Arctic Tundra and Polar Desert Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Tundra and Polar Desert Ecosystems Chapter 7 Arctic Tundra and Polar Desert Ecosystems Lead Author Terry V.Callaghan Contributing Authors Lars Olof Björn, F. Stuart Chapin III,Yuri Chernov,Torben R. Christensen, Brian Huntley, Rolf Ims, Margareta Johansson, Dyanna Jolly Riedlinger, Sven Jonasson, Nadya Matveyeva,Walter Oechel, Nicolai Panikov, Gus Shaver Consulting Authors Josef Elster, Heikki Henttonen, Ingibjörg S. Jónsdóttir, Kari Laine, Sibyll Schaphoff, Stephen Sitch, Erja Taulavuori, Kari Taulavuori, Christoph Zöckler Contents Summary . .244 7.4. Effects of changes in climate and UV radiation levels on 7.1. Introduction . .244 structure and function of arctic ecosystems in the short 7.1.1. Characteristics of arctic tundra and polar desert ecosystems . .244 and long term . .292 7.1.2. Raison d’être for the chapter . .247 7.4.1. Ecosystem structure . .292 7.1.3. Rationale for the structure of the chapter . .248 7.4.1.1. Local and latitudinal variation . .292 7.1.4.Approaches used for the assessment: strengths, limitations, 7.4.1.2. Response to experimental manipulations . .295 and uncertainties . .248 7.4.1.3. Recent decadal changes within permanent plots . .298 7.2. Late-Quaternary changes in arctic terrestrial ecosystems, 7.4.1.4.Trophic interactions . .298 climate, and ultraviolet radiation levels . .249 7.4.1.5. Summary . .303 7.2.1. Environmental history . .249 7.4.2. Ecosystem function . .305 7.2.2. History of arctic biota . .250 7.4.2.1. Biogeochemical cycling: dynamics of carbon and 7.2.3. Ecological history . .252 nutrients . .305 7.2.4. Human history related to ecosystems . .252 7.4.2.2. Soil processes and controls over trace-gas exchanges . .311 7.2.5. Future change in the context of late-Quaternary changes . .253 7.4.2.3.Water and energy balance . .314 7.2.6. Summary . .254 7.4.2.4. Summary . .314 7.3. Species responses to changes in climate and ultraviolet-B 7.5. Effects of climate change on landscape and regional radiation in the Arctic . .254 processes and feedbacks to the climate system . .315 7.3.1. Implications of current species distributions for future biotic 7.5.1. Impacts of recent and current climate on carbon flux . .315 change . .255 7.5.1.1. Recent changes in carbon dioxide fluxes . .316 7.3.1.1. Plants . .255 7.5.1.2. Current circumpolar methane fluxes . .317 7.3.1.2.Animals . .259 7.5.1.3. Relative contributions of methane and carbon dioxide 7.3.1.3. Microorganisms . .260 to the carbon budget . .317 7.3.1.4. Summary . .262 7.5.2. Current circumpolar water and energy balances . .318 7.3.2. General characteristics of arctic species and their adaptations 7.5.3. Large-scale processes affecting future balances of carbon, in the context of changes in climate and ultraviolet-B radiation water, and energy . .319 levels . .263 7.5.3.1. Permafrost degradation . .319 7.3.2.1. Plants . .263 7.5.3.2. Changes in circumpolar vegetation zones . .319 7.3.2.2.Animals . .264 7.5.4. Projections of future balances of carbon, water, and energy 7.3.2.3. Microorganisms . .269 exchange . .321 7.3.3. Phenotypic responses of arctic species to changes in climate 7.5.4.1. Carbon balance . .322 and ultraviolet-B radiation . .271 7.5.4.2. Energy and water exchange . .324 7.3.3.1. Plants . .271 7.5.5. Summary . .324 7.3.3.2.Animals . .279 7.6. Synthesis: Scenarios of projected changes in the four ACIA 7.3.3.3. Microorganisms . .282 regions for 2020, 2050, and 2080 . .327 7.3.4. Genetic responses of species to changes in climate and 7.6.1. Environmental characteristics . .327 ultraviolet-B radiation levels . .284 7.6.2.Vegetation zones and carbon balance . .327 7.3.4.1. Plants . .284 7.6.3. Biodiversity . .328 7.3.4.2.Animals . .285 7.7. Uncertainties and recommendations . .329 7.3.4.3. Microorganisms . .286 7.7.1. Uncertainties . .329 7.3.4.4. Summary . .286 7.7.1.1. Uncertainties due to methodologies and conceptual 7.3.5. Recent and projected changes in species distributions and frameworks . .329 potential ranges . .287 7.7.1.2. Uncertainties due to surprises . .331 7.3.5.1. Recent changes . .287 7.7.1.3. Model-related uncertainties . .331 7.3.5.2. Projected future changes in species distributions . .287 7.7.2. Recommendations to reduce uncertainties . .332 7.3.5.3. Summary . .291 7.7.2.1.Thematic recommendations and justification . .332 7.7.2.2. Recommendations for future approaches to research and monitoring . .333 7.7.2.3. Funding requirements . .334 Acknowledgements . .335 Personal communications and unpublished data . .335 References . .335 244 Arctic Climate Impact Assessment Summary environmental, geographic, or political biases.This chapter focuses on biota (plants, animals, and micro- The dominant response of current arctic species to cli- organisms) and processes in the region north of the mate change, as