Chaptr 4 HW Packet—Answer Key Multiple Choice—1 Point; Calculations—Three Points Unless Otherwise Specified—1 for Formula, 1 for Substitution, 1 for Calculation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Barium Chloride Dihydrate
NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 432 TOXICOLOGY AND CARCINOGENESIS STUDIES OF BARIUM CHLORIDE DIHYDRATE (CAS NO. 10326-27-9) IN F344/N RATS AND B6C3Fl MICE (DRINKING WATER STUDIES) U.S. DEPARTMENT OF HEALTE AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Useof Animals. The prechronic and chronic studies were conducted in compliancewith Food and Drug Administration(FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjectedto retrospective quality assurance audits before being presented for public review. -
RFC: IRIS Barium and Compounds Substance File
October 29, 2002 Information Quality Guidelines Staff Mail Code 28221T U.S. EPA 1200 Pennsylvania Ave., N.W. Washington, DC, 20460 Subject: Request for Correction of the IRIS Barium and Compounds substance file - Information disseminated by EPA that does not comply with EPA or OMB Information Quality Guidelines Dear Madam or Sir; Chemical Products Corporation (CPC), a Georgia corporation which produces Barium and Strontium chemicals at its Cartersville, Georgia facility, hereby submits this Request for Correction (RFC) concerning EPA’s Integrated Risk Information System Barium and Compounds Substance File (IRIS Ba File). The influential information contained in this file fails to comply with the OMB “Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, and Integrity of Information Disseminated by Federal Agencies”. The information disseminated in EPA’s IRIS Barium and Compounds file directly contradicts the information published by EPA in the January 3, 1997 Federal Register and, therefore, cannot represent an EPA consensus position. The IRIS Ba File was revised in 1998 and 1999, yet it contains no mention of the toxicological evaluation conducted by EPA’s Office of Pollution, Pesticides, and Toxic Substances reported in 62 FR 366-372 (No. 2, January 3, 1997). There is no explanation of how a radically different interpretation of the same data could be justified. The NOAEL employed to calculate the Oral Reference Dose in the IRIS Ba File is 0.21 mg/kg/day; there is no LOAEL associated with this NOAEL. The NOAEL reported in 62 FR 366-372 is 70 mg/kg/day in rats and 165 mg/kg/day in mice; these values are taken from a National Toxicology Program technical report and are associated with a LOAEL of 180 mg/kg/day. -
Proton Transfer Reaction in Water: Hydronium Ion Formation
Advanced Journal of Chemistry-Section A, 2020, 3(3), 255–258 Available online at : www.ajchem-a.com ISSN Online: 2645-5676 DOI: 10.33945/SAMI/AJCA.2020.3.2 Short Communication Proton Transfer Reaction in Water: Hydronium Ion Formation In Sang Leea, Sitansu Sekhar Nandab,* a Research Division, Divine Lab Limited, Seoul, South Korea b Department of Chemistry, Myongji University, Yongin, South Korea A R T I C L E I N F O A B S T R A C T Received: 28 June 2019 The current ongoing scientific debate deals with accumulation of hydronium Revised: 07 August 2019 ions (H3O+) on water surface. Elevated interfacial concentration measured by Accepted: 31 August 2019 using Raman spectroscopy. A strong surface affinity of H3O+ indicated by Raman Available online: 03 September 2019 spectroscopy under similar conditions. Ion adsorption phenomena, H3O+ formation and its structural activity emphasized in our study. Asymmetric water ion adsorption clearly observed in our research. K E Y W O R D S Raman spectroscopy Hydronium Water Infrared spectroscopy G R A P H I C A L A B S T R A C T * Corresponding author's E-mail address: [email protected] Proton Transfer Reaction in Water: Hydronium… 256 Introduction employed for recording Raman spectra with 2– 10 s acquisition time. A scanning area of 30 μm × In nature, interfacial charge formation is 30 μm was applied to avoid laser damage to known as a ubiquitous phenomenon. water. Fundamental mechanism of interfacial charge formation related with its identification. Results and discussions Researchers have been attracted for charge formation development of appropriate models. -
