Shell Morphology and Genetic Characteristics of Corbula (Potamocorbula) Spp

Total Page:16

File Type:pdf, Size:1020Kb

Shell Morphology and Genetic Characteristics of Corbula (Potamocorbula) Spp Vol. 19: 297–305, 2013 AQUATIC BIOLOGY Published online November 11 doi: 10.3354/ab00539 Aquat Biol Shell morphology and genetic characteristics of Corbula (Potamocorbula) spp. (Bivalvia: Corbulidae) from the waters adjacent to Japan, Korea and San Francisco Bay Masato Owada1,*, Yoshitaro Kasai2, Shin’ichi Sato3, Jae-Sang Hong4 1Department of Biological Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan 2Department of Earth Sciences, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan 3The Tohoku University Museum, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan 4Department of Oceanography, Inha University, Incheon 402-751, South Korea ABSTRACT: Corbula (Potamocorbula) spp. are natively distributed in the waters adjacent to Japan and Korea. These populations are distinguished by 6 morphological characteristics. How- ever, they have high geographic variation, and it is quite difficult to distinguish among them. In the present study, we investigated the geographic distribution of the morphological and genetic characteristics of Corbula (Potamocorbula) spp. collected from the waters adjacent to Japan, Korea and San Francisco Bay, USA. Shell morphology was inferred through canonical discrimi- nant analysis (CDA) of 8 shell characteristics, and genetic characteristics were analysed using the DNA sequences of mitochondrial cytochrome c oxidase subunit 1 (CO1) and nuclear internal tran- scribed spacer 2 (ITS2) regions. The results of CDA showed that the samples from Ganghwa-do in western Korea could be clearly separated from those of all the other localities. The molecular phy- logenetic tree and haplotype network that were constructed from the CO1 and ITS2 regions, respectively, did not show clear groupings among the collected samples, except for 1 group com- posed of samples from Ganghwa-do. In addition, no differences in CO1 amino acid sequences could be found among any of the samples examined, including the Ganghwa-do samples. These facts suggest that Corbula (Potamocorbula) spp. distributed in the waters adjacent to Japan and Korea were separated into 2 groups. However, these 2 groups were genetically closely related, and it seems appropriate to treat them as 2 distinct species. The classification of the subgenus Potamocorbula should be re-examined at the species level. KEY WORDS: Mollusca · Bivalvia · Corbulidae · Potamocorbula · Phylogeography · Classification · Mitochondrial cytochrome c oxidase subunit 1 · Nuclear internal transcribed spacer 2 Resale or republication not permitted without written consent of the publisher INTRODUCTION East Asia (Carlton et al. 1990, Nichols et al. 1990). It is known that the waters adjacent to Japan and Populations of the Asian (overbite) clam, Corbula Korea in the Northwest Pacific are inhabited by at (Potamocorbula) amurensis Schrenck, 1861, in San least 4 species of the subgenus Potamocorbula Habe, Francisco Bay, USA, have markedly increased since 1955. These species are distinguishable from each 1986. They were introduced to the region through other by 6 morphological characteristics: shell size, ballast waters from a cargo ship that had stopped in shell outline, shell inflation, shell thickness, posterior *Email: [email protected] © Inter-Research 2013 · www.int-res.com 298 Aquat Biol 19: 297–305, 2013 margin and position of the umbo (Zhuang & Cai 1983, DNA. However, they did not simultaneously discuss Habe 1994, Horikoshi & Okamoto 1994, Tsuchida & the relationships between the morphological and Okamura 1997). However, Sato (2002, 2005) and Sato genetic characteristics. In the present study, we & Kanazawa (2004) reported that there were high investigated the geographic distribution of the mor- geographic variations in these morphological charac- phological and genetic characteristics of the popula- teristics, making it challenging to distinguish among tions from the waters adjacent to Japan, Korea and these species. San Francisco Bay through canonical discriminant Corbula (Potamocorbula) amurensis is regarded as analysis (CDA) of 8 shell characteristics and through an invasive species in San Francisco Bay and may the DNA sequences of mitochondrial cytochrome c have a significant impact on the estuarine ecosystem oxidase subunit 1 (CO1) and nuclear internal tran- of the bay (Carlton 1999, Coan 2002, Kimmerer 2002, scribed spacer 2 (ITS2) regions. Greene et al. 2011). In addition, fossil specimens of this species have been used as indicators of a cool cli- mate or brackish water during reconstructions of the MATERIALS AND METHODS paleoenvironments of the Late Pleistocene and Holocene in Japan (Matsushima 1984, Habe 1994). Sampling However, these may not be accurate until the rela- tionships between the geographic distribution and Corbula (Potamocorbula) spp. were collected from morphological characteristics of Corbula (Potamocor- 8 localities shown in Fig. 1: Rokkaku River Estuary, bula) spp. are fully understood at both population Saga Prefecture, Ariake Sea, western Japan (N = 25 and species levels. To clarify the relationships among individuals collected on 12 July 1998 and 23 Novem- members of Corbula (Potamocorbula) spp., it will be ber 2008); Dong River Estuary, Suncheon-si, south- necessary to investigate the morphological and ern Korea (N = 30, 20 August 2011); Mangyeong genetic