in the past, is very likely to be relocation northern limit of the closed forest (the taiga), but also rather than adaptation. Relocation possibilities vary includes processes occurring south of this boundary that according to region and geographic barriers. Some affect arctic ecosystems. Examples include animals that changes are occurring now. migrate south for the winter and the regulation of the latitudinal treeline.The geographic area defined in this Some groups such as mosses, lichens, and some herbivores chapter as the present-day Arctic is the area used for and their predators are at risk in some areas, but produc- developing scenarios of future impacts: the geographic tivity and number of species is very likely to increase. area of interest will not decrease under a scenario of Biodiversity is more at risk in some ACIA regions than in replacement of current arctic tundra by boreal forests. others: Beringia (Region 3) has a higher number of threat- ened plant and animal species than any other ACIA region. 7.1.1. Characteristics of arctic tundra and polar desert ecosystems Changes in populations are triggered by trends and extreme events, particularly winter processes. The southern boundary of the circumpolar Arctic as defined in this chapter is the northern extent of the closed Forest is very likely to replace a significant proportion of boreal forests (section 14.2.3).This is not a clear bound- the tundra and this will have a great effect on the compo- ary but a transition from south to north consisting of the sition of species. However, there are environmental and sequence: closed forest, forest with patches of tundra, sociological processes that are very likely to prevent for- tundra with patches of forest, and tundra.The transition est from advancing in some locations. zone is relatively narrow (30 to 150 km) when compared to the width of the forest and tundra zones in many, but Displacement of tundra by forest will lead to a decrease in not all areas. Superimposed on the latitudinal zonation of albedo, which will increase the positive feedback to the forest and tundra is an altitudinal zonation from forest to climate system.This positive feedback is likely to dominate treeless areas to barren ground in some mountainous over the negative feedback of increased carbon sequestra- regions of the northern taiga.The transition zone from tion. Forest development is very likely to also ameliorate taiga to tundra stretches for more than 13400 km around local climate, for example, by increasing temperature. the lands of the Northern Hemisphere and is one of the most important environmental transition zones on Earth Warming and drying of tundra soils in parts of Alaska have (Callaghan et al., 2002a,b) as it represents a strong tem- already changed the carbon status of this area from sink to perature threshold close to an area of low temperatures. source.Although other areas still maintain their sink sta- The transition zone has been called forest tundra, sub- tus, the number of source areas currently exceeds the arctic, and the tundra–taiga boundary or ecotone. number of sink areas. However, geographic representation The vegetation of the transition zone is characterized by of research sites is currently small. Future warming of an open landscape with patches of trees that have a low tundra soils is likely to lead to a pulse of trace gases into stature and dense thickets of shrubs that, together with the atmosphere, particularly from disturbed areas and the trees, totally cover the ground surface. areas that are drying. It is not known if the circumpolar tundra will be a carbon source or sink in the long term, The environmental definition of the Arctic does not but current models suggest that the tundra is likely to correspond with the geographic zone delimited by the become a weak sink for carbon because of the northward Arctic Circle (66.5º N), nor with political definitions. movement of vegetation zones that are more productive Cold waters in ocean currents flowing southward from than those they displace. Uncertainties are high. the Arctic depress the temperatures in Greenland and the eastern Canadian Arctic whereas the northward-flowing Rapid climate change that exceeds the ability of species Gulf Stream warms the northern landmasses of Europe to relocate is very likely to lead to increased incidence of (section 2.3).Thus, at the extremes, polar bears and fires, disease, and pest outbreaks. tundra are found at 51º N in eastern Canada whereas agriculture is practiced north of 69º N in Norway. Enhanced carbon dioxide concentrations and ultraviolet-B Arctic lands span some 20º of latitude, reaching 84º N in radiation levels affect plant tissue chemistry and thereby Greenland and locally, in eastern Canada, an extreme have subtle but long-term impacts on ecosystem processes southern limit of 51º N.
