Acute and Long-Term Clinical, Neuropsychological and Return-To-Work Sequelae Following Electrical Injury: a Retrospective Cohort Study

Total Page:16

File Type:pdf, Size:1020Kb

Acute and Long-Term Clinical, Neuropsychological and Return-To-Work Sequelae Following Electrical Injury: a Retrospective Cohort Study Open access Research BMJ Open: first published as 10.1136/bmjopen-2018-025990 on 14 May 2019. Downloaded from Acute and long-term clinical, neuropsychological and return-to-work sequelae following electrical injury: a retrospective cohort study Nada Radulovic,1 Stephanie A Mason,2 Sarah Rehou,2,3 Matthew Godleski,2,4 Marc G Jeschke 2,3 To cite: Radulovic N, ABSTRACT Strengths and limitations of this study Mason SA, Rehou S, et al. Objective To determine acute and long-term clinical, Acute and long-term clinical, neuropsychological, and return-to-work (RTW) effects of ► Our study evaluated broad sequelae, including clin- neuropsychological and return- electrical injuries (EIs). This study aims to further contrast to-work sequelae following ical, neuropsychological and return-to-work param- sequelae between low-voltage and high-voltage injuries electrical injury: a retrospective eters during acute and long-term intervals, which (LVIs and HVIs). We hypothesise that all EIs will result cohort study. BMJ Open have not been collectively investigated for electrical in substantial adverse effects during both phases of 2019;9:e025990. doi:10.1136/ injuries in prior studies. bmjopen-2018-025990 management, with HVIs contributing to greater rates of ► Outcome measures included a comprehensive list of sequelae. Prepublication history and neuropsychological symptoms and diagnoses that ► Design Retrospective cohort study evaluating EI additional material for this have not been contrasted between voltage groups paper are available online. To admissions between 1998 and 2015. in existing literature. Setting Provincial burn centre and rehabilitation hospital view these files, please visit ► Due to the longitudinal nature of our outcomes of the journal online (http:// dx. doi. specialising in EI management. interest, and the associated loss to follow-up, our org/ 10. 1136/ bmjopen- 2018- Participants All EI admissions were reviewed for acute findings may underrepresent the long-term neuro- 025990). clinical outcomes (n=207). For long-term outcomes, psychosocial sequelae within our study cohorts. rehabilitation patients, who were referred from the burn Received 12 August 2018 centre (n=63) or other burn units across the province Revised 1 December 2018 (n=65), were screened for inclusion. Six patients were Accepted 11 February 2019 excluded due to pre-existing psychiatric conditions. This INTRODUCTIOn http://bmjopen.bmj.com/ cohort (n=122) was assessed for long-term outcomes. Electrical injuries (EIs) account for approx- Median time to first and last follow-up were 201 (68–766) imately 5% of all annual burn admissions and 980 (391–1409) days, respectively. in North America, yet are a leading cause Outcome measures Acute and long-term clinical, of occupational burns worldwide.1 These neuropsychological and RTW sequelae. injuries result in substantial limitations that Results Acute clinical complications included infections impede return-to-work (RTW) and decrease (14%) and amputations (13%). HVIs resulted in greater © Author(s) (or their quality of life.2–5 Several studies globally employer(s)) 2019. Re-use rates of these complications, including compartment permitted under CC BY-NC. No syndrome (16% vs 4%, p=0.007) and rhabdomyolysis have proposed that EIs are implicated in on October 1, 2021 by guest. Protected copyright. commercial re-use. See rights (12% vs 0%, p<0.001). Rates of acute neuropsychological persistent functional, cognitive and neuro- and permissions. Published by sequelae were similar between voltage groups. Long-term psychological sequelae, including flashbacks, BMJ. outcomes were dominated by insomnia (68%), anxiety depression, anxiety and post-traumatic stress 1 School of Medicine, Queen's (62%), post-traumatic stress disorder (33%) and major disorder (PTSD).3 5–16 However, clinical University, Kingston, Ontario, depressive disorder (25%). Sleep difficulties (67%) were Canada evidence regarding such effects is limited, as 2Ross Tilley Burn Centre, common following HVIs, while the LVI group most frequently the majority of reported findings are based 17 Sunnybrook Health Sciences experienced sleep difficulties (70%) and anxiety (70%). on case reports or small clinical studies. Centre, Toronto, Ontario, Canada Ninety work-related EIs were available for RTW analysis. Additionally, uncertainty with EI classifica- 3 Sunnybrook Research Institute, Sixty-one per cent returned to their preinjury employment tion remains. EIs can be classified in various Sunnybrook Health Sciences and 19% were unable to return to any form of work. RTW ways and defined as either high or low voltage. Centre, Toronto, Ontario, Canada rates were similar when compared between voltage groups. 