Program and Abstracts International Conference Antiviral Research

Total Page:16

File Type:pdf, Size:1020Kb

Program and Abstracts International Conference Antiviral Research ISAR INTERNATIONAL SOCIETY FOR ANTIVIRAL RESEARCH Program and Abstracts of the 26th International Conference on Antiviral Research (ICAR) SAN FRANCISCO, CALIFORNIA | May 11th-15th, 2013 ISAR INTERNATIONAL SOCIETY FOR ANTIVIRAL RESEARCH Table of Contents Session Schedule . 3 Organization . 4 Contributors . .5 Program Highlights . 6 Agenda at a Glance . 7 Program Schedule . 12 Abstracts . 42 Author Index . 130 Program and Abstracts of the 26th International Conference on Antiviral Research (ICAR) 2 ISAR INTERNATIONAL SOCIETY FOR ANTIVIRAL RESEARCH Session Schedule Saturday, May 11, 2013 ■ Interactive Workshop: Drug Discovery and Development 101 ■ Opening Greetings and Welcome to San Francisco ■ Keynote Address ■ Opening Reception Sunday, May 12, 2013 ■ Oral Session 1: Mini-Symposium – Legacy of Tony Holý: Nucleotides in the Treatment and Prevention of Chronic Viral Infections ■ Gertrude Elion Award Lecture ■ Oral Session 2: Hepatitis Viruses and HIV ■ Poster Session 1: Retroviruses, Hepatitis Viruses, Respiratory Viruses, and Antiviral Methods Monday, May 13, 2013 ■ William Prusoff Young Investigator Award ■ Oral Session 3: Mini-Symposium – Strategies and Tactics in Drug Design ■ Oral Session 4: Influenza and Respiratory Infections ■ Poster Session 2: Herpesviruses, Poxviruses, Enteroviruses, Emerging Viruses, Other Antiviral Agents and Medicinal Chemistry Tuesday, May 14, 2013 ■ Oral Session 5: Herpesviruses and Poxviruses ■ Oral Session 6: Emerging Infections Wednesday, May 15, 2013 ■ Oral Session 7: Mini-Symposium – Prodrugs as a Tool in Drug Discovery and Development ■ Business Meeting ■ Oral Session 8: Clinical Symposium ■ Oral Session 9: Late Breaker and Shotgun Poster Presentations ■ ICAR Banquet and Reception Program and Abstracts of the 26th International Conference on Antiviral Research (ICAR) 3 ISAR INTERNATIONAL SOCIETY Organization FOR ANTIVIRAL RESEARCH International Society for Antiviral Research and Twenty-Sixth International Conference on Antiviral Research Officers President – Phillip Furman, St. Augustine, Florida, USA President-Elect – Robert W. Buckheit, Jr., Frederick, Maryland, USA Secretary – Graciela Andrei, Leuven, Belgium Treasurer – Dale L. Barnard, Logan, Utah, USA Past President – Joseph M. Colacino, South Plainfield, New Jersey, USA ISAR Conference Committee Conference Chair: Joseph M. Colacino, South Plainfield, New Jersey, USA Graciela Andrei, Leuven, Belgium Phillip Furman, St. Augustine, Florida, USA Masanori Baba, Kagoshima, Japan Johan Neyts, Leuven, Belgium Dale Barnard, Logan, Utah, USA Amy Patick, San Francisco, California, USA Robert Buckheit, Frederick, MD, USA Roger Ptak, Frederick, Maryland, USA Rhonda Cardin, Cincinnati, OH, USA Jack Secrist, Birmingham, AL, USA José A. Esté, Barcelona, Spain ISAR Program Committee Program Chair: Mark N. Prichard, Birmingham, Alabama, USA Graciela Andrei, Leuven, Belgium Chris Meier, Hamburg, Germany Robert Buckheit, Frederick, Maryland, USA Johan Neyts, Leuven, Belgium Karen Buckheit, Frederick, Maryland, USA Michael Sofia, New York, New York, USA Tomas Cihlar, Foster City, California, USA Paul M. Scola, Wallingford, Connecticut, USA Tracy Hartman, Frederick, Maryland, USA Donald Smee, Logan, Utah, USA Organizing Secretariats Courtesy Associates Graciela Andrei, ISAR Secretary 2025 M Street, NW, Suite 800, Washington, DC Professor, Rega Institute for Medical Research 20036, USA KU Leuven, Minderbroedersstraat 10 Phone: 1‐202‐973‐8690; Fax: 1‐202‐331‐0111 3000 Leuven, Belgium E‐mail: [email protected] Phone 32 16 33 73 72; Fax: 32 16 33 73 40 E‐mail: [email protected] The International Society For Antiviral Research (ISAR) The Society was organized