Recommended publications
  • Spitsbergen in Depth
    SPITSBERGEN IN DEPTH Big Island, Big Adventure Contents 1 Overview 2 Itinerary 4 Arrival and Departure Details 6 Your Ship 8 Included Activities 9 Adventure Options 10 Dates & Rates 11 Inclusions & Exclusions 13 Your Expedition Team 13 Extend Your Trip 14 Meals on Board 15 Possible Excursions 18 Packing Checklist Overview Spitsbergen in Depth: Big Island, Big Adventure This 14-day journey offers the most extensive exploration of Spitsbergen in the Norwegian archipelago of Svalbard, including the opportunity to witness iconic Arctic wildlife like walrus, reindeer and polar bears, a glimpse into 16th-century EXPEDITION IN BRIEF maritime culture at secluded landing sites, and the rare chance to appreciate breathtaking views at the birdwatching utopias 14th of July Glacier and Alkefjellet. Encounter iconic Arctic wildlife, such as polar bears, walrus and reindeer If conditions allow, we will also attempt a full circumnavigation of the Arctic during this memorable voyage, including a visit to the remote, uninhabited Arctic desert View numerous Arctic bird species, like puffins, Arctic terns and purple of Nordaustlandet. sandpipers The wildlife-viewing opportunities on this trip will leave you with plenty of Take advantage of continuous daylight memories—and photos: the walrus with its long tusks and distinctive whiskers; Explore glaciers, fjords, icebergs and Arctic birds in the thousands—in all their varied majesty; small herds of reindeer more with included Zodiac cruising loping across the tundra; and that most iconic of Arctic creatures, the polar bear, Immerse yourself in the icy realm especially as it prowls the edges of the pack ice on the perpetual hunt for food.
    [Show full text]
  • Our Arctic Nation a U.S
    Connecting the United States to the Arctic OUR ARCTIC NATION A U.S. Arctic Council Chairmanship Initiative Cover Photo: Cover Photo: Hosting Arctic Council meetings during the U.S. Chairmanship gave the United States an opportunity to share the beauty of America’s Arctic state, Alaska—including this glacier ice cave near Juneau—with thousands of international visitors. Photo: David Lienemann, www. davidlienemann.com OUR ARCTIC NATION Connecting the United States to the Arctic A U.S. Arctic Council Chairmanship Initiative TABLE OF CONTENTS 01 Alabama . .2 14 Illinois . 32 02 Alaska . .4 15 Indiana . 34 03 Arizona. 10 16 Iowa . 36 04 Arkansas . 12 17 Kansas . 38 05 California. 14 18 Kentucky . 40 06 Colorado . 16 19 Louisiana. 42 07 Connecticut. 18 20 Maine . 44 08 Delaware . 20 21 Maryland. 46 09 District of Columbia . 22 22 Massachusetts . 48 10 Florida . 24 23 Michigan . 50 11 Georgia. 26 24 Minnesota . 52 12 Hawai‘i. 28 25 Mississippi . 54 Glacier Bay National Park, Alaska. Photo: iStock.com 13 Idaho . 30 26 Missouri . 56 27 Montana . 58 40 Rhode Island . 84 28 Nebraska . 60 41 South Carolina . 86 29 Nevada. 62 42 South Dakota . 88 30 New Hampshire . 64 43 Tennessee . 90 31 New Jersey . 66 44 Texas. 92 32 New Mexico . 68 45 Utah . 94 33 New York . 70 46 Vermont . 96 34 North Carolina . 72 47 Virginia . 98 35 North Dakota . 74 48 Washington. .100 36 Ohio . 76 49 West Virginia . .102 37 Oklahoma . 78 50 Wisconsin . .104 38 Oregon. 80 51 Wyoming. .106 39 Pennsylvania . 82 WHAT DOES IT MEAN TO BE AN ARCTIC NATION? oday, the Arctic region commands the world’s attention as never before.