4 Currently, an EI below 1000 V is considered Physical Medicine and Conclusions This is the first investigation to determine Rehabilitation, St. John's Rehab acute and long-term patient outcomes post-EI as a a low-voltage injury (LVI), whereas one of Hospital, Toronto, Ontario, continuum. Findings highlight substantial rates of 1000 V or greater is considered a high-voltage Canada neuropsychological and social sequelae, regardless of injury (HVI). These voltage categories have 18 Correspondence to voltage. Specialised and individualised early interventions, been defined based on arcing risk. Clear Dr Marc G Jeschke; including screening for mental health concerns, are classification is necessary as LVIs and HVIs marc. jeschke@ sunnybrook. ca imperative to improvingoutcomes of EI patients. have been suggested to result in different Radulovic N, et al. BMJ Open 2019;9:e025990. doi:10.1136/bmjopen-2018-025990 1 Open access clinical courses. For example, two recent reviews found and EI type (flash, contact, both contact and flash, light- BMJ Open: first published as 10.1136/bmjopen-2018-025990 on 14 May 2019. Downloaded from that HVIs experience longer hospital stays and greater ning or unspecified). rates of complications relative to LVIs.19–21 Differences Clinical outcomes during the acute period that were between these EI subgroups during the acute and long- collected included length of stay (LOS) at RTBC, LOS term phases of treatment are currently unknown. adjusted for %TBSA (LOS/%TBSA), number of ampu- Within our provincial healthcare system, a large tations, amputation levels and number of operations. proportion of EI survivors are treated at a single acute Incidences of mortality, rhabdomyolysis, compartment care surgical site, the Ross Tilley Burn Centre (RTBC) at syndrome, one or more infections, sepsis, multiple organ Sunnybrook Health Sciences Centre (SHSC). Typically, patients failure and rehabilitation requirements (inpatient or requiring ongoing inpatient or outpatient rehabilitation outpatient) were additionally analysed. services are managed at St. John’s Rehabilitation Hospital Patients transferred to SJRH for rehabilitation under- (SJRH), which additionally serves as a referral site for went neuropsychological screening by the care team other acute care centres and the workplace injury insur- prior to discharge, as part of the required referral docu- ance system. Fewer sites allow for the centralisation of mentation. This screen was observational and included services and collection of information for an uncommon the following symptoms: depressed mood, anxiety, diagnosis across multiple phases of care. flashbacks, avoidance, hypervigilance, hyperarousal, There are two primary objectives to this study. First, we nightmares, sleep difficulties, social withdrawal, suicidal aim to determine the effects of EIs on the clinical course ideations, memory and concentration difficulties, dizzi- of acute hospitalisation and long-term outcomes during ness, headaches and phantom limb pain. rehabilitation. Second, we aim to examine and contrast individual short-term and long-term outcomes by voltage Long-term period outcomes (HVI vs LVI). We hypothesise that EIs result in substan- Injury, demographic and neuropsychological outcomes tial morbidity during acute hospitalisation and are associ- data for patients in the long-term cohort were obtained ated with significant impairments in rehabilitation, RTW through chart review of SJRH documentation. Variables and neuropsychology. Additionally, we expect HVIs to be collected included voltage (HVI vs LVI), work-related implicated in more adverse clinical sequelae, longer reha- nature of the EI and occupation. Neuropsychological bilitation phases and poorer long-term outcomes. symptoms identified from rehabilitation records were depressed mood, anxiety, flashbacks, avoidance, hypervig- ilance, hyperarousal, nightmares, sleep difficulties, social withdrawal, suicidal