Bridge Types Have High Fabrication Cost Compared to Truss Bridges

Total Page:16

File Type:pdf, Size:1020Kb

Bridge Types Have High Fabrication Cost Compared to Truss Bridges Bridge is a structure which covers a gap. A bridge that span physical obstacles such as river ,valley or road is structure built. The first bridges consisted of fallen logs over rivers. Designs of bridges vary depending on the function of the bridge Arch bridges are one of the oldest types of bridges and have been around for thousands of years. Arch bridges have great natural strength. They were originally built of stone or brick but these days are built of reinforced concrete or steel. Arch bridges are always under compression. The tension in an arch isn’t considered important. Consequently, materials have that use at arch bridges, weak tension. Instead of pushing straight down, the load of an arch bridge is carried outward along the curve of the arch to the supports at each end. The weight is transferred to the supports at either end. These supports, called abutments, carry the load and keep the ends of the bridge from spreading out. The load at the top of the key stone makes each stone on the arch of the bridge press on the one next to it. This happens until the push is applied to the end supports or abutments, which are embedded in the ground. The design of the arch, the semicircle, naturally diverts the weight from the bridge deck to the abutments. When the load is divided between a series of smaller arches.The thrust at the internal supports balance each other and thrust is reduced . A beam or "girder" bridge is the simplest kind of bridge and two parallel beams supported by piers of bridge. Span can be supported by trestle. Pratt warren The beam weight pushes straight down on the piers. They have bigger internal forces compared to arch bridges because of trying to bend. You can use wooden, reinforced concrete, prestressed-concrete or steel as materials. Large span structures have poor aesthetic appearance of the truss bridge but for moderate spans its best to provide at simple and regular structures. When loads are applied to a truss at the joints, forces are transmitted only in the direction of each of its member. Other bridge types have high fabrication cost compared to truss bridges. Trusses have a high strength to weight ratio and consequently are used in many structures. Cantilever bridge that built using cantilever is a bridge . A cantilever bridge is made from beams supported on one side only. The bridge formed with two design trusses that join in the center by a connecting member as pin-connected . The diagram shows a cantilever bridge supporting a load . Wooden cantilever bridges were popular in Asia. The steel cantilever truss bridge was huge breakthrough. The most famous example of cantilever bridge is the Forth Railway Bridge in Scotland which was the longest span in the world until 1919 . After The Quebec Bridge was built in Canada. History of Suspension Bridges The first use of suspension bridge extends to prehistoric times. Ancient people used some plants as like vine and bamboo for create suspension bridge. Native Suspension Bridge One of the First Discovered in Asia The first suspension bridge was built by Chinese people with chains and ropes. The First modern steel cable was created by Albert Rop in 1834. Undoubtedly ,. Steel cable are the most important factor in the development of the suspension bridge. Bosphorus Bridge Today, suspension bridge cables are made of thousands of individual steel wires bound tightly together. Steel is strong under tension, and an ideal material for cables. A single steel wire, only 0.1 inch thick, can support load over half a ton without breaking. The suspension bridge is most preferred bridge to overcome the long spans. Suspension bridge can provide to overcome the long spans, but there are serious drawbacks They are very flexible ,and traffic load can lead to a large collapse. Thus, a support beam or a box beam is added to Golden Gate Bridge help the cable. Mostly everyone chooses suspension bridge in long span because Cable wires are cheaper and more durable than steel beams. The Akashi Kaikyo Suspension Bridge is the longest suspension bridge in the world The suspension bridge's carrier system consists of the following elements: 1. Deck 2. Suspension cables 3. Main cables 4. Towers 5. The anchor blocks • Tower carries the main cables. • Anchors provides remain to tense of main cable. • Suspension cables transfer load of deck to main cable . • Towers can be made from steel or reinforced concrete. • Usually , deck made from shaped steel cage sytems. How Suspension Bridges Work The main cables are tense with vertical cables that attach to the deck. These cables support the deck of the bridge, transferring the weight to the towers at the end. The main cables continue past the tower, and they are anchored past the far ends of the bridge. They are carefully balanced so that the force pulling inward on the towers is equal to the force pulling outward. As a result, the weight pulls directly down into the base of the tower. Cable-stayed bridges are a type of suspension bridge. Cable-stayed bridges have tall towers like suspension bridges, but in a cable- stayed bridge, the roadway is attached directly to the towers by a series of diagonal cables. A cable-stayed bridge is constructed in much the same way as a suspension bridge is, but without the main cables. Advantages a cable-stayed bridge has over a standard suspension bridge include speed of construction and lower cost, since anchorages are not necessary. The cable-stayed bridge is optimal for spans longer than cantilever bridges and, shorter then suspension bridges. Cable-stayed designs are used for intermediate- length spans. T here are no main cables, as with suspension bridges, making cable repair or replacement simpler. Harp Design Fan Design • There are two major classes of cable- stayed bridges: harp and fan. Harp Design Cable-Stayed Bridges In the harp or parallel design, the cables are nearly parallel. Fan Design Cable-Stayed Bridges In the fan design, the cables all connect to or pass over the top of the towers. .