    [Show full text]
  • Canada East Equipment Dealers' Association (CEEDA)
    Industry Update from Canada: Canada East Equipment Dealers' Association (CEEDA) Monday, 6 July 2020 In partnership with Welcome Michael Barton Regional Director, Canada Invest Northern Ireland – Americas For up to date information on Invest Northern Ireland in the Americas, follow us on LinkedIn & Twitter. Invest Northern Ireland – Americas @InvestNI_USA 2 Invest Northern Ireland – Americas: Export Continuity Support in the Face of COVID-19 Industry Interruption For the Canadian Agri-tech sector… Industry Updates Sessions with industry experts to provide Northern Ireland manufacturers with updates on the Americas markets to assist with export planning and preparation Today’s Update We are delighted to welcome Beverly Leavitt, President & CEO of the Canada East Equipment Dealers' Association (CEEDA). CEEDA represents Equipment Dealers in the Province of Ontario, and the Atlantic Provinces in the Canadian Maritimes. 3 Invest Northern Ireland – Americas: Export Continuity Support in the Face of COVID-19 Industry Interruption For the Canadian Agri-tech sector… Virtual Meet-the-Buyer programs designed to provide 1:1 support to connect Northern Ireland manufacturers with potential Canadian equipment dealers Ongoing dealer development in Eastern & Western Canada For new-to-market exporters, provide support, industry information and routes to market For existing exporters, market expansion and exploration of new Provinces 4 Invest Northern Ireland – Americas: Export Continuity Support in the Face of COVID-19 Industry Interruption For the Canadian
    [Show full text]
  • The Vegetation and Flora of Auyuittuq National Park Reserve, Baffin Island
    THE VEGETATION AND FLORA OF AUYUITTOQ NATIONAL PARK RESERVE, BAFFIN ISLAND ;JAMES E. HINES AND STEVE MOORE DEPARTMENT OF RENEWABLE RESOURCES GOVERNMENT OF THE NORTHWEST TERRITORIES YELLOWKNIFE I NORTHWEST TERRITORIES I XlA 2L9 1988 A project completed under contract to Environment Canada, Canadian Parks Service, Prairie and Northern Region, Winnipeg, Manitoba. 0 ~tona Renewable Resources File Report No. 74 Renewabl• R•sources ~ Government of tha N p .0. Box l 310 Ya\lowknif e, NT XlA 2L9 ii! ABSTRACT The purposes of this investigation were to describe the flora and major types of plant communities present in Auyuittuq National Park Reserve, Baffin Island, and to evaluate factors influencing the distribution of the local vegetation. Six major types of plant communities were recognized based on detailed descriptions of the physical environment, flora, and ground cover of shrubs, herbs, bryophytes, ·and lichens at 100 sites. Three highly interrelated variables (elevation, soil moisture, and texture of surficial deposits) seemed to be important in determining the distribution and abundance of plant communities. Continuous vegetation developed mainly at low elevations on mesic to wet, fine-textured deposits. Wet tundra, characterized by abundant cover of shrubs, grasses, sedges, and forbs, occurred most frequently on wet, fine-textured marine and fluvial sediments. Dwarf shrub-qram.inoid comm.unities were comprised of abundant shrubs, grasses, sedges and forbs and were found most frequently below elevations of 400 m on mesic till or colluvial deposits. Dwarf shrub comm.unities were characterized by abundant dwarf shrub and lichen cover. They developed at similar elevations and on similar types of surficial deposits as dwarf-shrub graminoid communities.