in 1987 as a non‐profit scientific organization for the purpose of advancing and disseminating knowledge in all areas of antiviral research. To achieve this objective, the Society organizes an annual meeting. The Society is now in its twenty fifth year of existence, and has approximately 550 members representing 30 countries. For membership application forms or further information, please contact Dr. Graciela Andrei, Secretary, ISAR at the address noted above. Membership application forms will also be available at the Conference Registration desk, or from our website www.isar‐icar.com. Program and Abstracts of the 26th International Conference on Antiviral Research (ICAR) 4 ISAR INTERNATIONAL SOCIETY FOR ANTIVIRAL RESEARCH Contributors to the 26th International Conference on Antiviral Research Confirmed Sponsors as of April 16, 2013 Platinum Gilead Sciences, Inc., Foster City, CA, USA Gold GlaxoSmithKline, Inc., Research Triangle Park, NC, USA Silver AbbVie, Inc., North Chicago, Illinois, USA Biota Holdings Ltd., Notting Hill, Victoria, Australia Chimerix, Inc., Durham, NC, USA Flamma S.p.A., Bergamo, Italy Hetero Drugs Limited, Hyderabad, India Hoffmann-La Roche, Inc., Nutley, NJ, USA JCR Pharmaceutical Co., Ltd., Ashiya, Japan LabCorp – Monogram Biosciences, Inc., South San Francisco, CA, USA Novira Therapeutics, Inc., Doylestown, PA, USA Southern Research Institute, Birmingham, AL, USA Bronze Apath, LLC, Brooklyn, NY, USA Avexa Ltd., Richmond, Victoria, Australia Bristol-Myers Squibb, Wallingford, CT, USA Center for Drug Design, University of Minnesota, Minneapolis, MN, USA Elsevier B.V., Amsterdam, The Netherlands Express Biotech International, Thurmont, MD, USA Gemmus Pharma, Inc., San Francisco, CA, USA Idenix Pharmaceuticals, Inc., Cambridge, MA, USA ImQuest BioSciences, Inc., Frederick, MD, USA Medivir AB, Huddinge, Sweden PTC Therapeutics, Inc., South Plainfield, NJ, USA Toyama Chemical Co., Ltd., Tokyo, Japan ViroDefense, Inc., Rockville, MD, USA Program and Abstracts of the 26th International Conference on Antiviral Research (ICAR) 5 ISAR INTERNATIONAL SOCIETY FOR ANTIVIRAL RESEARCH Program Highlights Keynote Address “Know Thine Enemy: Using Virology and Immunology to Develop a Multifaceted Approach to Dengue Antivirals” Eva Harris, Ph.D. Saturday, May 11, 2013 4:15 pm – 5:30 pm Mini-Symposia Networking Events Legacy of Tony Hol´y: Opening Reception Nucleotides in the Treatment with light hors d’oeuvres and Prevention of Chronic Saturday, May 11, 2013 Viral Infections 5:30 pm– 7:30 pm Sunday, May 12, 2013 Location: Atrium 2-5 8:15 am – 12:00 pm New Member and First Time Attendee Strategies and Tactics Networking Event in Drug Design Sunday, May 12 Monday, May 13, 2013 6:30 pm – 7:30 pm 8:45 am – 11:45 am Location: Grand/Market Street Foyer Prodrugs as a Tool Career Happy Hour in Drug Discovery Monday, May 13 6:30 pm – 8:00 pm and Development Location: Sens Restaurant Wednesday, May 15, 2013 4 Embarcadero Center, Promenade Level 8:30 am – 11:30 am just outside of the Hyatt on the Lobby Level Clinical Symposium Wednesday, May 15, 2013 Women in Science Lunch* Tuesday, May 14 1:00 pm – 3:30 pm 12:30 pm – 2:30 pm Location: Seacliff D Conference Banquet Wednesday May 15, 2013 Reception 7:00 pm Dinner 7:30 pm – 9:30 pm Location: Grand Ballroom *space is limited and pre-registration is required. Please see the ICAR Registration Desk if you wish to attend or cancel your registration. Program and Abstracts of the 26th International Conference on Antiviral Research (ICAR) 6 ISAR INTERNATIONAL SOCIETY FOR ANTIVIRAL RESEARCH Agenda at a Glance Saturday • May 11, 2013 Interactive Workshop: Drug Discovery and Development 101 1:30 pm – 2:00 pm ■ Christos Petropolous, Ph.D. (LabCorp/Monogram Biosciences) – Will be discussing the requirements for resistance testing in drug development and the use of resistance data to define a compound’s mechanism of action. 