Nuclear Factor of Activated T Cells in Cancer Development and Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Factor of Activated T Cells in Cancer Development and Treatment Cancer Letters 361 (2015) 174–184 Contents lists available at ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet Mini-review Nuclear factor of activated T cells in cancer development and treatment Jiawei Shou a, Jing Jing b, Jiansheng Xie c, Liangkun You a, Zhao Jing a, Junlin Yao a, Weidong Han a,c,*, Hongming Pan a,c a Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China b Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China c Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China ARTICLE INFO ABSTRACT Article history: Since nuclear factor of activated T cells (NFAT) was first identified as a transcription factor in T cells, various Received 7 January 2015 NFAT isoforms have been discovered and investigated. Accumulating studies have suggested that NFATs Received in revised form 4 March 2015 are involved in many aspects of cancer, including carcinogenesis, cancer cell proliferation, metastasis, Accepted 4 March 2015 drug resistance and tumor microenvironment. Different NFAT isoforms have distinct functions in differ- ent cancers. The exact function of NFAT in cancer or the tumor microenvironment is context dependent. Keywords: In this review, we summarize our current knowledge of NFAT regulation and function in cancer devel- NFAT opment and treatment. NFATs have emerged as a potential target for cancer prevention and therapy. Calcineurin Tumor microenvironment © 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY- Metastasis NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Drug resistance Introduction NFAT therapeutics. Insights into NFAT functions will help to elucidate the NFAT signaling axis mechanism and develop cancer therapies. Nuclear factor of activated T cells (NFAT) was first identified as a transcription factor nearly three decades ago. NFAT was original- The NFAT family and regulation ly found in nuclear extracts from activated T cells. Shaw et al. previously reported that NFAT binds to the interleukin-2 (IL-2) pro- There are five NFAT family members, known as NFAT1 (NFATc2/ moter to activate T cells [1]. NFAT was not well studied until the NFATp), NFAT2 (NFATc1/NFATc), NFAT3 (NFATc4), NFAT4 (NFATc3/ development of immunosuppressants such as cyclosporine A (CsA) NFATx) and NFAT5 (tonicity enhancer binding protein) [4,12].NFAT and tacrolimus (FK506), which block calcineurin activity and inhibit proteins contain an amino-terminal transactivation domain (TAD) NFAT nuclear translocation and consequent target gene transcrip- and a carboxy-terminal domain. NFAT1-4 has two additional con- tion [2]. It was later found that NFAT was also expressed in other served domains, the Rel-homology region (RHR) and NFAT homology cells and tissues, including muscle, bone, neurons, viscera and skin region (NHR). RHR is similar to the DNA-binding domain of the Rel [3–6]. Since the first research demonstrating the relationship family (also known as nuclear factor-κB family), and NHR is a reg- between NFAT and cancer cells was published [7], more evidence ulatory domain with the calcineurin-binding site. Thus, the Ca2+/ has emerged to reveal the roles of NFAT in cancer development and calcineurin pathway regulates NFAT1-4. In contrast, NFAT5 can’t be treatment. activated by calcineurin, as it lacks an NHR [13,14] (Fig. 1A). NFAT plays crucial role in regulating cancer initiation and pro- In resting cells, the NHR is heavily phosphorylated at serine resi- gression, such as proliferation, invasion, migration and angiogenesis dues within several conserved serine-rich sequence motifs (SRR-1, [8–10]. In this review, we focus on the connection between NFATs SPxx repeat, and SRR-2), which can be dephosphorylated by several and three hallmarks of cancer: drug resistance, metastasis and the types of stimulation [15]. When dephosphorylated, the nuclear lo- tumor microenvironment [11]. In addition, we also review the func- calization sequence (NLS) within NFAT is exposed, resulting in the tion of NFAT in carcinogenesis, cell proliferation, and the potential protein’s nuclear translocation. In the nucleus, NFAT cooperates with other transcription factors, such as activator protein 1 (AP1, Fos- Jun complexes), GATA4, MEF families and forkhead box P3 (FOXP3), to initiate target gene transcription [16–18]. NHR rephosphorylation * Corresponding author. Tel.: +86 571 86006926; fax: +86 571 86044817. leads to nuclear export signal (NES) exposure and NLS masking, E-mail address: [email protected] (W. Han). leading to NFAT translocation from the nucleus to the cytoplasm http://dx.doi.org/10.1016/j.canlet.2015.03.005 