    [Show full text]
  • Canada GREENLAND 80°W
    DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-B Module 7 70°N 30°W 20°W 170°W 180° 70°N 160°W Canada GREENLAND 80°W 90°W 150°W 100°W (DENMARK) 120°W 140°W 110°W 60°W 130°W 70°W ARCTIC Essential Question OCEANDo Canada’s many regional differences strengthen or weaken the country? Alaska Baffin 160°W (UNITED STATES) Bay ic ct r le Y A c ir u C k o National capital n M R a 60°N Provincial capital . c k e Other cities n 150°W z 0 200 400 Miles i Iqaluit 60°N e 50°N R YUKON . 0 200 400 Kilometers Labrador Projection: Lambert Azimuthal TERRITORY NUNAVUT Equal-Area NORTHWEST Sea Whitehorse TERRITORIES Yellowknife NEWFOUNDLAND AND LABRADOR Hudson N A Bay ATLANTIC 140°W W E St. John’s OCEAN 40°W BRITISH H C 40°N COLUMBIA T QUEBEC HMH Middle School World Geography A MANITOBA 50°N ALBERTA K MS_SNLESE668737_059M_K.ai . S PRINCE EDWARD ISLAND R Edmonton A r Canada legend n N e a S chew E s kat Lake a as . Charlottetown r S R Winnipeg F Color Alts Vancouver Calgary ONTARIO Fredericton W S Island NOVA SCOTIA 50°WFirst proof: 3/20/17 Regina Halifax Vancouver Quebec . R 2nd proof: 4/6/17 e c Final: 4/12/17 Victoria Winnipeg Montreal n 130°W e NEW BRUNSWICK Lake r w Huron a Ottawa L PACIFIC . t S OCEAN Lake 60°W Superior Toronto Lake Lake Ontario UNITED STATES Lake Michigan Windsor 100°W Erie 90°W 40°N 80°W 70°W 120°W 110°W In this module, you will learn about Canada, our neighbor to the north, Explore ONLINE! including its history, diverse culture, and natural beauty and resources.
    [Show full text]
  • With Nansen in the North; a Record of the Fram Expedition in 1893-96
    with-nXT^sen Ulllii I Hi nil I li "'III"!!!!!!!! Lieut JOHANSi; i*ll III Hi!; :1 III I iiil |i;iii'i'iiiiiiii i; \Ki THE LIBRARY OF THE UNIVERSITY OF CALIFORNIA LOS ANGELES WITH NANSEN IN THE NORTH [LANCASTER. K lOHANSEN. {Frontis/iiece. WITH NANSEN IN THE NORTH A Record of the Fram Expedition in 1893-96 BY HJALMAR JOHANSEN lieutenant in the norwegian army Translated from the Norwegian BY H. L. BR.EKSTAD LONDON WARD, LOCK AND CO LIMITED NEW YORK AND MELBOURNE 1899 — ijr Contents CHAPTER I TAGE The Equipment of the Expedition— Its Start—The Voyage along the Coast—Farewell to Norway I CHAI'TER II The First Ice — Arrival at Khabarova—Meeting with Trontheim Arrival of the Dogs— Life among the Samoyedes— Christofersen Leaves us—Excursion on Yalmal—The last Human Beings we saw lo CHAPTER III A Heavy Sea—Sverdrup Island—A Reindeer Hunt—The First Bear —A Stiff Pull—Firing with Kerosene 20 CHAPTER IV Death among the Dogs — Taimur Island — Cape Butterless — The Northernmost Point of the Old World—A Walrus Hunt—To the North 28 CHAPTER V Open Water—Unwelcome Guests—Fast in the Ice—Warping—The Northern Lights 34 CHAPTER VI First Day of Rest— Surprised by Bears—The Dogs are let Loose- Ice Pressure—A Hunt in the Dark 4° CHAPTER VII More Bears—The Power of Baking Powder— "Johansen's Friend"— V Electric Light— Shooting Competition ...•• 5° V 1212604 vi COXTENTS CHAPTER VIII PAGE Foot-races on the Ice—More about the Dogs—The Northern Lights- Adulterated Beer—Ice Pressure—Peder Attacked by a Bear .
