Electrocution Death: Exit Mark Injury Use in the Suggestion of Body Posture During Forensic Investigation

Total Page:16

File Type:pdf, Size:1020Kb

Electrocution Death: Exit Mark Injury Use in the Suggestion of Body Posture During Forensic Investigation Electrocution Death: Exit Mark Injury use in the Suggestion of Body Posture during Forensic Investigation Pudji Hardjanto1,4 Simon Martin Manyanza Nzilibili1,3 Ahmad Yudianto1,2 1Forensic Science Program, Post Graduate School Universitas Airlangga, 4-6 Airlangga Rd., 60286 Surabaya – Indonesia. 2Department of Forensic and Medico-legal, Faculty of Medicine, Universitas Airlangga, Surabaya – Indonesia 3Ministry of Health, Community Development, Gender Elderly and Children, Dodoma – Tanzania. 4Criminal Investigative Unit, Polrestabes Surabaya, Indonesia. Keywords: Body Posture, Electrocution, Exit Injury, Forensic Reconstruction Abstract: Since then, electrocution and forensic investigation of electric death associated with criminal offenses have established the importance of mark injuries. The marks (entry and exit) came into significance as they were/are used to establish fatality and extent of electric power electrocuted. Unlike entry, exit injury has presented attention to scientists on its adequate and vital use in explaining forensic incident despite being infrequent. To enrich forensic understanding and make use of this “silent witness – exit mark”, this study used four cases of related scenario. Three of the four cases were literature-based cases and one case involved in investigation. By interpreting the cases, this paper argued that exit injury contains useful information that can be related to posture of the body before electrocution. This paper thereby suggested the presence of the exit injury to be related to body posture, sole plantar exit injury in particular (stood position). This would help investigators and scientists to determine the immediate probable position and state of victim before electrocution. Furthermore, the suggestion would assist reconstruction processes that seek to find out the event originality through responding to fundamental and core principle tools of incidence investigation, CoPRRR, and the 6Ws. 1 BACKGROUND Apart from establishing fatality of the event occurred due to electrocution, a possibility of Exit marks as to entry injury marks are common and understanding body positioning or gesture during crucial findings to establish electrocution associated electric conduction may be suggested and explored. deaths (Kumar et al. 2015; Kuhtic et al. 2012). On This is from the fact of potential resistance provided the occurrences of these injuries, together with mark at particular body surface. According to entry and exit of encountered electric flow, the (Manigandan et al. 2014), the amount current energy is converted in burning or shocking to the expected for passage depend on the resistance body. Location of occurrence is indefinable as provided by the body or body part. Thus, in return, depending on contact of conduction but palm and the extent of injuries to be caused proportionate the sole (plantar) are the common parts found with these magnitude passed. Body positioned in standing marks, exit being on sole and entry primarily on while contacting ground or non-standing with free palm. Though these two marks occur together, still contact dictate the electric conduction to formation there are some affirmations which have been of exit wounds in plantar. This approach might established that exit injury can occasionally occur reveal and ease the reconstruction of events in without the presence and occurrence of entry marks forensic investigation. (Guntheti et al. 2012). That is, only exit injury mark observation is found in just few cases that are rare to 1.1 Justification and Purpose meet in electrocution scenario. Its fatality in appearance may present similar to entry but its Despite that exit marks in electrocution are peculiarity is on a more tissue damage, skin splits discussed to have substantial use in establishing and raising (Rao n.d.). fatality forensic proof, limited studies have 493 Hardjanto, P., Nzilibili, S. and Yudianto, A. Electrocution Death: Exit Mark Injury Use in the Suggestion of Body Posture during Forensic Investigation. DOI: 10.5220/0007545704930498 In Proceedings of the 2nd International Conference Postgraduate School (ICPS 2018), pages 493-498 