0304-3835/© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ by-nc-nd/4.0/). J. Shou et al./Cancer Letters 361 (2015) 174–184 175 Fig. 1. General structure of NFAT and calcineurin. (A) NFAT proteins consist of the Rel-homology region (RHR), the NFAT homology region (NHR) and a C-terminal domain, while NFAT5 doesn’t possess the NHR. The NHR contains an N-terminal transactivation domain (TAD), the calcineurin binding site, the nuclear localization sequence (NLS) and the nuclear export signal (NES). It also harbors several serine-rich motifs including SRR1, SRR2, SP1, SP2 and SP3. The RHR comprises the DNA binding domain and the recognition points with other transcriptional binding partners such as Fos and Jun. (B) The calcineurin protein has two subunits calcineurin A (CnA) and calcineurin B (CnB). CnA contains a phosphatase catalytic domain and a regulatory domain, the latter owns a CnB-binding domain, a calmodulin-binding domain and an auto-inhibitory domain (AID). CnB has a main latch region with four Ca2+-binding EF-hand motifs, which can be recognized by immunosuppressive complexes and competitively binds to CnA. [19]. This reversible phosphorylation controls NFAT nuclear and cy- catalytic subunit A (CnA) and a regulatory subunit B (CnB). The CnA toplasmic shuttling to switch its transcriptional activity. contains a phosphatase catalytic domain, a CnB-binding domain, a NFAT is primarily activated by store-operated calcium entry via calmodulin-binding domain and a carboxy-terminal auto-inhibitory calcium release-activated calcium (CRAC) channels. The CRAC chan- domain (AID) [26,27]. Under resting condition, the AID interacts with nels include the CRAC channel protein 1 (ORAI1) and stromal the calmodulin-binding domain to inhibit its phosphatase activity. interaction molecule 1 (STIM1) in non-excitable cells [20–23]. Phos- In the activated state, increased cytoplasmic Ca2+ concentration assists pholipase Cγ (PLCγ) activation initiates Ca2+ mobilization. Ligand calmodulin in displacing the AID and promotes CnB binding to CnA binding to cell surface receptors, such as immunoreceptors, recep- by activating Ca2+-binding EF-hand motifs in the CnB. These events tor tyrosine kinases and G-protein-coupled receptor (GPCR), induces ultimately lead to calcineurin activation. The activated calcineurin PLC activation and subsequent phosphatidylinositol-4, 5-bisphosphate dephosphorylates multiple phospho-residues in NFAT NHR, leading (PIP2) hydrolysis into diacylglycerol (DAG) and inositol trisphosphate to NFAT cytoplasmic–nuclear trafficking. Thus, calcineurin plays a 2+ (IP3). IP3 binds to the Ca -permeable IP3 receptor (IP3R) on the en- key role in NFAT dephosphorylation [10,28]. doplasmic reticulum (ER) membrane and stimulates Ca2+ release from In addition to promoting nuclear translocation, calcineurin keeps the stores into the cytosol. Subsequently, STIM1 senses the de- NFAT dephosphorylated and constitutively activated in the nucleus. crease in ER Ca2+, which then forms oligomers and moves to the ER– Therefore, calcineurin inhibition could be an effective way to promote plasma membrane junction, where it gates the plasma membrane NFAT nuclear export and cytoplasmic retention. CsA and FK506 calcium channel ORAI1. This STIM1–ORAI1 interaction induces a con- inhibit calcineurin by binding to its CnB domain. Both compounds formational change in ORAI1, resulting in a persistent rise in are widely used as immunosuppressants in the clinic, mainly in organ intracellular Ca2+ concentration. In addition to the STIM–ORAI system, transplantation and dermatology. In addition, there are several en- there are other Ca2+ channels, including voltage-gated Ca2+ and tran- dogenous calcineurin inhibitors such as Down’s syndrome candidate sient receptor potential ion channels, which are also involved in Ca2+ region 1 (DSCR1), calcineurin-binding protein 1 (CABIN1) and influx across the plasma membrane into the cytoplasm [24,25]. The A-kinase anchor protein 79 (AKAP79) [29–31]. Interestingly, DSCR1 increased cytoplasmic Ca2+ leads to activation of the Ca2+ sensor is upregulated in patients with Down’s syndrome, and these pa- calmodulin (CaM) and CaM further activates the phosphatase tients are less predisposed to malignancy [32]. It was later found calcineurin [4,26]. As shown in Fig. 1B, calcineurin consists of a that DSCR1 suppresses tumor growth by inhibiting the calcineurin 176 J. Shou et al./Cancer Letters 361 (2015) 174–184 pathway [33]. Additionally, blocking targets upstream of the Ca2+/ skin cancer [53,54]. Constitutive NFAT2
Recommended publications
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • Comprehensive Assessment of Indian Variations in the Druggable Kinome Landscape Highlights Distinct Insights at the Sequence, Structure and Pharmacogenomic Stratum