2:00 pm – 2:30 pm ■ James M. McKim, Ph.D., DABT (CeeTox, Inc.) – “An In Vitro Model for Identifying Heart and Liver Specific Toxicity of Antiviral Drugs” 2:30 pm – 3:00 pm ■ Anthony Ham, Ph.D. (ImQuest BioSciences) –“The Importance and Role of Formulation in Antiviral Drug Development Programs” 3:00 pm – 3:30 pm ■ Martine Krauss, Ph.D. (Tobira Therapeutics) “Regulatory Milestones and Requirements in Antiviral Drug Development” 3:30 pm – 3:45 pm Panel Discussion Break 4:15 pm – 5:30 pm Keynote Address: “Know Thine Enemy: Using Virology and Immunology to Develop a Multifaceted Approach to Dengue Antivirals” ■ KEYNOTE SpeakeR: Eva Harris, Ph.D. – Professor of Infectious Diseases at UC Berkeley, and President of the Sustainable Sciences Institute. 5:30 pm – 7:30 pm Opening Reception Sunday • May 12, 2013 7:15 am – 8:15 am Continental Breakfast Oral Session I: Mini-Symposium: “Legacy of Tony Hol ´y : Nucleotides in the Treatment and Prevention of Chronic Viral Infections” 8:15 am – 8:30 am ■ Erik DeClercq, Ph.D., M.D. (Rega Institute) –Personal Note on the Contributions and Legacy of Tony Holý. 8:30 am – 9:00 am ■ John Martin, Ph.D. (Gilead) –Keynote Talk: A Tribute to Antonin Holý 9:00 am – 9:30 am ■ Robert Schooley, M.D. (UCSD) – “Tenofovir in the Treatment of HIV Infection.” 9:30 am – 10:00 am ■ Robert Grant, M.D. (UCSF) –”Tenofovir in the Prevention of HIV Infection.” Break 10:30 am – 11:00 am ■ Henry Chan, Ph.D. (The Chinese University of Hong Kong) — “Nucleotide Analogue in Chronic Hepatitis B – From Hope to Reality” 11:00 am – 11:30 am ■ Richard Whitley, M.D. (UAB) –”Nucleotides in the Treatment and Prophylaxis of Herpes and Other DNA VirusInfection.” 11:30am – 12:00 pm ■ Tomas Cihlar, Ph.D. (Gilead) – “Future Potential and Therapeutic Opportunities for Nucleoside Phosphonates.” Program and Abstracts of the 26th International Conference on Antiviral Research (ICAR) 7 Agenda at a Glance Lunch on Your Own 1:30 pm – 2:15 pm Gertrude
Recommended publications
  • Annual Conference Online 2021
    CANDIDAANNUAL CONFERENCEAND ONLINECANDIDIASIS 2021 2021 21–27 March 2021 POSTER ABSTRACT BOOK #Candida2021 001A Candida auris gene expression: modulation upon caspofungin treatment Lysangela Alves1, Rafaela Amatuzzi1, Daniel Zamith-Miranda2, Sharon Martins1, Joshua Nosanchuk2 1Carlos Chagas Institute, Curitiba, Brazil. 2Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, USA Abstract Candida auris has emerged as a serious worldwide threat by causing invasive infections in humans that are frequently resistant to one or more conventional antifungal medications, resulting in high mortality rates. Against this backdrop, health warnings around the world have focused efforts on understanding C. auris fungal biology and effective treatment approaches to combat this fungus. To date, there is little information about C. auris gene expression regulation in response to antifungal treatment. Our integrated analyses focused on the comparative transcriptomics of C. auris in the presence and absence of caspofungin as well as a detailed analysis of the yeast’s extracellular vesicle (EV)-RNA composition. The results showed that genes coding oxidative stress response, ribosomal proteins, cell wall, and cell cycle were significantly up-regulated in the presence of caspofungin, whereas transcriptional regulators and proteins related to nucleus were down-regulated. The mRNAs in the EVs were associated with the stress responses induced by caspofungin and the ncRNA content of the EVs shifted during caspofungin treatment. Altogether, the results provide further insights into the fungal response to caspofungin and demonstrate that analyses of C. auris growth under antifungal stress can elucidate resistance and survival mechanisms of this fungus in response to medical therapy.