Chemical Resistance of NYCAST Materials
Chemical Resistance of NYCAST Materials Distributed by: Chemical Temp.0C conc.% rating Chemical Temp.0C conc.% rating ACETALDEHYDE 23 40 A BARIUM HYDROXIDE 23 100 G ACETAMIDE 23 50 G BARIUM NITRATE 23 100 G ACETC ACID 100 2 G BARIUM SULFATE 23 15 G ACETIC ACID 100 10 P BARIUM SULFIDE 23 100 G ACETIC ACID 23 2 G BEER 23 100 G ACETIC ACID 23 10 P BEET LIQUIDS 23 100 H ACETICANHYDRIDE 23 100 P BENZALDEHYDE 23 100 P ACETONE 23 100 G BENZALDEHYDE 23 0.3 G ACETONITRILE 23 100 G BENZENE 23 100 G ACETYL CHLORIDE 23 100 P BENZOIC ACID 23 100 P ACETYLENE 23 100 G BENZYL ALCOHOL 23 100 Q ACRYLONITRILE 23 100 G BENZVL CHLORIDE 23 100 G ALLYLALCOHOL 23 100 A BORAX 23 SAT G ALLYL CHLORIDE 23 100 G BORIC ACID 23 10 A ALUM 23 SAT A BRANDY 23 100 G ALUMINUM CHLORIDE 23 10 G BROMINE 23 100 Q ALUMINUM FLUORIDE 23 100 G BROMINE 23 10 Q ALUMINUM HYDROXIDE 23 100 G BUTANE 23 100 G ALUMINUM POTASSIUMSULPHATE 23 10 P BUTANOL 23 100 G ALUMINUM SULFATE 50 10 G BUTTER 23 100 G AMMONIA 23 10 G BUTIER MILK 23 100 G AMMONIA 100 10 G BUTYL ACETATE 23 100 G AMMONIUM ACETATE 23 100 G BUTYLENE 23 100 A AMMONIUM CARBONATE 23 100 G BUTYLENE GLYCOL 23 100 G AMMONIUM CHLORIDE 23 10 G BUTYRIC ACID 23 100 A AMMONIUM CHLORIDE 23 37 G CALCIUM BISULFIDE 23 100 G AMMONIUM FLUORIDE 23 100 G CALCIUM BISULFITE 50 100 G AMMONIUM HYDROXIDE 23 40 G CALCIUM CARBONATE 23 100 G AMMONIUM NITRATE 23 100 G CALCIUM CHLORIDE 23 SAT Q AMMONIUM PERSULFATE 23 100 Q CALCIUM CHLORIDE 100 SAT P AMMONIUM PHOSPHATE 23 100 G CALCIUM HYDROXIDE 50 100 G AMMONIUM SULPHATE 23 100 G CALCIUM HYPOCHLORITE 23 -
A Study of Hydrogen Exchange in Benzene And
A STUDY OF HYDROGEN EXCHANGE IN BENZENE AND SEVERAL ALKYLBENZENES By REX LYNN ELMORE B~chelor of Arts Austin College Sherman, Texas 1960 Submitted to the faculty of the Graduate School of the Oklahpma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August, 1965 J OKLAHOMA Jjf STATE UNIVERSITY .;.;, i' LIBRARY f DEC 6 1965 j' A STUDY OF HYDROGEN EXCHANGE IN BENZE~ AND ,,:.-· ;" . ·..... : SEVERAL ALKYLBENZENES f ~~~~~~~"'~"''""i;·~l'J!'~~ Thesis Approved: 593417 ii .ACKNOWLEDGMENTS Grateful acknowledgment is made to-Dr. E. M. Hodnett, research adviser, for his patience, guidance, and assistance throughout this work; to Dr. O. C. Dermer, head of the Chemistry Department, for his reading of the manuscript prior to its being typed; to Mr. C.R. Williams, formerly in the Chemistry Department, for his assistance in the early phases of the computer programming; to Mr. Preston Gant, Central Research Division of the Continental Oil Company, for helpful suggestions on the tritium assays; and to Mr. Prem S. Juneja for his helpful suggestions concerning experimental details which arose from time to time. Acknowledgment is made of financial assistance in the form of a graduate teaching assistantship in the Chemis.try Department. Also, a research as.sistantship from the Atomic Energy Commission, Contract No. AT(ll-1)-1049, through the Research Foundation is appreciated. Research done during the term of the latter assistantship provided material for this thesis. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION. 1 II. HISTORICAL, , 3 III. INTRODUCTION TO THE EXPERIMENTAL WORK 14 Objectives and Plan of the Study. -