    SUPPLEMENTARY MATERIAL Comprehensive assessment of Indian variations in the druggable kinome landscape highlights distinct insights at the sequence, structure and pharmacogenomic stratum Gayatri Panda1‡, Neha Mishra1‡, Disha Sharma2,3, Rahul C. Bhoyar3, Abhinav Jain2,3, Mohamed Imran2,3, Vigneshwar Senthilvel2,3, Mohit Kumar Divakar2,3, Anushree Mishra3, Priyanka Banerjee4, Sridhar Sivasubbu2,3, Vinod Scaria2,3, Arjun Ray1* 1 Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla, India. 2 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. 3 CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi-110020, India. 4 Institute for Physiology, Charite-University of Medicine, Berlin, 10115 Berlin, Germany. ‡These authors contributed equally to this work. * [email protected] TABLE OF CONTENTS Name Title Supplemental_Figure_S1 Fauchere and Pliska hydrophobicity scale for variations in structure data Supplemental_Figure_S2 Phenotypic drug-drug correlogram Supplemental_Table_S1 545 kinase coding genes used in the study Supplemental_Table_S2 Classes and count of kinase coding genes Supplemental_Table_S3 Allele frequency Indian v/s other populations from 1000 genome data(1000g2015). Supplemental_Table_S4 IndiGen Structure Data- consisting of 12 genes and their 22 variants Supplemental_Table_S5 Genes, PDB ids, mutations in IndiGen data and associated drugs (FDA approved) Supplemental_Table_S6 Data used for docking and binding pocket similarity analysis Supplemental_Table_S7
    [Show full text]
  • Pflugers Final
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Serveur académique lausannois A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Sylvain Pradervand2, Annie Mercier Zuber1, Gabriel Centeno1, Olivier Bonny1,3,4 and Dmitri Firsov1,4 1 - Department of Pharmacology and Toxicology, University of Lausanne, 1005 Lausanne, Switzerland 2 - DNA Array Facility, University of Lausanne, 1015 Lausanne, Switzerland 3 - Service of Nephrology, Lausanne University Hospital, 1005 Lausanne, Switzerland 4 – these two authors have equally contributed to the study to whom correspondence should be addressed: Dmitri FIRSOV Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925406 Fax: ++ 41-216925355 e-mail: [email protected] and Olivier BONNY Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925417 Fax: ++ 41-216925355 e-mail: [email protected] 1 Abstract The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD) (Zuber et al., 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining of salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G protein-coupled receptors (GPCR) or serine-threonine kinases exhibit high expression levels but remain unassigned to a specific renal function.
    [Show full text]
  • Developing Small Molecule Inhibitors of ALK2: a Serine/Threonine Kinase Implicated in Diffuse Intrinsic Pontine Glioma
    Developing Small Molecule Inhibitors of ALK2: a Serine/Threonine Kinase Implicated in Diffuse Intrinsic Pontine Glioma by Deeba Ensan A thesis submitted in conformity with the requirements for the degree of Master of Science Pharmacology and Toxicology University of Toronto © Copyright by Deeba Ensan 2020 Developing Small Molecule Inhibitors of ALK2: a Serine/Threonine Kinase Implicated in Diffuse Intrinsic Pontine Glioma Deeba Ensan Master of Science Pharmacology and Toxicology University of Toronto 2020 Abstract Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric cancer for which no effective chemotherapeutic drugs exist. Analysis of the genomic landscape of this disease has led to the identification of the serine/threonine kinase ALK2 as a potential target for therapeutic intervention. In this work, we developed two separate series of potent type I inhibitors of ALK2 based on the previously reported inhibitor LDN-214117. The first structure-activity relationship (SAR) study focuses on improving the selectivity, permeability and pharmacokinetic profile of M4K2149, a benzamide analogue with reduced off-target affinity for the hERG potassium channel. The second part of this thesis highlights the efforts made to develop a conformationally constrained inhibitor that was rigidified into the biologically active configuration of M4K2009, the lead compound of this project. Future studies will assess the permeability of select compounds in a Caco-2 permeability assay and their PK profiles in vivo. ii Acknowledgments Completing my Master’s degree at the Ontario Institute for Cancer Research (OICR) was truly an eye-opening experience. The beginning of my training was most certainly taxing. However, the support I received from the Drug Discovery team facilitated my adaptation to a new environment.