    [Show full text]
  • Development of Antiviral Agents for Enteroviruses
    Journal of Antimicrobial Chemotherapy (2008) 62, 1169–1173 doi:10.1093/jac/dkn424 Advance Access publication 18 October 2008 Development of antiviral agents for enteroviruses Tzu-Chun Chen1–3, Kuo-Feng Weng1,2, Shih-Cheng Chang1,2, Jing-Yi Lin1,2, Peng-Nien Huang1,2 and Shin-Ru Shih1,2,4,5* 1Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; 2Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; 3Institute Downloaded from https://academic.oup.com/jac/article/62/6/1169/774341 by guest on 26 September 2021 of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; 4Clinical Virology Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan; 5Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Chunan, Taiwan Enteroviruses (EVs) are common human pathogens that are associated with numerous disease symptoms in many organ systems of the body. Although EV infections commonly cause mild or non- symptomatic illness, some of them are associated with severe diseases such as CNS complications. The current absence of effective vaccines for most viral infection and no available antiviral drugs for the treatment of EVs highlight the urgency and significance of developing antiviral agents. Several key steps in the viral life cycle are potential targets for blocking viral replication. This article reviews recent studies of antiviral developments for EVs based on various molecular targets that interrupt viral attach- ment, viral translation, polyprotein processing and RNA replication. Keywords: capsid proteins, viral proteases, viral RNA replication, 50 untranslated region Introduction EVs such as echovirus 6, 9 and 30 and CVB5 were the most common causes of aseptic meningitis in children.4 EV70 and Enteroviruses (EVs) are a common cause of infections in CVA24 were associated with acute haemorrhagic conjunctivitis.4 humans, especially children.
    [Show full text]
  • And Ritonavir-Boosted HIV Protease Inhibitors
    16 February 2012 EMA/CHMP/117973/2012 EMEA/H/C/002332/II/0004 Questions and answers on drug interactions between Victrelis (boceprevir) and ritonavir-boosted HIV protease inhibitors The European Medicines Agency has recommended changes to the prescribing information for Victrelis (boceprevir), a medicine used to treat hepatitis C, after a drug interaction study identified interactions between Victrelis and medicines used to treat HIV called ritonavir-boosted HIV protease inhibitors. These interactions could potentially reduce the effectiveness of these medicines if used together in patients being treated for both hepatitis C and HIV. The Agency’s Committee for Medicinal Products for Human Use (CHMP) has recommended the changes to ensure doctors are informed of these interactions while further data are awaited to assess the clinical impact of these drug interaction findings on these patients. What is Victrelis? Victrelis is a medicine used to treat long-term hepatitis C genotype 1 (a disease of the liver due to infection with the hepatitis C virus) in adults with compensated liver disease who have not been treated before or whose previous treatment has failed. Compensated liver disease is when the liver is damaged but is still able to work normally. Victrelis is given in combination with two other medicines, peginterferon alfa and ribavirin. The active substance in Victrelis, boceprevir, is a protease inhibitor which blocks an enzyme called HCV NS3 protease found on the hepatitis C genotype 1 virus. Victrelis was authorised in the EU in July 2011. What is the issue with Victrelis? In January 2012, the EMA was informed of the results of a study in healthy volunteers which identified drug interactions between Victrelis and the antiviral medicines atazanavir, darunavir and lopinavir, which are used to treat HIV.