ideations, memory and concentra- MATERIALS AND METHODS tion difficulties, dizziness, headaches, phantom limb Study design pain and chronic pain. Additionally, we recorded formal We conducted a cohort study of all EI patients admitted diagnoses of PTSD, major depressive disorder (MDD), http://bmjopen.bmj.com/ to RTBC and SJRH between November 1998, the date generalised anxiety disorder (GAD), adjustment disorder of RTBC establishment at SHSC, and December 2015. and panic disorder, as well as the time to diagnosis post- Patients were defined as HVI (≥1000 V) or LVI (<1000 injury. Treatment by a psychologist or psychiatrist and the V), based on the voltage documented at the time of acute need for medications to address these sequelae were also admission at RTBC or from existing records at the time of recorded, with rates defined as the proportion of patients entering
Recommended publications
  • Neurological and Neurourological Complications of Electrical Injuries
    REVIEW ARTICLE Neurologia i Neurochirurgia Polska Polish Journal of Neurology and Neurosurgery 2021, Volume 55, no. 1, pages: 12–23 DOI: 10.5603/PJNNS.a2020.0076 Copyright © 2021 Polish Neurological Society ISSN 0028–3843 Neurological and neurourological complications of electrical injuries Konstantina G. Yiannopoulou1, Georgios I. Papagiannis2, 3, Athanasios I. Triantafyllou2, 3, Panayiotis Koulouvaris3, Aikaterini I. Anastasiou4, Konstantinos Kontoangelos5, Ioannis P. Anastasiou6 1Neurological Department, Henry Dunant Hospital Centre, Athens, Greece 2Orthopaedic Research and Education Centre “P.N. Soukakos”, Biomechanics and Gait Analysis Laboratory “Sylvia Ioannou”, “Attikon” University Hospital, Athens, Greece 31st Department of Orthopaedic Surgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece 4Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece 51st Department of Psychiatry, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece 61st Urology Department, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece ABSTRACT Electrical injury can affect any system and organ. Central nervous system (CNS) complications are especially well recognised, causing an increased risk of morbidity, while peripheral nervous system (PNS) complications, neurourological and cognitive and psychological abnormalities are less predictable after electrical injuries. PubMed was searched for English language clinical observational, retrospective,
    [Show full text]
  • Thoracic Trauma ● Esophagus ● Heart Tessa Woods, DO ● Thoracic Vascular Injuries
    10/1/2018 Outline ● Emergency Department Thoracotomy ● REBOA ● Lung ● Trachea Thoracic Trauma ● Esophagus ● Heart Tessa Woods, DO ● Thoracic Vascular Injuries EAST Practice Management Guidelines ● EDT Survival Predictors ○ 1. Injury mechanism ○ 2. Anatomic injury location ○ 3. Presence of life on presentation ED Thoracotomy EAST Scenarios EAST Scenarios ● Patient 1: Pulseless to ED with signs of life after penetrating thoracic injury? ● Patient 5: Pulseless to the ED with signs of life after blunt injury? ○ Yes ○ Yes, Conditionally ● Patient 2: Pulseless to ED without signs of life after penetrating thoracic ● Patient 6: Pulseless to the ED without signs of life after blunt injury? injury? ○ No ○ Yes, conditionally ■ Some voting “conditionally” ● Patient 3: Pulseless to the ED with signs of life after penetrating extrathoracic ■ Low quality of evidence injury? ○ Yes, conditionally ■ Does not pertain to cranial injuries ● Patient 4: Pulseless to the ED without signs of life after penetrating extrathoracic injury? ○ Yes, conditionally ■ Low quality of evidence 1 10/1/2018 Resuscitative Endovascular Balloon Occlusion of the Aorta2-12 ● Benefits: ○ Maximizes cerebral and coronary perfusion ○ Limits infradiaphragmatic hemorrhage REBOA ○ Avoids thoracotomy ● Limitations/complications: ○ Vascular injury ○ Time consumptive? ○ Learning curve ○ Appropriate setting/provider ● https://youtu.be/L3z5utZvnq4 Upcoming studies ● EPR-CAT (Emergency Preservation and Resuscitation for Cardiac Arrest From Trauma) ○ Compares pulseless penetrating trauma victims
    [Show full text]
  • Of Cellular Injury in Electrical Trauma by Diane C