ISBN: 978-989-758-348-3 Copyright c 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved ICPS 2018 - 2nd International Conference Postgraduate School enumerated the sign and even yet related to body That is, high voltage electrocution burns resemble posture sustained before electric accident. This burns caused by other sources, especially if the study, therefore, suggested the posture/gesture of the person survives for few days. In that case, body before the electrocution in relation to exit circumstantial evidence in correlation with the injury in order to help reconstruction during forensic autopsy findings helps in determining the cause and investigation. Also, to contribute on the knowledge manner of death. Crime scene findings also help to of rare occurring exit injury marks. explain the pattern of injuries observed at autopsy in addition to contact-related features together with clinical signs that rule out current flow (Fish & 2 METHOD Geddes 2009). The literature discussion has also considered skin The study reviewed three previously published cases resistance (impedance), internal body resistance, and presented an analysis of the encountered case to current path through the body, the let-go phenomenon, skin breakdown, electrical stimulation make a discussion of four cases in total. Both reviews of the cases and the encountered case in of skeletal muscles and nerves, cardiac place were analysed to generate suggestive findings. dysrhythmias, arrest, and electric shock drowning. From which, the high-voltage burns include ground Findings presented are based on; external examination of the dead body, internal observation, faults, ground potential gradient, step and touch post-mortem, and autopsy findings, and also crime potentials, arcs, and lightning remain essential. As whole, incorporate the mechanism of electric current scene study findings focusing on exit marks and body gesture relation. in the body; how and why specific accidents occur and what medical and surgical problems might be expected in reaching the manner and cause of death (Fish & Geddes 2009; Guntheti et al. 2012). 3 ELECTROCUTION AND MARK However; the occurrence of deaths due to INJURIES REVIEW electrocution continue to be infrequent and so to incidence of the injury marks. This lowered The term electrocution is referred to death caused by tendency continues to qualify the virtual accidental electric shock. This is a sudden violent response to nature of these kind of death from self-execute, electric current flow to any part of a person's body. suicides nature, and homicides to those executed That violent response causes either primary entirely by alternating current (Wick & Byard 2009). electrical injury - tissue damage produced directly The lowered prevalence and incidence by electrical voltage or secondary injuries, such as occurrence is also perpetuated by general preventive thrown falls, are common (Fish & Geddes 2009). measures taken with time for electric safety usage. Death occurs when a sufficient amount of current Remained fatalities occasion according to (Guntheti passes through body parts by contact with electric et al. 2012) with other literature still continue to equipments, frayed cords, poorly insulated wires, reveal palmer as the commonest site for entry wound ungrounded electric instruments, and working in and crease fold of hands. The inference is that the electric posts without any protective guard (Fish & commonest site of exit wound is feet, the sole. The Geddes 2009). The damages or burns caused due to study also concludes to four patterns of electrical contact are generally referred to as entrance and exit injuries: entry wound alone, exit alone, both and wounds. The kind of injuries according to (Fish & flash burns, and no external typical signs with Geddes 2009; Kuhtic et al. (2012) sometimes get accidental nature and manner of electrocution. In misleading interpretation to gunshot wounds by this study; four cases are discussed. Three from absence of bullet exit wound due to logging. literature and compared to one involved in As pointed out earlier, these marks are essential investigation making a total of four. The analysis to the establishment of electrocution deaths and was made according the purpose of the aimed become serious in forensic investigation where benefit above. criminal offence is inquired from the scenario. The encountered obstacle in