    [Show full text]
  • The Mitotic Checkpoint Is a Targetable Vulnerability of Carboplatin-Resistant
    www.nature.com/scientificreports OPEN The mitotic checkpoint is a targetable vulnerability of carboplatin‑resistant triple negative breast cancers Stijn Moens1,2, Peihua Zhao1,2, Maria Francesca Baietti1,2, Oliviero Marinelli2,3, Delphi Van Haver4,5,6, Francis Impens4,5,6, Giuseppe Floris7,8, Elisabetta Marangoni9, Patrick Neven2,10, Daniela Annibali2,11,13, Anna A. Sablina1,2,13 & Frédéric Amant2,10,12,13* Triple‑negative breast cancer (TNBC) is the most aggressive breast cancer subtype, lacking efective therapy. Many TNBCs show remarkable response to carboplatin‑based chemotherapy, but often develop resistance over time. With increasing use of carboplatin in the clinic, there is a pressing need to identify vulnerabilities of carboplatin‑resistant tumors. In this study, we generated carboplatin‑resistant TNBC MDA‑MB‑468 cell line and patient derived TNBC xenograft models. Mass spectrometry‑based proteome profling demonstrated that carboplatin resistance in TNBC is linked to drastic metabolism rewiring and upregulation of anti‑oxidative response that supports cell replication by maintaining low levels of DNA damage in the presence of carboplatin. Carboplatin‑ resistant cells also exhibited dysregulation of the mitotic checkpoint. A kinome shRNA screen revealed that carboplatin‑resistant cells are vulnerable to the depletion of the mitotic checkpoint regulators, whereas the checkpoint kinases CHEK1 and WEE1 are indispensable for the survival of carboplatin‑ resistant cells in the presence of carboplatin. We confrmed that pharmacological inhibition of CHEK1 by prexasertib in the presence of carboplatin is well tolerated by mice and suppresses the growth of carboplatin‑resistant TNBC xenografts. Thus, abrogation of the mitotic checkpoint by CHEK1 inhibition re‑sensitizes carboplatin‑resistant TNBCs to carboplatin and represents a potential strategy for the treatment of carboplatin‑resistant TNBCs.