Recommended publications
  • Review on Applicability of Box Girder for Balanced Cantilever Bridge Sneha Redkar1, Prof
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072 Review on applicability of Box Girder for Balanced Cantilever Bridge Sneha Redkar1, Prof. P. J. Salunke2 1Student, Dept. of Civil Engineering, MGMCET, Maharashtra, India 2Head, Assistant Professor, Dept. of Civil Engineering, MGMCET, Maharashtra, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This paper gives a brief introduction to the 1874. Use of steel led to the development of cantilever cantilever bridges and its evolution. Further in cantilever bridges. The world’s longest span cantilever bridge was built bridges it focuses on system and construction of balanced in 1917 at Quebec over St. Lawrence River with main span of cantilever bridges. The superstructure forms the dynamic 549 m. India can boast of one such long bridge, the Howrah element as a load carrying capacity. As box girders are widely bridge, over river Hooghly with main span of 457 m which is used in forming the superstructure of balanced cantilever fourth largest of its kind. bridges, its advantages are discussed and a detailed review is carried out. Concrete cantilever construction was first introduced in Europe in early 1950’s and it has since been broadly used in design and construction of several bridges. Unlike various Key Words: Bridge, Balanced Cantilever, Superstructure, bridges built in Germany using cast-in-situ method, Box Girder, Pre-stressing cantilever construction in France took a different direction, emphasizing the use of precast segments. The various advantages of precast segments over cast-in-situ are: 1. INTRODUCTION i. Precast segment construction method is a faster method compared to cast-in-situ construction method.
    [Show full text]
  • Bridges and Applications Bridges and Applications Bridges and Applications Arch Bridges
    10/23/2014 Bridges and Applications Bridges and Applications • Bridges are used to span across distances that are difficult to otherwise pass through. • Rivers • Deep gorges • Other roadways Bridges and Applications Arch Bridges • There are four basic types of bridges – Arch – Beam – Suspension – Cable‐stayed • Each type has different design and is therefore better suited to different applications 1 10/23/2014 Arch Bridges Arch Bridges • Instead of pushing straight down, the weight of an arch bridge is carried outward along the curve of the arch to the supports at each end. Abutments, carry • These supports, called the abutments, carry the load the load and keep the ends of the bridge from spreading outward. and keep the ends of the bridge from spreading outward Arch Bridges Arch Bridges • When supporting its own weight and the • Today, materials like steel and pre‐stressed weight of crossing traffic, every part of the concrete have made it possible to build longer arch is under compression. and more elegant arches. • For this reason, arch bridges must be made of materials that are strong under compression. New River Gorge, – Rock West Virginia. – Concrete 2 10/23/2014 Arch Bridges Arch Bridges • Usually arch bridges employ vertical supports • Typically, arch bridges span between 200 and called spandrels to distribute the weight of 800 feet. the roadway to the arch below. Arch Bridges One of the most revolutionary arch bridges in recent years is the Natchez Trace Parkway Bridge in Franklin, Tennessee, which was opened to traffic in 1994. It's the first American arch bridge to be constructed from segments of precast concrete, a highly economical material.
    [Show full text]
  • Modern Steel Construction 2009
    Reprinted from 2009 MSC Steel Bridges 2009 Welcome to Steel Bridges 2009! This publication contains all bridge related information collected from Modern Steel Construction magazine in 2009. These articles have been combined into one organized document for our readership to access quickly and easily. Within this publication, readers will find information about Accelerated Bridge Construction (ABC), short span steel bridge solutions, NSBA Prize Bridge winners, and advancement in coatings technologies among many other interesting topics. Readers may also download any and all of these articles (free of charge) in electronic format by visiting www.modernsteel.org. The National Steel Bridge Alliance would like to thank everyone for their strong dedication to improving our nation’s infrastructure, and we look forward to what the future holds! Sincerely, Marketing Director National Steel Bridge Alliance Table of Contents March 2009: Up and Running in No Time........................................................................................... 3 March 2009: Twice as Nice .................................................................................................................. 6 March 2009: Wide River ..................................................................................................................... 8 March 2009: Over the Rails in the Other Kansas City ........................................................................ 10 July 2009: Full House .......................................................................................................................