investigation might be 3.1 Literature Selected Case interrupted by a poor definition or absence of those Presentation mark as explained in (Parakkattil et al. 2017). The study institutes that the difficult of investigating The discussion of case one and two was obtained electrocution fatality cases are dependant of voltage. from the study named “Fatal High Voltage 494 Electrocution Death: Exit Mark Injury Use in the Suggestion of Body Posture during Forensic Investigation Accidental Electrocution – Two Case Reports” burn area of size 6x3.5 cm was on plantar aspect of where the author discussed cases of high voltage the right foot due to tissue heating up as appears in (Manigandan et al. 2014). With other danger figure 2, keratin dissolution and separation of encountered the two cases, this article narrated and epidermal layers. The report continued with a deeply discussed sustained injuries of whether presence or scorched wound over the medial aspect
Recommended publications
  • Neurological and Neurourological Complications of Electrical Injuries
    REVIEW ARTICLE Neurologia i Neurochirurgia Polska Polish Journal of Neurology and Neurosurgery 2021, Volume 55, no. 1, pages: 12–23 DOI: 10.5603/PJNNS.a2020.0076 Copyright © 2021 Polish Neurological Society ISSN 0028–3843 Neurological and neurourological complications of electrical injuries Konstantina G. Yiannopoulou1, Georgios I. Papagiannis2, 3, Athanasios I. Triantafyllou2, 3, Panayiotis Koulouvaris3, Aikaterini I. Anastasiou4, Konstantinos Kontoangelos5, Ioannis P. Anastasiou6 1Neurological Department, Henry Dunant Hospital Centre, Athens, Greece 2Orthopaedic Research and Education Centre “P.N. Soukakos”, Biomechanics and Gait Analysis Laboratory “Sylvia Ioannou”, “Attikon” University Hospital, Athens, Greece 31st Department of Orthopaedic Surgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece 4Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece 51st Department of Psychiatry, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece 61st Urology Department, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece ABSTRACT Electrical injury can affect any system and organ. Central nervous system (CNS) complications are especially well recognised, causing an increased risk of morbidity, while peripheral nervous system (PNS) complications, neurourological and cognitive and psychological abnormalities are less predictable after electrical injuries. PubMed was searched for English language clinical observational, retrospective,
    [Show full text]
  • Case Report Myelopathy and Amnesia Following Accidental Electrical Injury
    Spinal Cord (2002) 40, 253 ± 255 ã 2002 International Spinal Cord Society All rights reserved 1362 ± 4393/02 $25.00 www.nature.com/sc Case Report Myelopathy and amnesia following accidental electrical injury J Kalita*,1, M Jose1 and UK Misra1 1Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, India Objective: Documentation of MRI and neurophysiological changes following accidental electrical injury. Setting: Tertiary care referral teaching hospital at Lucknow, India. Results: A 30-year-old lady developed amnesia and spastic paraparesis with loss of pin prick sensation below the second thoracic spinal segment following electrocution. Her spinal MRI was normal and cranial MRI revealed T2 hyperintensity in the right putamen. Peroneal, sural and electromyography were normal. Tibial central sensory conduction time was normal but central motor conduction time to lower limbs and right upper limb was prolonged. Conclusion: Neurophysiological study and MRI may help in understanding the pathophy- siological basis of neurological sequelae following electrical injury. Spinal Cord (2002) 40, 253 ± 255. DOI: 10.1038/sj/sc/3101275 Keywords: electrical injury; MRI; evoked potential; myelopathy; amnesia Introduction Rural electri®cation has received great attention from across the road. Her hands were wet, the road was the government for improving agricultural and small ¯ooded with water and the wire was conducting AC of scale industry development in India. This has inherent 11 000 V. Immediately, she had fallen down and the hazards because of the ignorance of villagers and poor wire stuck to her chest. The current ¯ow was maintenance of electrical cables. This results in several discontinued after about 5 min and she was discovered electrical accidents caused by the touching of live wires.
