51st Lunar and Planetary Science Conference (2020) 2985.pdf GEOLOGIC SETTING OF THE OLYMPUS MACULAE, MARS. K. D. Seelos1, C. E. Detelich1,2, K. D. Run- yon1, S. L. Murchie1, J. L. Bishop3, A. D. Rogers4, and K. E. Craft1. 1Johns Hopkins University Applied Physics La- boratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (
[email protected]); 2Univ. of Alaska, Anchorage, AK; 3 SETI Institute, Mountain View, CA; 4Stony Brook University, Stony Brook, NY. Introduction: The Olympus Maculae are an arcu- controlled mosaics from the THermal EMission Imag- ate series of ten, ~2-20 km-diameter semicircular albe- ing System (THEMIS; daytime IR, nighttime IR, and do anomalies located in Lycus Sulci, the aureole ter- derived qualitative thermal inertia), and 6 m/pix visible rains northwest of Olympus Mons (Figure 1). These imagery acquired by the Context Camera (CTX). All features have no topographic expression and superpose data were supplied by the Planetary Data System other late Amazonian units [1, 2], including the aureole (PDS); CTX data were calibrated and processed by the terrains (unit Aa in [2]), Medusa Fossae Formation USGS Projection on the Web (POW) tool. materials (unit AHtu), and lava flows (unit Ave) (Fig- Descriptions and Stratigraphic Relationships: ure 1). While this region is an area of net dust accumu- Seven units were delineated and are shown in Figure 2: lation, detailed characterization [3,4] has shown that Ridged Terrain I and II. Two lobes of aureole ter- the maculae are conspicuous because of their relative rains overlap within in our study area. Thought to have lack of dust, and that the process of preferential dust formed as a result of massive underwater landslides removal is modern and active [5].