    [Show full text]
  • Global Proteome Changes in Liver Tissue 6 Weeks After FOLFOX Treatment of Colorectal Cancer Liver Metastases
    Proteomes 2016, 4, 30; doi:10.3390/proteomes4040030 S1 of S5 Supplementary Materials: Global Proteome Changes in Liver Tissue 6 Weeks After FOLFOX Treatment of Colorectal Cancer Liver Metastases Jozef Urdzik, Anna Vildhede, Jacek R. Wiśniewski, Frans Duraj, Ulf Haglund, Per Artursson and Agneta Norén Table S1. Clinical data. FOLFOX All Patients No Chemotherapy Clinical Characteristics Expressed By Treatment p-Value (n = 15) (n = 7) (n = 8) Gender (male) n (%) 11 (73%) 5 (63%) 6 (86%) 0.57 Age (years) median, IQR 59 (58–69) 63 (58–70) 58 (53–70) 0.40 BMI median, IQR 25.6 (24.1–30.0) 25.0 (23.7–27.6) 29.8 (24.2–31.0) 0.19 Number of FOLFOX cures median, IQR - 5 (4–7) - Delay after FOLFOX cessation median, IQR - 6 (5–8) - (weeks) Major liver resection n (%) 12 (80%) 7 (88%) 5 (71%) 0.57 Bleeding preoperatively (mL) median, IQR 600 (300–1700) 450 (300–600) 1100 (400–2200) 0.12 Transfusion units median, IQR 0 (0–0) 0 (0–0) 0 (0–0) 1.00 peroperatively Transfusion units median, IQR 0 (0–0) 0 (0–0) 0 (0–0) 0.69 postoperatively Hospital stay (days) median, IQR 10 (8–15) 10 (8–14) 10 (7–16) 0.78 Clavien complication grade 3 n (%) 5 (33%) 2 (25%) 3 (43%) 0.61 or more Table S2. Classifying proteins according Recursive Feature Elimination-Support Vector Machine model resulting in list of 184 proteins with classifying error rate 20%. Gene Names Fold Unique Protein Names Ranks Peptides Alt. Protein ID Change Peptides MCM2 DNA replication licensing factor MCM2 0 3.40 12 12 CAMK2G; Calcium/calmodulin-dependent protein kinase type CAMK2A; II subunit gamma;
    [Show full text]
  • Gene Symbol Accession Alias/Prev Symbol Official Full Name AAK1 NM 014911.2 KIAA1048, Dkfzp686k16132 AP2 Associated Kinase 1
    Gene Symbol Accession Alias/Prev Symbol Official Full Name AAK1 NM_014911.2 KIAA1048, DKFZp686K16132 AP2 associated kinase 1 (AAK1) AATK NM_001080395.2 AATYK, AATYK1, KIAA0641, LMR1, LMTK1, p35BP apoptosis-associated tyrosine kinase (AATK) ABL1 NM_007313.2 ABL, JTK7, c-ABL, p150 v-abl Abelson murine leukemia viral oncogene homolog 1 (ABL1) ABL2 NM_007314.3 ABLL, ARG v-abl Abelson murine leukemia viral oncogene homolog 2 (arg, Abelson-related gene) (ABL2) ACVR1 NM_001105.2 ACVRLK2, SKR1, ALK2, ACVR1A activin A receptor ACVR1B NM_004302.3 ACVRLK4, ALK4, SKR2, ActRIB activin A receptor, type IB (ACVR1B) ACVR1C NM_145259.2 ACVRLK7, ALK7 activin A receptor, type IC (ACVR1C) ACVR2A NM_001616.3 ACVR2, ACTRII activin A receptor ACVR2B NM_001106.2 ActR-IIB activin A receptor ACVRL1 NM_000020.1 ACVRLK1, ORW2, HHT2, ALK1, HHT activin A receptor type II-like 1 (ACVRL1) ADCK1 NM_020421.2 FLJ39600 aarF domain containing kinase 1 (ADCK1) ADCK2 NM_052853.3 MGC20727 aarF domain containing kinase 2 (ADCK2) ADCK3 NM_020247.3 CABC1, COQ8, SCAR9 chaperone, ABC1 activity of bc1 complex like (S. pombe) (CABC1) ADCK4 NM_024876.3 aarF domain containing kinase 4 (ADCK4) ADCK5 NM_174922.3 FLJ35454 aarF domain containing kinase 5 (ADCK5) ADRBK1 NM_001619.2 GRK2, BARK1 adrenergic, beta, receptor kinase 1 (ADRBK1) ADRBK2 NM_005160.2 GRK3, BARK2 adrenergic, beta, receptor kinase 2 (ADRBK2) AKT1 NM_001014431.1 RAC, PKB, PRKBA, AKT v-akt murine thymoma viral oncogene homolog 1 (AKT1) AKT2 NM_001626.2 v-akt murine thymoma viral oncogene homolog 2 (AKT2) AKT3 NM_181690.1
    [Show full text]
  • Lestaurtinib