    [Show full text]
  • Thoracic Trauma ● Esophagus ● Heart Tessa Woods, DO ● Thoracic Vascular Injuries
    10/1/2018 Outline ● Emergency Department Thoracotomy ● REBOA ● Lung ● Trachea Thoracic Trauma ● Esophagus ● Heart Tessa Woods, DO ● Thoracic Vascular Injuries EAST Practice Management Guidelines ● EDT Survival Predictors ○ 1. Injury mechanism ○ 2. Anatomic injury location ○ 3. Presence of life on presentation ED Thoracotomy EAST Scenarios EAST Scenarios ● Patient 1: Pulseless to ED with signs of life after penetrating thoracic injury? ● Patient 5: Pulseless to the ED with signs of life after blunt injury? ○ Yes ○ Yes, Conditionally ● Patient 2: Pulseless to ED without signs of life after penetrating thoracic ● Patient 6: Pulseless to the ED without signs of life after blunt injury? injury? ○ No ○ Yes, conditionally ■ Some voting “conditionally” ● Patient 3: Pulseless to the ED with signs of life after penetrating extrathoracic ■ Low quality of evidence injury? ○ Yes, conditionally ■ Does not pertain to cranial injuries ● Patient 4: Pulseless to the ED without signs of life after penetrating extrathoracic injury? ○ Yes, conditionally ■ Low quality of evidence 1 10/1/2018 Resuscitative Endovascular Balloon Occlusion of the Aorta2-12 ● Benefits: ○ Maximizes cerebral and coronary perfusion ○ Limits infradiaphragmatic hemorrhage REBOA ○ Avoids thoracotomy ● Limitations/complications: ○ Vascular injury ○ Time consumptive? ○ Learning curve ○ Appropriate setting/provider ● https://youtu.be/L3z5utZvnq4 Upcoming studies ● EPR-CAT (Emergency Preservation and Resuscitation for Cardiac Arrest From Trauma) ○ Compares pulseless penetrating trauma victims
    [Show full text]
  • Accident, First Aid and Medical Conditions Policy
    Accident, First Aid and Medical Conditions Policy Many children and staff will at some time become unwell at school, have a condition that requires medication or have an accident that requires First Aid. Our school is an inclusive community that supports the pupils to be healthy, stay safe and be prepared for moving onto their next school. This policy outlines the procedure concerning : 1. Reporting of Injuries, Diseases and Dangerous Occurrences 2. First Aid Procedures 3. The Administration of Medicines 4. Supporting pupils with medical conditions 1. Reporting of Injuries, Diseases and Dangerous Occurrences The Reporting of Injuries, Diseases and Dangerous Occurrences Regulations 1995 (RIDDOR) require that employers report all fatal and specified major injuries, any injuries that result in the inability of an employee to work more than 3 days, or any injury which results in a person being admitted to hospital for more than 24 hours. The regulations relate to any employee or other person within the school or engaged upon an activity arranged by the school. Under the requirements of the Regulations, where someone dies or suffers a specified major injury or condition, or there is a dangerous occurrence, as defined in the Regulations, the school has to notify the Health and Safety Executive (HSE) immediately by the quickest practicable means. In practice, compliance with either of these provisions will normally mean a telephone call to the Incident Contact Centre (ICC) on 0845-300-9923 during normal office hours. The ICC operator will complete a report form over the phone and a copy will be sent to the school.
    [Show full text]
  • Complex Airway After Electric Burns in the Neck - a Challenge for the Anesthesiologist Nitika Goel*1, Indumohini Sen2, Kiran Jhangra3 and Mukesh Kumar4
    ISSN: 2474-9206 Case Report Journal of Anesthesia & Pain Medicine Complex Airway after Electric Burns in the Neck - A Challenge for the Anesthesiologist Nitika Goel*1, Indumohini Sen2, Kiran Jhangra3 and Mukesh Kumar4 1 3Assistant Professor Anesthesia, PGIMER, Chandigarh, India. *Corresponding author Nitika Goel MD, Assistant Professor Anesthesia, PGIMER, Chandigarh, 2Professor Anesthesia PGIMER, Chandigarh, India. India, Tel: +91 8826622159; E-mail: [email protected]. 4Senior Resident Anesthesia PGIMER, Chandigarh, India. Submitted: 30 July 2017; Accepted: 08 Aug 2017; Published: 22 Sep 2017 Abstract High voltage electric burns can cause massive damage to the body tissues. Direct contact with the live electric wires may result in the severe damage of the underlying subdermal tissues. However the superficial presentation is often misleading as most of the damage occurs under the skin. Very less literature has been found regarding the presentation of high voltage burns in head and neck region. We present a patient who sustained high voltage burns in the neck region resulting in massive damage of the underlying tissues. Keywords: Electric Burns, Burns Neck, Tracheal Injury. was referred to our institute for further management. The patient came to our hospital 5 days after his injury. Here the patient was Introduction planned for debridement and flap coverage on the burnt area. With widespread use of electricity, electric burn injuries are getting Preoperative evaluation revealed normal routine investigations. more common nowadays. Direct contact with the live electric wires Patient was communicative with no abnormality in speech. A may result in the severe damage of the underlying sub dermal tissues huge dressing was present around the neck.