Barium Nitrate Solution 0.1M
Safety Data Sheet Barium Nitrate Solution 0.1M 1. PRODUCT AND COMPANY IDENTIFICATION Product Name: Barium Nitrate Solution 0.1M Synonyms/Generic Names: None SDS Number: 85.20 Product Use: For Educational Use Only Manufacturer: Columbus Chemical Industries, Inc. N4335 Temkin Rd. Columbus, WI. 53925 For More Information Contact: Ward's Science 5100 West Henrietta Rd. PO Box 92912-9012 Rochester, NY 14692 (800) 962-2660 (Monday-Friday 7:30-7:00 Eastern Time) In Case of Emergency Call: CHEMTREC - 800-424-9300 or 703-527-3887 (24 Hours/Day, 7 Days/Week) 2. HAZARDS IDENTIFICATION OSHA Hazards: Oxidizer, Toxic by ingestion, Toxic by inhalation, Irritant Target Organs: Kidney, Liver, Blood, Heart, Gastrointestinal system, Bone marrow, Spleen, Nerves Signal Words: Warning Pictograms: GHS Classification: Oxidizing liquid Category 3 Acute toxicity, Oral Category 4 Acute toxicity, Inhalation Category 4 Skin irritation Category 3 Eye irritation Category 2A GHS Label Elements, including precautionary statements: Hazard Statements: H272 May intensify fire; oxidizer. H302+H332 Harmful if swallowed or in contact with skin. H316 Causes mild skin irritation. H319 Causes serious eye irritation. Revised on 01/08/2013 Page 1 of 6 Precautionary Statements: P220 Keep/store away from clothing/combustible materials. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do so. Continue rinsing. Potential Health Effects Eyes Causes eye irritation. Inhalation Toxic if inhaled. Causes respiratory tract irritation. Skin May be harmful if absorbed through skin. Causes skin irritation. Ingestion Toxic if swallowed. NFPA Ratings HMIS Ratings Health 2 Health 2 Flammability 0 Fire 0 Reactivity 0 Reactivity 0 Specific hazard N/A Personal E 3. -
Net Ionic Equation Worksheet Answers
Honors Chemistry Name__________________________________ Period_____ Net Ionic Equation Worksheet READ THIS: When two solutions of ionic compounds are mixed, a solid may form. This type of reaction is called a precipitation reaction, and the solid produced in the reaction is known as the precipitate. You can predict whether a precipitate will form using a list of solubility rules such as those found in the table below. When a combination of ions is described as insoluble, a precipitate forms. There are three types of equations that are commonly written to describe a precipitation reaction. The molecular equation shows each of the substances in the reaction as compounds with physical states written next to the chemical formulas. The complete ionic equation shows each of the aqueous compounds as separate ions. Insoluble substances are not separated and these have the symbol (s) written next to them. Water is also not separated and it has a (l) written next to it. Notice that there are ions that are present on both sides of the reaction arrow –> that is, they do not react. These ions are known as spectator ions and they are eliminated from complete ionic equation by crossing them out. The remaining equation is known as the net ionic equation. For example: The reaction of potassium chloride and lead II nitrate Molecular Equation: 2KCl (aq) + Pb(NO3)2 (aq) -> 2KNO3 (aq) + PbCl2 (s) + - 2+ 3– + – Complete Ionic Equation: 2K (aq) + 2Cl (aq) + Pb (aq) + 2NO (aq) -> 2K (aq) + 2NO3 (aq) + PbCl2 (s) - 2+ Net Ionic Equation: 2Cl (aq) + Pb (aq) -> PbCl2 (s) Directions: Write balanced molecular, ionic, and net ionic equations for each of the following reactions. -
Chemistry 20 - Unit 2 - Ph and Poh Notes Name: ______+ - [H3O ] and [OH ]