    [Show full text]
  • Dectova, INN-Zanamivir
    28 February 2019 EMA/CHMP/851480/2018 Committee for Medicinal Products for Human Use (CHMP) Assessment report DECTOVA International non-proprietary name: zanamivir Procedure No. EMEA/H/C/004102/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ...................................................................................... 7 1.2. Steps taken for the assessment of the product ......................................................... 9 2. Scientific discussion .............................................................................. 12 2.1. Problem statement ............................................................................................. 12 2.1.1. Disease or condition ......................................................................................... 12 2.1.2. Epidemiology .................................................................................................. 12 2.1.3. Biologic features .............................................................................................
    [Show full text]
  • Telaprevir (Incivek)
    © Hepatitis C Online PDF created September 25, 2021, 4:19 pm Telaprevir (Incivek) Discontinued. This treatment has been discontinued. Table of Contents Telaprevir Incivek Summary Drug Summary Adverse Effects Class and Mechanism Manufacturer for United States FDA Status Indications Dosing Clinical Use Cost and Medication Access Resistance Key Drug Interactions Full Prescribing Information Figures Drug Summary Although telaprevir was a promising direct-acting antiviral agent that had impact in the hepatitis C treatment field during 2011 to 2013, it was subsequently replaced by newer direct-acting antiviral agents that were more effective, better tolerated, and more convenient. Based on the dwindling role of telaprevir after newer direct-acting antiviral agents were approved, Vertex pharmaceuticals discontinued the sales and distribution of telaprevir in the United States in October 2014. Telaprevir does have some current importance since persons who previously failed a telaprevir-based regimen may have developed resistant associated variants, which could potentially impact subsequent therapy. Adverse Effects The most significant adverse effects reported in the main registration trials and in post-marketing experience were rash, anorectal complaints, and anemia. When comparing triple therapy of telaprevir, peginterferon, and ribavirin with dual therapy of peginterferon and ribavirin alone significant differences were noted with rash (56% versus 34%), anemia (36% versus 17%), and anorectal complaints that include anorectal discomfort, anal pruritus, and hemorrhoids (29% versus 7%). In most cases, the rash that develops is eczematous or maculopapular in character and mild to moderate in severity; the rash is typically manageable with good skin care and topical emollients or corticosteroids. In some instances, however, telaprevir has caused serious skin Page 1/5 rashes, including Steven's Johnson Syndrome (SJS), Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), and Toxic Epidermal Necrolysis (TEN).
    [Show full text]
  • HIV-Infected Patients
    New Drugs for the Treatment-Experienced Patient Joseph Eron, md Associate Professor of Medicine and Director, Clinical Core unc Center for aids Research, University of North Carolina at Chapel Hill Summary by Tim Horn Edited by Jay Dobkin, md; Michael Saag, md reatment options for antiretro- humans by adenosine deaminase into D- Deeks and his colleagues in 1998 demon- viral-experienced patients leave a dioxolane guanine (dxg), a metabolite that strated a 1 log reduction in hiv-rna in hiv- lot to be desired. According to Dr. has potent activity against hiv and hbv. infected patients—more than 50% of whom Joe Eron, patients who have treat- According to in vitro data presented at were treatment-experienced—who received ment experience in all three classes the 3rd International Workshop on hiv tenofovir df 300 mg once daily as of currently available antiretrovi- Drug Resistance and Treatment Strategies, monotherapy for 28 days (Deeks, 1998). Trals have, at best, a 30% chance of re- held in June 1999, dapd was found to in- According to in vitro data presented by ducing their viral load to levels below 400 hibit wild-type and mutant isolates resistant Gilead’s Dr. Michael Miller at the recent copies/mL upon initiating a salvage regi- to azt (Retrovir) and 3TC (Borroto-Esoda, 4th International Resistance Workshop, the men. Cross-resistance within each class of 1999). The drug was also reported to be ac- resistance pattern for tenofovir df is simi- drugs, particularly the protease inhibitors tive against strains collected from patients lar to that of its chemical predecessor adefo- (pis) and non-nucleoside reverse tran- who have failed various nrti and nnrti vir, a compound no longer in development scriptase inhibitors (nnrtis), essentially combination therapies, including those for the treatment of hiv (Miller, 2000).