    [Show full text]
  • Of Cellular Injury in Electrical Trauma by Diane C
    Physical Mechanisms of Cellular Injury in Electrical Trauma by Diane C. Gaylor B.S.E.E. University of Arizona (1984) S.M.E.E. Massachusetts Institute of Technology (1987) Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering at the Massachusetts Institute of Technology September 1989 - Diane C. Gaylor, 1989. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author D 4artmeof"Electricaal Engineering 11 August 1989 Certified by , Raphael C. Lee Thesis Supervisor Accepted by Aritj . Smith Chairman, Departmental Committee on Graduate Students MASSACHUSETTS INSTITUTE OF TECHN•OLO.Gy DEC 2 7 1989 ARCHIVEF UBRANRIE Physical Mechanisms of Cellular Injury in Electrical Trauma by Diane C. Gaylor Submitted to the Department of Electrical Engineering and Computer Science on 11 August 1989 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Electrical Engineering ABSTRACT Clinical evidence indicates that skeletal muscle cell membrane rupture occurs in electrical trauma. The pathogenic mechanisms of this damage have not been clearly identified. While it is clear that Joule heating causes part of the tissue destruction, particularly near the skin contact points, it does not appear to explain the pattern of tissue injury frequently observed at sites distant from the contacts. In this thesis, the significance of the non-thermal mechanism of membrane electrical breakdown, often termed electroporation or electropermeabilization, is examined. The exposure thresholds for damage to skeletal muscle cells due to membrane electrical breakdown and to heating are determined experimentally.
    [Show full text]
  • Supermicar Data Entry Instructions, 2006 365 Pp. Pdf Icon[PDF
    SUPERMICAR TABLE OF CONTENTS Chapter I - Introduction to SuperMICAR ........................................... 1 A. History and Background ............................................. 1 Chapter II – The Death Certificate .................................................... 3 Exercise 1 – Reading Death Certificate ........................... 7 Chapter III Basic Data Entry Instructions ....................................... 12 A. Creating a SuperMICAR File ....................................... 14 B. Entering and Saving Certificate Data........................... 18 C. Adding Certificates using SuperMICAR....................... 19 1. Opening a file ....................................................... 19 2. Certificate ............................................................. 19 3. Sex ....................................................................... 20 4. Date of Death ....................................................... 20 5. Age: Number of Units ........................................... 20 6. Age: Unit............................................................... 20 7. Part I, Cause of Death .......................................... 21 8. Duration ................................................................ 22 9. Part II, Cause of Death ......................................... 22 10. Was Autopsy Performed....................................... 23 11. Were Autopsy Findings Available ......................... 23 12. Tobacco................................................................ 24 13. Pregnancy ...........................................................