Chemistry 20 - Unit 2 - pH and pOH Notes Name: _________________________________________ + - [H3O ] and [OH ] + - + - In water both H3O and OH exist H2O + H2O ⇌ H3O + OH + - -14 These concentrations exist in a balanced relationship [H3O ][OH ] = 1.00 x 10 + - This relationship is inversely related ↑ [H3O ] = ↓ [OH ] Example 1: -4 What is the hydroxide ion concentration in a solution with a hydronium ion concentration of 2.59 x 10 M ? + - -14 [H3O ][OH ] = 1.00 x 10 −14 − 1.00×10 [OH ] = + [H3O ] −14 [OH−] = 1.00×10 = 3.86 × 10−11 2.59×10−4 Example 2: If 2.50 g of NaOH was dissolved in water to produce 500mL of solution, what would be the concentration of hydronium and hydroxide ions in solution? + - NaOH ⟶ Na + OH − mol 1 mol 1 [OH ] L = 2.50 g × 40 g × 0.500 L = 0.125 M + - -14 [H3O ][OH ] = 1.00 x 10 −14 −14 [H O+] = 1.00×10 = 1.00×10 = 8.0 × 10−14M 3 [OH−] 1.25 pH Review + pH = − log[H3O ] + −pH [H3O ] = 10 Example 3: What is the pH of a solution of 0.159 M HCl? + - HCl ⟶ H + Cl + pH = − log[H3O ] pH = − log[0.159 M] pH = 0.799 Example 4: What is the hydronium and hydroxide ion concentration of a solution with a pH of 2.42? + −pH −2.42 [H3O ] = 10 = 10 = 0.0038 M + - -14 [H3O ][OH ] = 1.00 x 10 −14 −14 − 1.00×10 1.00×10 −12 [OH ] = + = = 2.63 × 10 M [H3O ] 0.0038 M pOH - Power of OH Since: + - -14 [H3O ][OH ] = 1.00 x 10 Can take the “log” of both sides… pOH = − log[OH−] + - -14 -log([H3O ][OH ]) = -log(1.00 x 10 ) − −pOH [OH ] = 10 + - + - And -log([H3O ][OH ]) = -log[H3O ] + -log[OH ] Therefore… pH + pOH = 14 Example 5: A solution has a pH of 5.750. -
W1 Worked Answers
WORKSHOP ON STOICHIOMETRY Q1. Calculate the mass of 2.0 mol of silicon. Atomic weight of Si = 28.09 Mass of 2 mol of Si = 2.0 × 28.09 = 56.18 = 56 g (2 significant figures) Q2. Calculate the mass of 0.37 mol of barium chloride. Formula weight of BaCl 2 = 137.3 + (2 × 35.45) = 208.2 Mass of 0.37 mol of BaCl 2 = 0.37 × 208.2 = 77.034 = 77 g (2 significant figures) Q3. Calculate the amount (in mol) present in 2.8 g sulfur. n = m/M = 2.8/32.07 = 0.08731 = 0.087 (2 significant figures) Q4. Calculate the amount (in mol) present in 36.0 g of water. Molecular weight of water is 16.00 + (2 × 1.008) = 18.016 n = m/M = 36.0/18.016 = 1.998 = 2.00 (3 significant figures) Q5. Calculate the mass of 6.022 × 10 23 molecules of hydrogen. Molecular weight of H 2 = 2 × 1.008 = 2.016 23 n = 6.022 × 10 / NA = 1.000 mol m = n × M = 1.000 × 2.016 = 2.016 g (4 significant figures) Q6. Calculate the amount (in mol) present in 2.0 × 10 20 molecules of carbon dioxide. 20 –4 –4 n = 2.0 × 10 / NA = 3.321 × 10 = 3.3 × 10 mol (2 significant figures) Q7. Calculate the amount (in mol) present in 5.6 L of argon at STP. 1 mol of any gas at STP occupies 22.4 L ∴ 5.6 L of Ar = 5.6 / 22.4 = 0.25 mol Q8. -
Barium Chloride, Anhydrous MSDS # 79.00
Material Safety Data Sheet Page 1 of 2 Barium Chloride, Anhydrous MSDS # 79.00 Section 1: Product and Company Identification Barium Chloride, Anhydrous Synonyms/General Names: Barium Dichloride Product Use: For educational use only Manufacturer: Columbus Chemical Industries, Inc., Columbus, WI 53925. 24 Hour Emergency Information Telephone Numbers CHEMTREC (USA): 800-424-9300 CANUTEC (Canada): 613-424-6666 ScholAR Chemistry; 5100 W. Henrietta Rd, Rochester, NY 14586; (866) 260-0501; www.Scholarchemistry.com Section 2: Hazards Identification White crystalline powder; no odor. HMIS (0 to 4) Health 3 WARNING! Highly toxic by ingestion and skin irritant. Fire Hazard 0 Target organs: Circulatory system, Central nervous system, kidneys Reactivity 0 This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Section 3: Composition / Information on Ingredients Barium Chloride, Dihydrate (10361-37-2), 100% Section 4: First Aid Measures Always seek professional medical attention after first aid measures are provided. Eyes: Immediately flush eyes with excess water for 15 minutes, lifting lower and upper eyelids occasionally. Skin: Immediately flush skin with excess water for 15 minutes while removing contaminated clothing. Ingestion: Call Poison Control immediately. Rinse mouth with cold water. Give victim 1-2 cups of water or milk to drink. Induce vomiting immediately. Inhalation: Remove to fresh air. If not breathing, give artificial respiration. Section 5: Fire Fighting Measures Non-flammable solid. When heated to decomposition, emits acrid fumes. 