    [Show full text]
  • Glossary Terms
    Glossary Terms € 1584 5W6 5501 a 7181, 12203 5’UTR 8126 a-g Transformation 6938 6Q1 5500 r 7181 6W1 5501 b 7181 a 12202 b-b Transformation 6938 A 12202 d 7181 AAV 10815 Z 1584 Abandoned mines 6646 c 5499 Abiotic factor 148 f 5499 Abiotic 10139, 11375 f,b 5499 Abiotic stress 1, 10732 f,i, 5499 Ablation 2761 m 5499 ABR 1145 th 5499 Abscisic acid 9145 th,Carnot 5499 Absolute humidity 893 th,Otto 5499 Absorbed dose 3022, 4905, 8387, 8448, 8559, 11026 v 5499 Absorber 2349 Ф 12203 Absorber tube 9562 g 5499 Absorption, a(l) 8952 gb 5499 Absorption coefficient 309 abs lmax 5174 Absorption 309, 4774, 10139, 12293 em lmax 5174 Absorptivity or absorptance (a) 9449 μ1, First molecular weight moment 4617 Abstract community 3278 o 12203 Abuse 6098 ’ 5500 AC motor 11523 F 5174 AC 9432 Fem 5174 ACC 6449, 6951 r 12203 Acceleration method 9851 ra,i 5500 Acceptable limit 3515 s 12203 Access time 1854 t 5500 Accessible ecosystem 10796 y 12203 Accident 3515 1Q2 5500 Acclimation 3253, 7229 1W2 5501 Acclimatization 10732 2W3 5501 Accretion 2761 3 Phase boundary 8328 Accumulation 2761 3D Pose estimation 10590 Acetosyringone 2583 3Dpol 8126 Acid deposition 167 3W4 5501 Acid drainage 6665 3’UTR 8126 Acid neutralizing capacity (ANC) 167 4W5 5501 Acid (rock or mine) drainage 6646 12316 Glossary Terms Acidity constant 11912 Adverse effect 3620 Acidophile 6646 Adverse health effect 206 Acoustic power level (LW) 12275 AEM 372 ACPE 8123 AER 1426, 8112 Acquired immunodeficiency syndrome (AIDS) 4997, Aerobic 10139 11129 Aerodynamic diameter 167, 206 ACS 4957 Aerodynamic
    [Show full text]
  • The Evolution of Pleconaril: Modified O-Alkyl Linker Analogs Have
    molecules Communication The Evolution of Pleconaril: Modified O-Alkyl Linker Analogs Have Biological Activity towards Coxsackievirus B3 Nancy 1, 2, 1 3 Alexandrina Volobueva y, Anna Egorova y, Anastasia Galochkina , Sean Ekins , Vladimir Zarubaev 1 and Vadim Makarov 2,* 1 Saint-Petersburg Pasteur Institute, Mira str., 14, 197101 Saint Petersburg, Russia; [email protected] (A.V.); [email protected] (A.G.); [email protected] (V.Z.) 2 Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect, 33, build. 2, 119071 Moscow, Russia; [email protected] 3 Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 10 February 2020; Accepted: 13 March 2020; Published: 16 March 2020 Abstract: Coxsackieviruses type B are one of the most common causes of mild upper respiratory and gastrointestinal illnesses. At the time of writing, there are no approved drugs for effective antiviral treatment for Coxsackieviruses type B. We used the core-structure of pleconaril, a well-known antienteroviral drug candidate, for the synthesis of novel compounds with O-propyl linker modifications. Some original compounds with 4 different linker patterns, such as sulfur atom, ester, amide, and piperazine, were synthesized according to five synthetic schemes. The cytotoxicity and bioactivity of 14 target compounds towards Coxsackievirus B3 Nancy were examined. Based on the results, the values of 50% cytotoxic dose (CC50), 50% virus-inhibiting dose (IC50), and selectivity index (SI) were calculated for each compound. Several of the novel synthesized derivatives exhibited a strong anti-CVB3 activity (SI > 20 to > 200).