    [Show full text]
  • Sverdrup-Among-The-Tundra-People
    AMONG THE TUNDRA PEOPLE by HARALD U. SVERDRUP TRANSLATED BY MOLLY SVERDRUP 1939 Copyright @ 1978 by Regents of the University of California. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, elec- tronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the regents. Distributed by : Scripps Institution of Oceanography A-007 University of California, San Diego La Jolla, California 92093 Library of Congress # 78-60483 ISBN # 0-89626-004-6 ACKNOWLEDGMENTS We are indebted to Molly Sverdrup (Mrs. Leif J.) for this translation of Hos Tundra-Folket published by Gyldendal Norsk Forlag, Oslo, 1938. We are also indebted to the late Helen Raitt for recovering the manuscript from the archives of the Scripps Institution of Oceanography. The Norwegian Polar Institute loaned negatives from Sverdrup's travels among the Chukchi, for figures 1 through 4. Sverdrup's map of his route in the Chukchi country in 19 19/20 was copied from Hos Tundra-Folket. The map of the Chukchi National Okrug was prepared by Fred Crowe, based on the American Geographic Society's Map of the Arctic Region (1975). The map of Siberia was copied from Terence Armstrong's Russian Settlement in the North (1 965) with permission of the Cambridge University Press. Sam Hinton drew the picture of a reindeer on the cover. Martin W. Johnson identified individuals in some of the photographs. Marston C Sargent Elizabeth N. Shor Kittie C C Kuhns Editors The following individuals, most of whom were closely associated with Sverdrup, out of respect for him and wishing to assure preservation of this unusual account, met part of the cost of publication.
    [Show full text]
  • Taiga Plains
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta.
    [Show full text]
  • ARCTIC ECOLOGY Total Phosphorus, and Ions of Calcium, Increase in the Spatial Distribution of Lakes in Peril Chloride, Magnesium, and Sodium) Warmer Temperatures
    research highlights ARCTIC ECOLOGY total phosphorus, and ions of calcium, increase in the spatial distribution of Lakes in peril chloride, magnesium, and sodium) warmer temperatures. Glob. Change Biol. http://doi.org/xhk (2014) increased in shrinking lakes over the These findings highlight that extreme 25-year study period, but changed little in Northern Hemisphere anomalies are stable or expanding lakes. These changes the most variable on decadal timescales were most likely the result of shifts in the and could be used as indicators of global evaporation-to-inflow ratio and indicate temperature variability. BW that shrinking lakes may suffer from high- nutrient or saline conditions. AB ECONOMICS Climate-trade policy nexus TEMPERATURE TRENDS Appl. Econ. Persp. Pol. http://doi.org/xhg (2014) Warming hemispheres Geophys. Res. Lett. http://doi.org/xhh (2014) Surface temperature is typically reported as a global average when considering climate change. The use of a global average allows us to see the overall trend in temperature change, but results in the loss of important MINT IMAGES LIMITED / ALAMY MINT IMAGES spatial information. To investigate trends in warm and Reductions in lake area in some regions of cold temperature anomalies and their the Arctic and subarctic have occurred in spatial pattern, Scott Robeson of Indiana recent years. These changes raise concerns University, USA, and co-workers apply a about the fate of stored carbon and could spatial percentile approach to a gridded also have serious consequences for the temperature dataset on a monthly basis. health of the lake ecosystems themselves. Anomalies are calculated by comparison GEDULDIG / ALAMY BILDAGENTUR The mechanisms of lake reduction are with the 1961 to 1990 period and thought to relate primarily to increased analysis was performed individually on Climate change and international trade evaporation and decreased inflow, and lake both hemispheres.
    [Show full text]
  • Arctic Climate Impact Assessment
    PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge, CB2 2RU, UK AMAP Secretariat 40 West 20th Street, New York, NY 10011-4211, USA P.O. Box 8100 Dep. 10 Stamford Road, Oakleigh, VIC 3166, Australia N-0032 Oslo, Norway Ruiz de Alarcón 13, 28014 Madrid, Spain Tel: +47 23 24 16 30 Dock House, The Waterfront, Cape Town 8001, South Africa Fax: +47 22 67 67 06 http://www.amap.no http://www.cambridge.org First published 2004 CAFF International Printed in Canada Secretariat Hafnarstraeti 97 ISBN 0 521 61778 2 paperback 600 Akureyri, Iceland Tel: +354 461-3352 ©Arctic Climate Impact Assessment, 2004 Fax: +354 462-3390 http://www.caff.is Author Susan Joy Hassol IASC Secretariat Project Production and Graphic Design Middelthuns gate 29 Paul Grabhorn, Joshua Weybright, Clifford Grabhorn (Cartography) P.O. Box 5156 Majorstua N-0302 Oslo, Norway Photography Tel: +47 2295 9900 Bryan and Cherry Alexander, and others: credits on page 139 Fax: +47 2295 9901 Technical editing http://www.iasc.no Carolyn Symon Contributors Assessment Integration Team ACIA Secretariat Robert Corell, Chair American Meteorological Society, USA Gunter Weller, Executive Director Pål Prestrud, Vice Chair Centre for Climate Research in Oslo, Norway Patricia A. Anderson, Deputy Executive Director Gunter Weller University of Alaska Fairbanks, USA Barb Hameister, Sherry Lynch Patricia A. Anderson University of Alaska Fairbanks, USA International Arctic Research Center Snorri Baldursson Liaison for the Arctic Council, Iceland University of Alaska Fairbanks Elizabeth Bush Environment Canada, Canada Fairbanks, AK 99775-7740, USA Terry V.