    LESTAURTINIB MIDOSTAURIN AXITINIB Tyrosine-protein kinase TIE-2 Serine/threonine-protein kinase 2Mitogen-activated protein kinase kinase kinase kinase 5 Serine/threonine-protein kinase MST2 NERATINIB SPS1/STE20-related protein kinase YSK4 SORAFENIB Dual specificity mitogen-activated protein kinase kinase 5 Proto-oncogene tyrosine-protein kinase MER Platelet-derivedTANDUTINIB growth factor receptor beta Epithelial discoidin domain-containing receptor 1 NINTEDANIB Mixed lineage kinase 7 Macrophage colonyTyrosine-protein stimulating kinasefactor receptorreceptor UFOTyrosine-protein kinase BLK Tyrosine-protein kinase LCK NILOTINIB Serine/threonine-protein kinase 10 NT-3 growth factor receptor DiscoidinMitogen-activated domain-containing protein receptor kinase 2 kinase kinase kinase 3 Tyrosine-protein kinase ABL Nerve growth factor receptor Trk-A FORETINIBEphrin type-B receptor 6 Adaptor-associated kinaseQUIZARTINIB Ephrin type-AEphrin receptor type-B receptor5 2 Mitogen-activated proteinTyrosine-protein kinase kinase kinaseTyrosine-protein kinase JAK3 kinase 2 kinase receptor FLT3 Fibroblast growth factorSerine/threonine-protein receptor 1 kinase Aurora-B Ephrin type-A receptor 8 Serine/threonine-proteinDual specificty protein kinase kinase PLK4Mitogen-activated CLK1 protein kinase kinase kinase 12 Misshapen-like kinase 1Cyclin-dependent kinase-like 2 Platelet-derivedLINIFANIB growth factor receptorEphrin alpha type-A receptor 4 c-Jun N-terminal kinaseALISERTIB 3 Serine/threonine-protein kinase SIK1 PONATINIB Dual specificity protein kinaseStem
    [Show full text]
  • Novel and De Novo Mutations in Pediatric Refractory Epilepsy Jing Liu1,2, Lili Tong1,2, Shuangshuang Song3, Yue Niu1,2, Jun Li1,2, Xiu Wu1,2, Jie Zhang4, Clement C
    Liu et al. Molecular Brain (2018) 11:48 https://doi.org/10.1186/s13041-018-0392-5 RESEARCH Open Access Novel and de novo mutations in pediatric refractory epilepsy Jing Liu1,2, Lili Tong1,2, Shuangshuang Song3, Yue Niu1,2, Jun Li1,2, Xiu Wu1,2, Jie Zhang4, Clement C. Zai5, Fang Luo4, Jian Wu4, Haiyin Li5, Albert H. C. Wong5, Ruopeng Sun1,2, Fang Liu2,5 and Baomin Li1,2* Abstract Pediatric refractory epilepsy is a broad phenotypic spectrum with great genetic heterogeneity. Next-generation sequencing (NGS) combined with Sanger sequencing could help to understand the genetic diversity and underlying disease mechanisms in pediatric epilepsy. Here, we report sequencing results from a cohort of 172 refractory epilepsy patients aged 0–14 years. The pathogenicity of identified variants was evaluated in accordance with the American College of Medical Genetics and Genomics (ACMG) criteria. We identified 43 pathogenic or likely pathogenic variants in 40 patients (23.3%). Among these variants, 74.4% mutations (32/43) were de novo and 60.5% mutations (26/43) were novel. Patients with onset age of seizures ≤12 months had higher yields of deleterious variants compared to those with onset age of seizures > 12 months (P = 0.006). Variants in ion channel genes accounted for the greatest functional gene category (55.8%), with SCN1A coming first (16/43). 81.25% (13/16) of SCN1A mutations were de novo and 68.8% (11/16) were novel in Dravet syndrome. Pathogenic or likely pathogenic variants were found in the KCNQ2, STXBP1, SCN2A genes in Ohtahara syndrome. Novel deleterious variants were also found in West syndrome, Doose syndrome and glucose transporter type 1 deficiency syndrome patients.