    Physical Mechanisms of Cellular Injury in Electrical Trauma by Diane C. Gaylor B.S.E.E. University of Arizona (1984) S.M.E.E. Massachusetts Institute of Technology (1987) Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering at the Massachusetts Institute of Technology September 1989 - Diane C. Gaylor, 1989. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author D 4artmeof"Electricaal Engineering 11 August 1989 Certified by , Raphael C. Lee Thesis Supervisor Accepted by Aritj . Smith Chairman, Departmental Committee on Graduate Students MASSACHUSETTS INSTITUTE OF TECHN•OLO.Gy DEC 2 7 1989 ARCHIVEF UBRANRIE Physical Mechanisms of Cellular Injury in Electrical Trauma by Diane C. Gaylor Submitted to the Department of Electrical Engineering and Computer Science on 11 August 1989 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Electrical Engineering ABSTRACT Clinical evidence indicates that skeletal muscle cell membrane rupture occurs in electrical trauma. The pathogenic mechanisms of this damage have not been clearly identified. While it is clear that Joule heating causes part of the tissue destruction, particularly near the skin contact points, it does not appear to explain the pattern of tissue injury frequently observed at sites distant from the contacts. In this thesis, the significance of the non-thermal mechanism of membrane electrical breakdown, often termed electroporation or electropermeabilization, is examined. The exposure thresholds for damage to skeletal muscle cells due to membrane electrical breakdown and to heating are determined experimentally.
    [Show full text]
  • Practice Exam
    Case 1: A 78 year old woman is found with decreased LOC in her apartment by her daughter. She was last seen well 3 days ago. When EMS arrives, they find her temperature to be 30.2 degrees Celsius. Questions: 1. Input from cutaneous cold receptors travels via afferent fibers to which area of the brain? a. Pre-optic nucleus of the anterior hypothalamus 2. This area of the brain then initiates a number of physiologic responses. Please list three general categories of physiologic responses that either aim to increase heat production or decrease heat loss and give one example for each. a. activation of autonomic nervous system (vasoconstriction) b. activation of endocrine system (increased cortisol) c. stimulation of extra-pyramidal skeletal muscle (shivering) d. adaptive behavioural responses (move to area of warmth) 3. Define mild, moderate and severe hypothermia. a. mild 33-35 b. moderate 28-32 c. severe <28 4. List at least 10 clinical manifestations of moderate hypothermia References: 1. Hanania NA et al. Accidental hypothermia. Crit Care Clin 1999;15:235-249. 2. Mallet ML. Pathophysiology of accidental hypothermia. Q J Med 2002; 95:775–785 Case 2 You are completing rounds in the ICU when a Code Orange is called. The operations leader runs into the ICU and quickly updates you. The G-7 summit is currently going on in town and terrorists have set off a “dirty-bomb” at one of the main venues. They fear that in addition to powerful explosives, this bomb contained radioactive material. Questions: 1. Please draw the dose-response relationship for radiation exposure.
    [Show full text]
  • Electric Shock During Pregnancy
    clinical challenge défi clinique Ran D. Goldman, MD Adrienne Einarson, RN Gideon Koren, MD, FRCPC Electric shock during pregnancy ABSTRACT QUESTION A 24-year-old patient of mine, who was 23 weeks pregnant at the time, suffered a minor electric shock while using her hair dryer. She said she felt the current in her right hand and she was wearing shoes. She was observed in an emergency room for several hours and then discharged home. Is her pregnancy or fetus at risk now or later in the pregnancy? ANSWER There are confl icting reports on how harmful electric shock is to a fetus. The clinical spectrum of electrical injury ranges from a transient unpleasant sensation felt by a mother and no effect on her fetus to fetal death either immediately or few days later. Several factors, such as the magnitude of the current and the duration of contact, are thought to affect outcome. In this case, it appears the current did not travel through her abdomen. Recommendations for fetal monitoring after electrocution have been published. RÉSUMÉ QUESTION Une de mes patientes, âgée de 24 ans, a subi un choc électrique mineur alors qu’elle était enceinte de 23 semaines en utilisant son séchoir à cheveux. Elle a dit avoir senti le courant dans sa main droite et elle portait des chaussures. Elle a été sous observation à l’urgence pendant quelques heures pour ensuite recevoir son congé. Sa grossesse ou son fœtus sont-ils à risque maintenant ou plus tard durant la grossesse? RÉPONSE Il existe des rapports confl ictuels sur les dommages causés à un fœtus par un choc électrique.
