 23 Ituarte
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Exploring differential erosion patterns using volcanic edifices as a proxy in South America Lia S. Ituarte A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master by Research in the Faculty of Science, School of Earth Sciences, October 2020.
    [Show full text]
  • Vegetation and Climate Change on the Bolivian Altiplano Between 108,000 and 18,000 Years Ago
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 1-1-2005 Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago Alex Chepstow-Lusty Florida Institute of Technology, [email protected] Mark B. Bush Florida Institute of Technology Michael R. Frogley Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL Paul A. Baker Duke University, [email protected] Sherilyn C. Fritz University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Chepstow-Lusty, Alex; Bush, Mark B.; Frogley, Michael R.; Baker, Paul A.; Fritz, Sherilyn C.; and Aronson, James, "Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago" (2005). Papers in the Earth and Atmospheric Sciences. 30. https://digitalcommons.unl.edu/geosciencefacpub/30 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Alex Chepstow-Lusty, Mark B. Bush, Michael R. Frogley, Paul A. Baker, Sherilyn C. Fritz, and James Aronson This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ geosciencefacpub/30 Published in Quaternary Research 63:1 (January 2005), pp.
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]