    [Show full text]
  • Telaprevir for HIV/Hepatitis C Virus–Coinfected Patients Failing
    HIV/AIDS MAJOR ARTICLE Telaprevir for HIV/Hepatitis C Virus–Coinfected Patients Failing Treatment With Pegylated Interferon/Ribavirin (ANRS HC26 TelapreVIH): An Open-Label, Single-Arm, Phase 2 Trial Downloaded from https://academic.oup.com/cid/article/59/12/1768/2895305 by guest on 01 October 2021 Laurent Cotte,1 Joséphine Braun,2 Caroline Lascoux-Combe,3 Corine Vincent,2 Marc-Antoine Valantin,4 Philippe Sogni,5 Karine Lacombe,6 Didier Neau,7 Hugues Aumaitre,8 Dominique Batisse,9 Pierre de Truchis,10 Anne Gervais,11 Christian Michelet,12 Philippe Morlat,13 Daniel Vittecoq,14 Isabelle Rosa,15 Inga Bertucci,16 Stéphane Chevaliez,17 Jean-Pierre Aboulker,2 and Jean-Michel Molina3; for the French National Agency for Research on AIDS and Viral Hepatitis (ANRS) HC26 Study Groupa 1Hospices Civils de Lyon, Croix-Rousse Hospital, and INSERM U1052, 2INSERM SC10-US019, Villejuif, 3Assistance Publique–Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, University of Paris VII Denis Diderot, and Sorbonne Paris-Cité, INSERM U941, 4AP-HP, Pitié-Salpêtrière Hospital, and UMR-S 943, INSERM, 5AP-HP, Cochin Hospital and Paris Descartes University, INSERM U-1016, 6AP-HP, Saint-Antoine Hospital, Sorbonne Universités, UPMC University Paris 06, UMR-S1136, 7Pellegrin University Hospital, Bordeaux, 8Saint-Jean Hospital, Perpignan, 9AP-HP, Georges Pompidou European Hospital, Paris, 10AP-HP, Raymond Poincaré Hospital, Garches, 11AP-HP, Bichat-Claude Bernard Hospital, Paris, 12Pontchaillou University Hospital, Rennes, 13Saint-André University Hospital, Bordeaux, 14AP-HP, Bicètre Hospital, Le Kremlin-Bicètre, 15Créteil Hospital, 16French National Agency for Research on AIDS and Viral Hepatitis, Paris, and 17AP-HP, Henri Mondor Hospital, Créteil, France (See the Editorial Commentary by Rockstroh on pages 1777–8.) Background.
    [Show full text]
  • ( 12 ) United States Patent
    US010385067B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 385, 067 B2 Carra et al. (45 ) Date of Patent: Aug. 20 , 2019 (54 ) SODIUM (2R , 55 , 13AR ) - 7 , 9 -DIOX0 - 10 ( 56 ) References Cited ( 2 , 4 ,6 - TRIFLUOROBENZYL )CARBAMOYL ) 2 , 3 , 4 , 5 , 7 , 9 , 13 , 13A -OCTAHYDRO - 2 , 5 U . S . PATENT DOCUMENTS METHANOPYRIDO [ 1 ' , 2 ' : 4 , 5 ]PYRAZINO 5 , 814 ,639 A 9 / 1998 Liotta et al . [ 2 , 1 - B ] [ 1 , 3 ]OXAZEPIN - 8 - OLATE 5 , 914 , 331 A 6 / 1999 Liotta et al . 5 ,922 ,695 A 7 / 1999 Arimilli et al . 5 , 935 , 946 A 8 / 1999 Munger, Jr . et al. (71 ) Applicant: Gilead Sciences , Inc ., Foster Ctiy , CA 5 , 977 , 089 A 11/ 1999 Arimilli et al. (US ) 6 ,043 , 230 A 3 / 2000 Arimilli et al. 6 ,620 , 841 B1 9 / 2003 Fujishita et al . (72 ) Inventors : Ernest A . Carra , Foster City , CA ( US ) ; 6 ,642 , 245 B1 11/ 2003 Liotta et al. 6 , 703 , 396 B1 3 / 2004 Liotta et al . Irene Chen , San Mateo , CA (US ) ; 7 , 176 , 220 B2 2 /2007 Satoh et al. Vahid Zia , Palo Alto , CA (US ) 7 ,419 , 969 B2 9 / 2008 Naidu et al. 7 , 550 , 463 B2 6 / 2009 Yoshida (73 ) Assignee : Gilead Sciences , Inc. , Foster City , CA 7 ,635 , 704 B2 12 /2009 Satoh et al. 7 , 858 , 788 B2 12 / 2010 Yoshida et al . (US ) 8 , 129 , 385 B2 3 / 2012 Johns et al . 8 , 148 , 374 B2 4 / 2012 Desai et al. ( * ) Notice : Subject to any disclaimer , the term of this 8 , 188 , 271 B2 5 / 2012 Yoshida et al .