    [Show full text]
  • Electrical Injuries: Hospitalisations and Deaths
    A total of 1,065 people hospitalised between Electrical injuries: 1 July 2014 and 30 June 2016 had sustained an electrical injury, and 55 people died as a result of hospitalisations and deaths electrocution or lightning strike. Almost half of people hospitalised with an electrical injury occurred while the person was in paid work (497 cases or 47%), and a further 150 people sustained an electrical injury 2014–15 and 2015–16 while doing unpaid work (14%). aihw.gov.au Stronger evidence, better decisions, improved health and welfare Stronger evidence, better decisions, improved health and welfare Injury Research and Statistics Series Number 117 Electrical injuries: hospitalisations and deaths 2014–15 and 2015–16 Australian Institute of Health and Welfare Canberra Cat. no. INJCAT 197 The Australian Institute of Health and Welfare is a major national agency whose purpose is to create authoritative and accessible information and statistics that inform decisions and improve the health and welfare of all Australians. © Australian Institute of Health and Welfare and Flinders University 2018 This product, excluding the AIHW logo, Commonwealth Coat of Arms and any material owned by a third party or protected by a trademark, has been released under a Creative Commons BY 3.0 (CC-BY 3.0) licence. Excluded material owned by third parties may include, for example, design and layout, images obtained under licence from third parties and signatures. We have made all reasonable efforts to identify and label material owned by third parties. You may distribute, remix and build upon this work. However, you must attribute the AIHW and Flinders University as the copyright holders of the work in compliance with our attribution policy available at <www.aihw.gov.au/copyright/>.
    [Show full text]
  • Electrocution Death: Exit Mark Injury Use in the Suggestion of Body Posture During Forensic Investigation
    Electrocution Death: Exit Mark Injury use in the Suggestion of Body Posture during Forensic Investigation Pudji Hardjanto1,4 Simon Martin Manyanza Nzilibili1,3 Ahmad Yudianto1,2 1Forensic Science Program, Post Graduate School Universitas Airlangga, 4-6 Airlangga Rd., 60286 Surabaya – Indonesia. 2Department of Forensic and Medico-legal, Faculty of Medicine, Universitas Airlangga, Surabaya – Indonesia 3Ministry of Health, Community Development, Gender Elderly and Children, Dodoma – Tanzania. 4Criminal Investigative Unit, Polrestabes Surabaya, Indonesia. Keywords: Body Posture, Electrocution, Exit Injury, Forensic Reconstruction Abstract: Since then, electrocution and forensic investigation of electric death associated with criminal offenses have established the importance of mark injuries. The marks (entry and exit) came into significance as they were/are used to establish fatality and extent of electric power electrocuted. Unlike entry, exit injury has presented attention to scientists on its adequate and vital use in explaining forensic incident despite being infrequent. To enrich forensic understanding and make use of this “silent witness – exit mark”, this study used four cases of related scenario. Three of the four cases were literature-based cases and one case involved in investigation. By interpreting the cases, this paper argued that exit injury contains useful information that can be related to posture of the body before electrocution. This paper thereby suggested the presence of the exit injury to be related to body posture, sole plantar exit injury in particular (stood position). This would help investigators and scientists to determine the immediate probable position and state of victim before electrocution. Furthermore, the suggestion would assist reconstruction processes that seek to find out the event originality through responding to fundamental and core principle tools of incidence investigation, CoPRRR, and the 6Ws.