    [Show full text]
  • ACIA Ch07 Final
    Chapter 7 Arctic Tundra and Polar Desert Ecosystems Lead Author Terry V.Callaghan Contributing Authors Lars Olof Björn, F. Stuart Chapin III,Yuri Chernov,Torben R. Christensen, Brian Huntley, Rolf Ims, Margareta Johansson, Dyanna Jolly Riedlinger, Sven Jonasson, Nadya Matveyeva,Walter Oechel, Nicolai Panikov, Gus Shaver Consulting Authors Josef Elster, Heikki Henttonen, Ingibjörg S. Jónsdóttir, Kari Laine, Sibyll Schaphoff, Stephen Sitch, Erja Taulavuori, Kari Taulavuori, Christoph Zöckler Contents Summary . .244 7.4. Effects of changes in climate and UV radiation levels on 7.1. Introduction . .244 structure and function of arctic ecosystems in the short 7.1.1. Characteristics of arctic tundra and polar desert ecosystems . .244 and long term . .292 7.1.2. Raison d’être for the chapter . .247 7.4.1. Ecosystem structure . .292 7.1.3. Rationale for the structure of the chapter . .248 7.4.1.1. Local and latitudinal variation . .292 7.1.4.Approaches used for the assessment: strengths, limitations, 7.4.1.2. Response to experimental manipulations . .295 and uncertainties . .248 7.4.1.3. Recent decadal changes within permanent plots . .298 7.2. Late-Quaternary changes in arctic terrestrial ecosystems, 7.4.1.4.Trophic interactions . .298 climate, and ultraviolet radiation levels . .249 7.4.1.5. Summary . .303 7.2.1. Environmental history ................................ .249 7.4.2. Ecosystem function . .305 7.2.2. History of arctic biota . .250 7.4.2.1. Biogeochemical cycling: dynamics of carbon and 7.2.3. Ecological history . .252 nutrients . .305 7.2.4. Human history related to ecosystems . .252 7.4.2.2. Soil processes and controls over trace-gas exchanges .
    [Show full text]
  • Modeling the Boundaries of Plant Ecotones of Mountain Ecosystems
    Article Modeling the Boundaries of Plant Ecotones of Mountain Ecosystems Yulia Ivanova 1,* and Vlad Soukhovolsky 2 1 Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Academgorodok 50-50, 600036 Krasnoyarsk, Russia 2 V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Academgorodok 50-28, 600036 Krasnoyarsk, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-391-249-4328; Fax: +7-391-243-3400 Academic Editors: Isabel Cañellas and Timothy A. Martin Received: 30 August 2016; Accepted: 5 November 2016; Published: 12 November 2016 Abstract: The ecological second-order phase transition model has been used to describe height-dependent changes in the species composition of mountain forest ecosystems. Forest inventory data on the distribution of various tree species in the Sayan Mountains (south Middle Siberia) are in good agreement with the model proposed in this study. The model was used to estimate critical heights for different altitudinal belts of vegetation, determine the boundaries and extents of ecotones between different vegetation belts, and reveal differences in the ecotone boundaries between the north- and south-facing transects. An additional model is proposed to describe ecotone boundary shifts caused by climate change. Keywords: ecotone; boundaries of ecotones; mountain forest ecosystems; biodiversity 1. Introduction Any plant community has its own species composition and spatial structure. Within the space occupied by the community, it may be regarded as uniform and characterized by spatially invariable parameters. The boundaries of a community are determined by the effects of external modifying factors (such as temperature) on the plants and competitive interactions between the species that are not characteristic of this community but are present in the neighboring one [1,2].
    [Show full text]