    [Show full text]
  • Bridges Key Stage 2 Thematic Unit
    Bridges Key Stage 2 Thematic Unit Supporting the Areas of Learning and STEM Contents Section 1 Activity 1 Planning Together 3 Do We Need Activity 2 Do We Really Need Bridges? 4 Bridges? Activity 3 Bridges in the Locality 6 Activity 4 Decision Making: Cantilever City 8 Section 2 Activity 5 Bridge Fact-File 13 Let’s Investigate Activity 6 Classifying Bridges 14 Bridges! Activity 7 Forces: Tension and Compression 16 Activity 8 How Can Shapes Make a Bridge Strong? 18 Section 3 Activity 9 Construction Time! 23 Working with Activity 10 Who Builds Bridges? 25 Bridges Activity 11 Gustave Eiffel: A Famous Engineer 26 Activity 12 Building a Bridge and Thinking Like an Engineer 28 Resources 33 Suggested Additional Resources 60 This Thematic Unit is for teachers of Key Stage 2 children. Schools can decide which year group will use this unit and it should be presented in a manner relevant to the age, ability and interests of the pupils. This Thematic Units sets out a range of teaching and learning activities to support teachers in delivering the objectives of the Northern Ireland Curriculum. It also supports the STEM initiative. Acknowledgement CCEA would like to thank The Institution of Civil Engineers Northern Ireland (ICE NI) for their advice and guidance in the writing of this book. Cover image © Thinkstock Do We Need Bridges? Planning together for the theme. Discovering the reasons for having, and the impact of not having, bridges. Writing a newspaper report about the impact of a missing bridge. Researching bridges in the locality. Grouping and classifying bridges.
    [Show full text]
  • Simple Innovative Comparison of Costs Between Tied-Arch Bridge and Cable-Stayed Bridge
    MATEC Web of Conferences 258, 02015 (2019) https://doi.org/10.1051/matecconf/20192 5802015 SCESCM 20 18 Simple innovative comparison of costs between tied-arch bridge and cable-stayed bridge Järvenpää Esko1,*, Quach Thanh Tung2 1WSP Finland, Oulu, Finland 2WSP Finland, Ho Chi Minh, Vietnam Abstract. The proposed paper compares tied-arch bridge alternatives and cable-stayed bridge alternatives based on needed load-bearing construction material amounts in the superstructure. The comparisons are prepared between four tied arch bridge solutions and four cable-stayed bridge solutions of the same span lengths. The sum of the span lengths is 300 m. The rise of arch as well as the height of pylon and cable arrangements follow optimal dimensions. The theoretic optimum rise of tied-arch for minimum material amount is higher than traditionally used for aesthetic reason. The optimum rise for minimum material amount parabolic arch is shown in the paper. The mathematical solution uses axial force index method presented in the paper. For the tied-arches the span-rise-ration of 3 is used. The hangers of the tied-arches are vertical-The tied-arches are calculated by numeric iteration method in order to get moment-less arch. The arches are designed as constant stress arch. The area and the weight of the cross section follow the compression force in the arch. In addition the self-weight of the suspender cables are included in the calculation. The influence of traffic loads are calculated by using a separate FEM program. It is concluded that tied-arch is a competitive alternative to cable-stayed bridge especially when asymmetric bridge spans are considered.