    [Show full text]
  • Practice Exam
    Case 1: A 78 year old woman is found with decreased LOC in her apartment by her daughter. She was last seen well 3 days ago. When EMS arrives, they find her temperature to be 30.2 degrees Celsius. Questions: 1. Input from cutaneous cold receptors travels via afferent fibers to which area of the brain? a. Pre-optic nucleus of the anterior hypothalamus 2. This area of the brain then initiates a number of physiologic responses. Please list three general categories of physiologic responses that either aim to increase heat production or decrease heat loss and give one example for each. a. activation of autonomic nervous system (vasoconstriction) b. activation of endocrine system (increased cortisol) c. stimulation of extra-pyramidal skeletal muscle (shivering) d. adaptive behavioural responses (move to area of warmth) 3. Define mild, moderate and severe hypothermia. a. mild 33-35 b. moderate 28-32 c. severe <28 4. List at least 10 clinical manifestations of moderate hypothermia References: 1. Hanania NA et al. Accidental hypothermia. Crit Care Clin 1999;15:235-249. 2. Mallet ML. Pathophysiology of accidental hypothermia. Q J Med 2002; 95:775–785 Case 2 You are completing rounds in the ICU when a Code Orange is called. The operations leader runs into the ICU and quickly updates you. The G-7 summit is currently going on in town and terrorists have set off a “dirty-bomb” at one of the main venues. They fear that in addition to powerful explosives, this bomb contained radioactive material. Questions: 1. Please draw the dose-response relationship for radiation exposure.
    [Show full text]
  • Instructor Guide for Tactical Field Care 3C Communication, Evacuation Prioroties and Cpr 180801 1
    INSTRUCTOR GUIDE FOR TACTICAL FIELD CARE 3C COMMUNICATION, EVACUATION PRIOROTIES AND CPR 180801 1 Tactical Combat Casualty Care for Medical Personnel August 2017 Next, we will discuss communication, evacuation priorities, and 1. (Based on TCCC-MP Guidelines 170131) CPR in TFC. Tactical Field Care 3c Communication, Evacuation Priorities and CPR Disclaimer “The opinions or assertions contained herein are the private views of the authors and are not to be construed 2. as official or as reflecting the views of the Departments Read the text. of the Army, Air Force, Navy or the Department of Defense.” - There are no conflict of interest disclosures. LEARNING OBJECTIVES Terminal Learning Objective • Communicate combat casualty care items effectively in Tactical Field Care. Enabling Learning Objectives 3. Read the text. • Identify the importance and techniques of communication with a casualty in Tactical Field Care. • Identify the importance and techniques of communicating casualty information with unit tactical leadership. INSTRUCTOR GUIDE FOR TACTICAL FIELD CARE 3C COMMUNICATION, EVACUATION PRIOROTIES AND CPR 180801 2 LEARNING OBJECTIVES Enabling Learning Objectives • Identify the importance and techniques of communicating casualty information with evacuation assets or receiving facilities. 4. Read the text. • Identify the relevant tactical and casualty data involved in communicating casualty information. • Identify the evacuation urgencies recommended in the TCCC TACEVAC “Nine Rules of Thumb” and the JTS evacuation guidelines • Identify the information requirements and format of the 9-Line MEDEVAC Request. LEARNING OBJECTIVES Terminal Learning Objective • Describe cardiopulmonary resuscitation (CPR) considerations in Tactical Field Care. Enabling Learning Objectives 5. Read the text. • Identify considerations for cardiopulmonary resuscitation in tactical field care.