0 Protective equipment and precautions for firefighters: Use foam or dry chemical to extinguish fire. 3 0 Firefighters should wear full fire fighting turn-out gear and respiratory protection (SCBA). -
Units of Solubility
Units of solubility Continue Calculating the molyal saltiness of the compound in the water and the relative molyal saltiness of the compounds of the salted substance product (Ksp) is the ratio of concentrations in balance. The molar nozzle compound can be calculated directly from its product. Even though the solubility products of the two compounds are similar, their molar solubilities can be very different. Scientists use relative solubilities of compounds to separate or identify them. The product of the substance (Ksp) is the ratio of concentrations in balance. Molar solubility, which is directly related to the soluble product, is the number of moles soluble solution, which can dissolve per liter of solution before the solution becomes saturated. Once the solution is saturated, any additional solution is sucked out of the solution. Units of Molar (M), or mole liter-1 (mole / l). Calculating the Molar Solubility Link between molar solubility and solubility product means that one can be used to find the other. Illustration 1: Ksp for AgI is 8.5 x 10-17 at 25 degrees Celsius. What is molar solubility? (Let's - solubility compounds in water are usually defined as x in the ICE table.) Solution: Balanced Equation for Reaction: LatexAgI (s) left-right ag (aq) and I - aq)/latex Formula for Ksp: Ksp AgI-Ksp s2 8.5 x 10-17 where s concentration of each ion on balance. Now, solve for s: s2 - 8.5 x 10- 17 s . Example 2: Solubility products for cadmium carbonate (CdCO3) and silver carbonate (Ag2CO3) are almost exactly the same. Compare their molar solubilities in the water at 25 degrees Celsius. -
Barium Chloride, Dihydrate Safety Data Sheet According to Federal Register / Vol
Barium Chloride, Dihydrate Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 04/16/2014 Revision date: 03/13/2019 Supersedes: 10/28/2016 Version: 1.2 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Barium Chloride, Dihydrate CAS-No. : 10326-27-9 Product code : LC11560 Formula : BaCl2.2H2O Synonyms : barium dichloride, dihydrate / muriate of barium, dihydrate 1.2. Recommended use and restrictions on use Use of the substance/mixture : Chemical intermediate Insecticide 1.3. Supplier LabChem, Inc. Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or +1-703-741-5970 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Acute toxicity (oral) H301 Toxic if swallowed Category 3 Hazardous to the aquatic H402 Harmful to aquatic life environment - Acute Hazard Category 3 Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS US labeling Hazard pictograms (GHS US) : GHS06 Signal word (GHS US) : Danger Hazard statements (GHS US) : H301 - Toxic if swallowed H402 - Harmful to aquatic life Precautionary statements (GHS US) : P264 - Wash exposed skin thoroughly after handling. P270 - Do not eat, drink or smoke when using this product. P273 - Avoid release to the environment. P301+P310 - IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. P330 - If swallowed, rinse mouth P405 - Store locked up.