    [Show full text]
  • Design and Synthesis of Hepatitis C Virus NS3 Protease Inhibitors
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 197 Design and Synthesis of Hepatitis C Virus NS3 Protease Inhibitors Targeting Different Genotypes and Drug-Resistant Variants ANNA KARIN BELFRAGE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6192 ISBN 978-91-554-9166-6 UPPSALA urn:nbn:se:uu:diva-243317 2015 Dissertation presented at Uppsala University to be publicly examined in B41 BMC, Husargatan 3, Uppsala, Friday, 27 March 2015 at 09:15 for the degree of Doctor of Philosophy (Faculty of Pharmacy). The examination will be conducted in Swedish. Faculty examiner: Ulf Ellervik (Lunds tekniska högskola). Abstract Belfrage, A. K. 2015. Design and Synthesis of Hepatitis C Virus NS3 Protease Inhibitors. Targeting Different Genotypes and Drug-Resistant Variants. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 197. 108 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9166-6. Since the first approved hepatitis C virus (HCV) NS3 protease inhibitors in 2011, numerous direct acting antivirals (DAAs) have reached late stages of clinical trials. Today, several combination therapies, based on different DAAs, with or without the need of pegylated interferon-α injection, are available for chronic HCV infections. The chemical foundation of the approved and late-stage HCV NS3 protease inhibitors is markedly similar. This could partly explain the cross-resistance that have emerged under the pressure of NS3 protease inhibitors. The first-generation NS3 protease inhibitors were developed to efficiently inhibit genotype 1 of the virus and were less potent against other genotypes. The main focus in this thesis was to design and synthesize a new class of 2(1H)-pyrazinone based HCV NS3 protease inhibitors, structurally dissimilar to the inhibitors evaluated in clinical trials or approved, potentially with a unique resistance profile and with a broad genotypic coverage.
    [Show full text]
  • Bristol-Myers Setback Another Blow to Hep C Field
    August 24, 2012 Bristol-Myers setback another blow to hep C field Joanne Fagg The once-crowded field of candidates jostling to be part of the first all-oral hepatitis C antiviral cocktail got decidedly emptier today with the news that Bristol-Myers Squibb had cancelled development of its $2bn asset BMS-986094. The safety worries that had triggered a clinical hold on the drug turned out too deep to accept – a death in the original heart failure patient, plus nine other hospitalised subjects resulting from heart and kidney toxicity. Excitement around the space has already dissipated with Gilead Sciences’ seemingly uninterrupted march towards the all-oral holy grail and signs that the untreated population might be smaller than was originally believed. Failure of a closely watched candidate – and indeed one validated by a big pharma deal – will do nothing to reinvigorate the interest of investors whose interest may be turning elsewhere. Hefty price tag The news is not necessarily a setback for the nucleoside NS5B polymerase inhibitor class or for Bristol-Myers, which still has a decent pipeline in spite of some failures (see tables). However, it is another knock to sentiment for developers in the hep C space – at least, the ones that are not called Gilead (Signs are growing that the hep C ship is sailing, August 1, 2012). Hepatitis C nucleoside NS5B polymerase inhibitor pipeline Status Product Company Selected trial IDs NCT01497366 NCT01542788 Phase III GS-7977 Gilead Sciences NCT01604850 NCT01641640 NCT00869661 Phase II RG7128 Gilead Sciences/Roche NCT01057667 NCT01278134 IDX184 Idenix Pharmaceuticals Partial clinical hold Phase I RO5303253 Roche NCT01181024 NCT01371162 RO5428029 Roche NCT01345942 ALS-2200 Vertex Pharmaceuticals NCT01590407 ALS-2158 Vertex Pharmaceuticals NCT01554085 As if further confirmation were needed, California-based Gilead is now decisively in the lead to get a much- heralded all-oral hepatitis C combination to the market and address those patients thought to be awaiting a therapy free of interferon and its side effects.
    [Show full text]