    [Show full text]
  • Electric Shock During Pregnancy
    clinical challenge défi clinique Ran D. Goldman, MD Adrienne Einarson, RN Gideon Koren, MD, FRCPC Electric shock during pregnancy ABSTRACT QUESTION A 24-year-old patient of mine, who was 23 weeks pregnant at the time, suffered a minor electric shock while using her hair dryer. She said she felt the current in her right hand and she was wearing shoes. She was observed in an emergency room for several hours and then discharged home. Is her pregnancy or fetus at risk now or later in the pregnancy? ANSWER There are confl icting reports on how harmful electric shock is to a fetus. The clinical spectrum of electrical injury ranges from a transient unpleasant sensation felt by a mother and no effect on her fetus to fetal death either immediately or few days later. Several factors, such as the magnitude of the current and the duration of contact, are thought to affect outcome. In this case, it appears the current did not travel through her abdomen. Recommendations for fetal monitoring after electrocution have been published. RÉSUMÉ QUESTION Une de mes patientes, âgée de 24 ans, a subi un choc électrique mineur alors qu’elle était enceinte de 23 semaines en utilisant son séchoir à cheveux. Elle a dit avoir senti le courant dans sa main droite et elle portait des chaussures. Elle a été sous observation à l’urgence pendant quelques heures pour ensuite recevoir son congé. Sa grossesse ou son fœtus sont-ils à risque maintenant ou plus tard durant la grossesse? RÉPONSE Il existe des rapports confl ictuels sur les dommages causés à un fœtus par un choc électrique.
    [Show full text]
  • Guidelines for BLS/ALS Medical Providers Current As of March 2019
    Tactical Emergency Casualty Care (TECC) Guidelines for BLS/ALS Medical Providers Current as of March 2019 DIRECT THREAT CARE (DTC) / HOT ZONE Guidelines: 1. Mitigate any immediate threat and move to a safer position (e.g. initiate fire attack, coordinated ventilation, move to safe haven, evacuate from an impending structural collapse, etc). Recognize that threats are dynamic and may be ongoing, requiring continuous threat assessments. 2. Direct the injured first responder to stay engaged in the operation if able and appropriate. 3. Move patient to a safer position: a. Instruct the alert, capable patient to move to a safer position and apply self-aid. b. If the patient is responsive but is injured to the point that he/she cannot move, a rescue plan should be devised. c. If a patient is unresponsive, weigh the risks and benefits of an immediate rescue attempt in terms of manpower and likelihood of success. Remote medical assessment techniques should be considered to identify patients who are dead or have non-survivable wounds. 4. Stop life threatening external hemorrhage if present and reasonable depending on the immediate threat, severity of the bleeding and the evacuation distance to safety. Consider moving to safety prior to application of the tourniquet if the situation warrants. a. Apply direct pressure to wound, or direct capable patient to apply direct pressure to own wound and/or own effective tourniquet. b. Tourniquet application: i. Apply the tourniquet as high on the limb as possible, including over the clothing if present. ii. Tighten until cessation of bleeding and move to safety.
    [Show full text]
  • Management of Burns and Scalds in Primary Care
    ACC15029-1-Pr#6 5/17/07 12:15 PM Page 1 C M Y CM MY CY CMY K Composite ACC15029-1-Pr#6 5/17/07 12:15 PM Page 2 C M Y CM MY CY CMY K Composite Kua tawhiti ke to haerenga mai, kia kore haere tonu He tino nui rawa ou mahi Kia kore e mahi nui tonu sir james henare of ngati hine iwi from te tai tokerau We have come too far not to go further We have done too much not to do more 1 AACC15029-2CC15029-2 Pr#6.inddPr#6.indd 1 55/17/07/17/07 112:11:012:11:01 PPMM 2 AACC15029-2CC15029-2 Pr#6.inddPr#6.indd 2 55/17/07/17/07 112:11:032:11:03 PPMM Endorsements This guideline has been endorsed by the Australian and New Zealand Burn Association (until 2009), the Burn Support Group Charitable Trust, the Counties Manukau District Health Board (until 2009), the Royal New Zealand College of General Practitioners and St John. The Royal New Zealand College of General Practitioners 3 AACC15029-2CC15029-2 Pr#6.inddPr#6.indd 3 55/17/07/17/07 112:11:032:11:03 PPMM 4 AACC15029-2CC15029-2 Pr#6.inddPr#6.indd 4 55/17/07/17/07 112:11:052:11:05 PPMM Contents Endorsements ..................................................................................................................................................3 Purpose ............................................................................................................................................................9 About the guideline ........................................................................................................................................11 Summary ........................................................................................................................................................17
    [Show full text]