    [Show full text]
  • LANCE Ultra Kinase Assay Selection Guide
    FINDING THE PATHWAY TO ASSAY OPTIMIZATION IS EASY LANCE® Ultra Kinase Assay Selection Guide LANCE Ultra Serine/Threonine Kinase Selection Guide LANCE® Ultra TR-FRET reagents comprise the widest portfolio of validated kinase assay offerings available for rapid, sensitive and robust screening of purified kinase targets in a biochemical format. • We provide S/B ratiometric data for each LANCE Ultra assay to guide you to • Our selection guides contain over 300 kinases from a variety of suppliers: the best performing solution for your assay. – 225 Serine/Threonine kinases validated on LANCE Ultra reagents • Rapid assay optimization every time. – 85 Tyrosine kinases validated on LANCE Ultra reagents How to use this guide: 1. Locate your kinase If you cannot find your kinase of interest, please ask your PerkinElmer sales • In many cases, up to three commercial kinase vendors have been tested. specialist, as our list continues to expand. Two kits are available for testing purposes: • Many common aliases are shown in parenthesis. • KinaSelect Ser/Thr kit (5 x 250 data points, TRF0300-C) 2. Best performing ULight ™ substrates are listed for each enzyme according to performance – 5 ULight-labeled Ser/Thr kinase specific substrates + 5 matching Europium-labeled anti-phospho antibodies • Signal to background (S/B) ratios (Signal at 665 nm / minus ATP control at 665 nm) are indicated in parenthesis. • KinaSelect TK kit (1,000 data points, TRF0301-D) • All S/B ratios were obtained at fixed experimental conditions unless – 1 ULight-labeled kinase specific substrate + 1 matching otherwise noted (see page 10). Europium-labeled anti-phospho antibody 3. Based on your substrate choice, find the corresponding Europium-labeled anti-phospho antibody on page 11 (i.e.
    [Show full text]
  • Functional Characterization of Lysosomal Interaction of Akt with VRK2
    Oncogene (2018) 37:5367–5386 https://doi.org/10.1038/s41388-018-0330-0 ARTICLE Functional characterization of lysosomal interaction of Akt with VRK2 1 1 1 1 1 Noriyuki Hirata ● Futoshi Suizu ● Mami Matsuda-Lennikov ● Tsutomu Tanaka ● Tatsuma Edamura ● 1 1,2 1,5 3 4 Satoko Ishigaki ● Thoria Donia ● Pathrapol Lithanatudom ● Chikashi Obuse ● Toshihiko Iwanaga ● Masayuki Noguchi1 Received: 26 September 2017 / Revised: 31 March 2018 / Accepted: 25 April 2018 / Published online: 5 June 2018 © The Author(s) 2018. This article is published with open access Abstract Serine–threonine kinase Akt (also known as PKB, protein kinase B), a core intracellular mediator of cell survival, is involved in various human cancers and has been suggested to play an important role in the regulation of autophagy in mammalian cells. Nonetheless, the physiological function of Akt in the lysosomes is currently unknown. We have reported previously that PtdIns (3)P-dependent lysosomal accumulation of the Akt–Phafin2 complex is a critical step for autophagy induction. Here, to characterize the molecular function of activated Akt in the lysosomes in the process of autophagy, we searched for the molecules fl – 1234567890();,: 1234567890();,: that interact with the Akt complex at the lysosomes after induction of autophagy. By time-of- ight mass spectrometry (TOF/ MS) analysis, kinases of the VRK family, a unique serine–threonine family of kinases in the human kinome, were identified. VRK2 interacts with Akt1 and Akt2, but not with Akt3; the C terminus of Akt and the N terminus of VRK2 facilitate the interaction of Akt and VRK2 in mammalian cells.
    [Show full text]
  • The Vaccinia Virus (VACV) B1 and Cellular VRK2 Kinases Promote VACV Replication Factory Formation Through Phosphorylation-Dependent Inhibition of VACV B12" (2019)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2019 The Vaccinia Virus (VACV) B1 and Cellular VRK2 Kinases Promote VACV Replication Factory Formation through Phosphorylation- Dependent Inhibition of VACV B12 Annabel T. Olson University of Nebraska - Lincoln, [email protected] Zhigang Wang University of Nebraska - Lincoln, [email protected] Annabel Olson University of Nebraska - Lincoln, [email protected] Alexandria C. Linville University of Nebraska - Lincoln, [email protected] Brianna L. Bullard University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/virologypub See next page for additional authors Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Olson, Annabel T.; Wang, Zhigang; Olson, Annabel; Linville, Alexandria C.; Bullard, Brianna L.; Weaver, Eric A.; Jones, Clinton; and Wiebe, Matthew S., "The Vaccinia Virus (VACV) B1 and Cellular VRK2 Kinases Promote VACV Replication Factory Formation through Phosphorylation-Dependent Inhibition of VACV B12" (2019). Virology Papers. 450. https://digitalcommons.unl.edu/virologypub/450 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln.
    [Show full text]