    [Show full text]
  • Electrical Injuries: a Review for the Emergency Clinician Czuczman AD, Zane RD
    7ddekdY_d]0 <DGI8:K@:< >L@;<C@E<JLG;8K< M`j`k nnn%\Yd\[`Z`e\%e\k&^l`[\c`e\j kf[Xp]fipfli ]i\\jlYjZi`gk`fe Electrical Injuries: A Review October 2009 Volume 11, Number 10 For The Emergency Clinician Authors Amanda Dumler Czuczman, MD As usual, the emergency department is hopping. Two minutes before change Harvard Medical School, The Massachusetts General and Brigham and Women’s Hospitals, Boston, MA of shift, a trauma patient rolls in—an electrician in his mid-30s brought in by his coworkers. The patient, who was found unconscious near the genera- Richard D. Zane, MD tor he was repairing, is awake and alert but amnesic, with burns over his Vice Chair, Department of Emergency Medicine, Harvard Medical School chest and both arms. His vital signs are within normal limits. A number of Peer Reviewers management questions enter your mind, including the need for a cardiac Mary Ann Cooper, MD evaluation and hospital admission. As you begin formulating a plan, the Emerita Professor, University of Illinois at Chicago, Chicago, IL nurse tells you that a young woman has arrived after “getting shocked” by her hair dryer, which she was using while standing on a wet bathroom floor. Brian J. Daley, MD, MBA, FACS Professor of Surgery, Department of Surgery, University of She has no obvious injuries or complaints other than very mild erythema Tennessee Medical Center at Knoxville, Knoxville, TN of her right palm. The nurse asks if you want to order an ECG or send any CME Objectives blood tests. Upon completion of this article, you should be able to: It is unusual to have 2 electrical injuries in a single night.
    [Show full text]
  • Electrical Burns: Highlights from a 5-Year Retrospective Analysis
    ORIGINAL ARTICLE Electrical burns: Highlights from a 5-year retrospective analysis Alper Kurt, M.D.,1 Kamil Yıldırım, M.D.,1 Çağlayan Yağmur, M.D.,3 Osman Kelahmetoğlu, M.D.,2 Ozan Aslan, M.D.,1 Murat Gümüş, M.D.,1 Ethem Güneren, M.D.,2 1Department of Plastic Reconstructive and Aesthetic Surgery, Samsun Training and Research Hospital, Samsun-Turkey 2Department of Plastic Reconstructive and Aesthetic Surgery, Bezm-i Alem Vakif Foundation University Faculty of Medicine, İstanbul-Turkey 3Department of Plastic Reconstructive and Aesthetic Surgery, Ondokuz Mayıs University Faculty of Medicine, Samsun-Turkey ABSTRACT BACKGROUND: Electrical burns are the third most common cause of burn injuries, after scald and flame burns. In spite of de- creasing mortality rates as advancements are made in treatment modalities and medical equipment, significant complications and socioeconomic consequences still accompany electrical burns. Analyzed in the present study were data from patients hospitalized for electrical burns between 2008 and 2012 in the Samsun Training and Research Hospital, the only burn care center in the Black Sea region of Turkey. METHODS: Data from 94 patients (84 males, 10 females) hospitalized for electrical burns between 2008 and 2012 were retrospec- tively evaluated. Patient age, gender, occupation, presence of coexisting trauma, burn degree, burned percentage of total body surface area (TBSA), voltage of the electric current (low or high), medical cost (per day and total), and infection rates were analyzed. RESULTS: Mean patient age was 26.4±13.2 years. Ten patients were female (10.6%) and 84 were male (89.4%). High-voltage burns were sustained by 47 patients (50%) and low-voltage burns by 42 (44.7%); the remaining 5 were flash burns.