    [Show full text]
  • Arched Bridges Lily Beyer University of New Hampshire - Main Campus
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2012 Arched Bridges Lily Beyer University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/honors Part of the Civil and Environmental Engineering Commons Recommended Citation Beyer, Lily, "Arched Bridges" (2012). Honors Theses and Capstones. 33. https://scholars.unh.edu/honors/33 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. UNIVERSITY OF NEW HAMPSHIRE CIVIL ENGINEERING Arched Bridges History and Analysis Lily Beyer 5/4/2012 An exploration of arched bridges design, construction, and analysis through history; with a case study of the Chesterfield Brattleboro Bridge. UNH Civil Engineering Arched Bridges Lily Beyer Contents Contents ..................................................................................................................................... i List of Figures ........................................................................................................................... ii Introduction ............................................................................................................................... 1 Chapter I: History
    [Show full text]
  • Over Jones Falls. This Bridge Was Originally No
    The same eastbound movement from Rockland crosses Bridge 1.19 (miles west of Hollins) over Jones Falls. This bridge was originally no. 1 on the Green Spring Branch in the Northern Central numbering scheme. PHOTO BY MARTIN K VAN HORN, MARCH 1961 /COLLECTION OF ROBERT L. WILLIAMS. On October 21, 1959, the Interstate Commerce maximum extent. William Gill, later involved in the Commission gave notice in its Finance Docket No. streetcar museum at Lake Roland, worked on the 20678 that the Green Spring track west of Rockland scrapping of the upper branch and said his boss kept would be abandoned on December 18, 1959. This did saying; "Where's all the steel?" Another Baltimore not really affect any operations on the Green Spring railfan, Mark Topper, worked for Phillips on the Branch. Infrequently, a locomotive and a boxcar would removal of the bridge over Park Heights Avenue as a continue to make the trip from Hollins to the Rockland teenager for a summer job. By the autumn of 1960, Team Track and return. the track through the valley was just a sad but fond No train was dispatched to pull the rail from the memory. Green Spring Valley. The steel was sold in place to the The operation between Hollins and Rockland con- scrapper, the Phillips Construction Company of tinued for another 11/2 years and then just faded away. Timonium, and their crews worked from trucks on ad- So far as is known, no formal abandonment procedure jacent roads. Apparently, Phillips based their bid for was carried out, and no permission to abandon was the job on old charts that showed the trackage at its ' obtained.
    [Show full text]
  • Adobe Corporate Campus Utah, Usa – Structure Becomes the Architecture
    ADOBE CORPORATE CAMPUS UTAH, USA – STRUCTURE BECOMES THE ARCHITECTURE GEOFF S SHARP Senior Project Engineer, Holmes Consulting Group LP SUMMARY Phase one of Adobe Corporation’s new corporate campus is an example of where the thoughtful selection of structural system and construction materials allowed for seamless integration of engineering and architecture. Constructed of post tensioned and conventionally reinforced concrete the office structure showcases what can be achieved when the structure becomes the architecture. At over 200 metres in length and boasting cantilevered frames and a 25 metre “bridge” the use of concrete was essential to the success of this new office building. INTRODUCTION In late 2012, United States based software giant Adobe Corporation moved into their new 28,000 square metre campus in Lehi, Utah. The decision to expand away from their long standing Silicon Valley home required their new facility to make a statement. It needed to attract a new class of outdoors-loving young professionals. Located approximately 50km south of Salt Lake City, the resulting buildings form stage one of their impressive new home on the “Silicon Slopes” of Utah. Challenges included a highly sloped site with significant variation in subsoil conditions and a dual carriage roadway dividing the property. Figure 1 below shows a rendering of the phase one buildings Figure 1 - Phase 1 Adobe Campus Rendering, courtesy of WRNS Studio The lead architects for the project were WRNS Studio of San Francisco with structural engineering delivered through a collaboration between Holmes Culley in San Francisco and Dunn Associates in Salt Lake City. The design process between architect and engineer was very successful due to an open and collaborative approach.
    [Show full text]
  • Bayonne Bridge Lesson Plan
    The Bayonne Bridge: The Beautiful Arch Resources for Teachers and Students [Printable and Electronic Versions] The Bayonne Bridge: The Beautiful Arch Resources for Teachers And Students [Printable and Electronic Versions] OVERVIEW/OBJECTIVE: Students will be able to understand and discuss the history of NOTES: the Bayonne Bridge and use science and engineering basics • Key words indicated in to investigate bridge design and test an arch bridge model. Bold are defined in call- out boxes. TARGET GRADE LEVEL: • Teacher-only text Fourth grade instruction, adaptable to higher levels as indicated with Italics. desired in the subjects of Social Studies and Engineering. FOCUS: In Part I, students learn about history of the Bayonne Bridge including the many engineering challenges encountered during the project and the people who helped overcome those challenges. In Part II, students learn engineering concepts to understand how bridges stay up and use these concepts to complete activities on bridge design before applying these concepts to theorize how the Bayonne Bridge works. MATERIALS: • Part I: DVD of “The Bayonne Bridge Documentary” • Part II: 2–4 heavy textbooks or 2 bricks per group; 2 pieces of “cereal box” cardboard or similar, 12 x 8 in; weights (anything small that can be stacked on the structure); red and blue marker, crayon or colored pencil for each student or group. The Bayonne Bridge: The Beautiful Arch Contents Teacher Materials | Part I: History of the Bayonne Bridge . T-1 Teacher Materials | Part II: Bridge Engineering . T-7 Student Materials | Part I: History of the Bayonne Bridge . S-1 Student Materials | Part II: Bridge Engineering .
    [Show full text]
  • Polydron-Bridges-Work-Cards.Pdf
    Getting Started You will need: A Polydron Bridges Set ❑ This activity introduces you to the parts in the set and explains what each of them does. A variety of traditional Polydron and Frameworks pieces are used in each of the activities. However, they are coloured to produce more realistic effects. For example, the traditional squares are black and used to represent the road on the bridge deck. Plinth ❑ On the right you can see the plinth or bridge base. All of the bridges use one or two of these. They give each bridge a firm base and allow special parts to be connected easily. Notice the two holes in the top on the plinth. These holes are for long struts. These can be seen in place below. ❑ The second picture shows the plinth with two right-angled triangles and a rectangle connected. All three of these parts clip into the plinth. Struts ❑ There are three different lengths of strut in the set. There are 80mm short struts that are used with the pulleys with lugs to carry cables. These are shown on the left. The lugs fit into long struts. On the Drawbridge 110mm short struts are used with ordinary pulleys and a winding handle. ❑ Long struts are also used to support the cable assembly of the Suspension Bridge and the Cable Stay Bridge. This idea can be seen in the picture on the right. ❑ Long struts are also used to connect the two sections of the Drawbridge. ® ©Bob Ansell Special Rectangles ❑ Special rectangles can be used in a variety of ways.
    [Show full text]
  • Cantilever Bridges: the Governor Harry W
    CANTILEVER BRIDGES: THE GOVERNOR HARRY W. NICE MEMORIAL BRIDGE From a technical perspective, cantilever construction of a bridge defines a specific form of support of the bridge rather than a particular bridge type such as the truss or girder. Simply supported bridges are directly supported on piers and abutments, while continuous structures, as developed in both metal and reinforced concrete during the late nineteenth and early twentieth centuries, include spans that are continuous across one or more intermediate supports. By contrast, the cantilever form of support occurs when the support is at one end and the other end of the span is free. Cantilever bridges consist of a series of cantilevered spans including a main span and two anchor spans which flank it (Pennsylvania Historical and Museum Commission, and Pennsylvania Department of Transportation 1986:124). Based on historical research alone, cantilever bridges in Maryland appear to be represented by only one bridge, which may be briefly described in order to provide historic technological context for the evaluation of that bridge, the 1940 Governor Harry W. Nice Memorial Bridge carrying U.S. 301 over the Potomac River. Bridge historian J.A.L. Waddell noted that "the development of the cantilever. did not proceed very far until modern times, when the truss form of structure had become established and when iron and steel constituted the materials of construction" (Waddell 1916:7). Waddell and subsequent technological historians dated the major advent of modern cantilever bridges to the design and construction of the high bridge over the Kentucky River at Dixville in 1876-1877.
    [Show full text]
  • Design and Construction of the First Composite Truss Bridge in Japan Kinokawa Viaduct, Wakayama, Japan
    Concrete Structures: the Challenge of Creativity Design and Construction of the first composite truss bridge in Japan Kinokawa Viaduct, Wakayama, Japan Masato YAMAMURA Hiroaki OKAMOTO Hiroo MINAMI Professional Engineer Professional Engineer Professional Engineer Kajima Corporation Kajima Corporation Kajima Corporation Tokyo, Japan Tokyo, Japan Tokyo, Japan Summary This project is to build a viaduct in Wakayama, Japan. Owner adopted a design build bidding system for the first time in its history of a bridge project in order to tender a construction work including both the superstructure and the substructure together. As a result of bidding, it was decided that the first composite truss bridge in Japan is constructed. Through the project, it was confirmed that the construction and the economical efficiency of the composite truss bridge are equivalent to or better than the conventional pretressed concrete box girder bridge. Keywords: composite truss bridge; design build; steel truss diagonal; panel point section; steel box- type joint structure; balanced cantilever erection 1. Introduction This project is to build a viaduct over the Kinokawa River in Wakayama. Ministry of Land, Infrastructure and Transport (MLIT) adopted a design build bidding system for the first time in its history of a bridge project in order to tender a construction work including both the superstructure and the substructure together. In the tendering method used at this time, only the basic performance requirements such as the bridge length, road classification, effective width, and live loads are specified. A proposal of a variety of bridge design, mainly for its form and the number of span, was admitted by MLIT.
    [Show full text]