    [Show full text]
  • 2014 What-To-Do-In-A-Medical-Emerg
    What To Do in a Medical Emergency MEDICAL EMERGENCIES WHAT YOU NEED TO KNOW FROM AMERICA’S EMEGENCY PHYSICIANS www.EmergencyCareForYou.org What To Do in a Medical Emergency At what point does a fever or stomach ache become a med- ical emergency? If you slice your finger with a knife, or you are having the worst headache you’ve ever had, should you seek emergency care? How do you know? The following information from the nation's emergency physicians will help you identify the signs and symptoms of emergency conditions. However, emergency physicians will tell you — if you think you are having a medical emer- gency, seek emergency care right away. Better safe, than sorry. Too many people, such as men with chest pain, wait too long to seek care. The advice in this publication is about how to handle com- mon emergency medical conditions. It does not contain all the signs or symptoms of medical emergencies, and the advice is not intended to be a substitute for consulting with a medical professional. If you think you are experiencing a medical emergency, seek immediate medical attention. www.EmergencyCareForYou.org 2 TABLE OF CONTENTS Contents Abdominal Pain ..............................................................................................4 Asthma and Allergies.....................................................................................4 Anaphylaxis.....................................................................................................8 Adverse Drug Reactions ................................................................................9
    [Show full text]
  • Delayed Neurological Sequelae of Electrical Injuries
    Delayed neurological sequelae of electrical injuries Donald F . Farrell, M .D., and Arnold Starr, M .D. Tms REPORT reviews the neurological disorders weakness of the left leg which did not interfere that follow electrical injury to man to empha­ with his work and did not progress. He remained unchanged until June of 1966, two years after the size the long latent period that can intervene electrical injury, when he experienced lightning­ between electrical contact and the appearance like pains starting in the low back, radiating of neurological dysfunction. The existence of around the left hip, and descending down ilie such delayed effects received considerable medial aspect of the left leg to the ankle. The pains occurred repeatedly during twenty-minute mention in the past neurological literature,1 -'l periods and then subsided, only to recur for five but only a few sporadic cases have been re­ to six more periods each day. He also noted, for ported in the past fifteen years.6,7 The sig­ the first time, that this area of the leg was numb. nilicance of this problem for both clinical and He was seen by an orthopedist who noted the left medicolegal considerations can be infened thigh to be smaller than tl1e right. Lumbar spine Sims revealed mmimal osteoarthritis. The patient from the high mortality rate that exists at pres­ was placed in traction without relief. The leg ent from inadvertent electrical contact. Ap­ weakness, which up to this time had been slight, proximately l,000 deaths occur annually in gradually progressed so that he had difficulty in the United States and the number of injuries climbing stairs and had to resort to a cane for walking.
    [Show full text]
  • Pathological Effects of Hyperthermia in Normal Tissues1
    [CANCER RESEARCH (SUPPL.) 44, 4826s-4835s, October 1984] Pathological Effects of Hyperthermia in Normal Tissues1 Luis Felipe Fajardo L-G Department ol Pathology, Stanford University School of Medicine, Stanford, California 94305, and Veterans Administration Medical Center, Palo Alto, California 94304 Abstract alterations, serum enzyme abnormalities, and symptoms of var iable severity have been described (7, 44) [see also article by L. This is a brief review of the major pathological alterations H. Cronau in this issue (11)]. It appears that, by the current produced by hyperthermia in normal tissues of humans and other methods used for TBH, fatalities directly attributed to the hyper mammals. Whole-body hyperthermia, spontaneous or artificially thermia are rare; autospy descriptions are rather difficult to find. induced, can produce severe lesions that have been best de What we know about the pathology of systemic hyperthermia scribed in humans: necropsies, of fatal cases of heatstroke or of comes mostly from observations made in fatal cases of heat individuals treated in the 1940s by hyperpyrexia, have demon stroke (30, 36), or from deaths in patients treated by "hyperpy strated important lesions in the central nervous system, liver, rexia" for conditions other than cancer (23) (see Table 1). These kidney, heart, adrenal, testis, and bone marrow. All cases have 2 situations are somewhat different from current TBH (because shown hemorrhagic diathesis affecting many tissues, and in of the methodology, intensive care, and careful monitoring in some the hemorrhages may have directly contributed to death. TBH), but the pathology of the fatal cases is probably comparable The information on the pathology of localized hyperthermia and, at the present, is the best material available.
    [Show full text]