characteristics of populations from various River Estuary, Gunsan-si, western Korea (N = 30, 3 localities. There have been several discussions of the May 2000 and 11 July 2008); Ganghwa-do, intertidal genetic characteristics of Corbula (Potamocorbula) muddy sand flat, western Korea (N = 30, 8 May 1998 spp. For example, Duda (1994) reported that C. (P.) and 18 August 2011); Maeho Lake, Yangyang-gun, amurensis from San Francisco Bay, California, shows eastern Korea (N = 30, 16 July 2008); Hinuma Lake, high genetic variation. Further, Smith et al. (2012) Ibaraki Prefecture, central Japan (N = 30, 31 May indicated that C. (P.) amurensis from San Francisco 1998 and 30 July 2011); Obuchi Swamp, Aomori Pre- Bay and the Ariake Sea, western Japan, can be iden- fecture, northern Japan (N = 46, 3 September 1998 tified using the same genetic marker, 18S ribosomal and 27 July 2009); and San Francisco Bay, California, 45° 45° N N USA Os Pacific Japan / East Ocean Sea Sf Seoul Ml Gd San Francisco South Japan Yellow Mr Hl Sea Korea 35° Tokyo 35° Dr Pacific Ocean Rr 200 km 200 km 130°E 140° 130°W 120° Fig. 1. Localities where the samples were collected. Rr: Rokkaku River Estuary (33°11’ N, 130°12’ E); Dr: Dong River Estuary (34° 51’ N, 127° 30’ E); Mr: Mangyeong River Estuary (35° 51’ N, 126° 40’ E); Gd: Ganghwa-do (37° 36’ N, 126° 22’ E); Ml: Maeho Lake (37° 56’ N, 128° 46’ E); Hl: Hinuma Lake (36° 16’ N, 140° 30’ E); Os: Obuchi Swamp (40° 57’ N, 141° 22’ E); Sf: San Francisco Bay (37° 27’ N, 122° 1’ W) Owada et al.: Morphological and genetic characteristics of Corbula (Potamocorbula) spp. 299 USA (N =30, 9 February 2000 and 9 November 2010). Polymerase chain reaction (PCR) In addition, C. (P.) fasciata and Solidicorbula ery- throdon, which were used as outgroups in the ana - CO1 and ITS2 regions were amplified using Pre- lysis of genetic variation, were collected from Bohol mix Taq (Takara) and a PCR Thermal Cycler PER- Island in the Philippines (9°44’ N, 123°53’ E) on 8 SONAL (Takara). The following primers were newly June 2007 and from Sagami Bay in Japan (35°17’ N, designed for the present study: 5′-TCW ACA AAT 139°20’ E) on 7 September 2011, respectively. The CAY AAA GAT ATT GG-3′ (forward) and 5′-ACY soft tissue of living animals was preserved in 100% TCM GGR TGM CCA AAA AAT CA-3′ (reverse) for ethanol, and DNA was extracted from the foot or the CO1 region, and 5′-ATT GCA GGA CAC ATT adductor muscle using the DNeasy Blood & Tissue GAA CAT CG-3′ (forward) and 5′-GTT ACT GAG Kit (Qiagen). The shell and soft tissue were num- GGA ATC CTT GTT A-3′ (reverse) for the ITS2 bered in each individual. All voucher samples were region. The conditions for PCR amplification were as deposited in the Tohoku University Museum (TUMC follows: denaturation at 94°C for 30 s, annealing at Nos. 111200 to 111207). 54°C for 30 s (CO1) and 55°C for 30 s (ITS2) and extension at 72°C for 60 s. These steps were repeated 30 times. The PCR products were purified using Morphological analysis ExoSAP-IT (USB), and cycle-sequencing reactions were performed using BigDye Terminator Version Eight shell characteristics (in mm): shell length 3.1 Cycle Sequencing Kit (ABI PRISM). The se - (L), shell breadth (B), shell height of left valve (HL), quences were compiled using a 3130 Genetic Ana- shell height of right valve (HR), thickness of shell lyzer (ABI PRISM) from both the 5′ and 3′ directions. margin (T), height of umbo (U), posterior shell These sequences were registered in the DNA Data length (PL) and upper shell height (UH) were meas- Bank of Japan (CO1: AB740093 to AB740137 and ured on each individual (Fig. 2). For measurement AB 827932 to AB827935, ITS2: AB740177 to AB740218 of L, HR, U, PL and UH, the outside of the right shell and AB827936 to AB827938). valve was photographed with a digital camera, and then each characteristic was measured using image analysis software, ImageJ ver. 1.45s. Further, L, B, Genetic analysis HL, HR and T were measured using a digital slide caliper (accuracy ± 0.01 mm). L and HR were meas- In the analysis of genetic variation in the CO1 re- ured using both methods, but there were no signifi- gion, the sequences of Varicorbula dissimilis (AF cant differences (p > 0.05) between them. Then, to 120669), Solidicorbula erythrodon (AB740137), and standardize the variability for size, all characteristics Corbula (Potamocorbula) fasciata (AB740136) were were log-transformed (using base 10 logs), and the included as outgroups. After alignment using Clustal 7 characteristics excluding L were divided by the W Version 1.8 (Thompson et al.
Recommended publications
  • Development of Single and Multispecies Detection Methods for the Surveillance and Monitoring of Marine Pests in New Zealand
    Aquatic Invasions (2012) Volume 7, Issue 1: 125–128 doi: 10.3391/ai.2012.7.1.013 (Open Access) © 2012 The Author(s). Journal compilation © 2012 REABIC Proceedings of the 17th International Conference on Aquatic Invasive Species (29 August–2 September 2010, San Diego, USA) Short Communication Development of single and multispecies detection methods for the surveillance and monitoring of marine pests in New Zealand Doug Mountfort, Kirsty F. Smith, Marek Kirs, Jeannie Kuhajek, Janet E. Adamson and Susanna A. Wood* Cawthron Institute, Private Bag 2, Nelson, New Zealand E-mail: [email protected] (DM), [email protected] (KFS), [email protected] (MK), [email protected] (JK), [email protected] (JEA), [email protected] (SAW) *Corresponding author Received: 20 December 2010 / Accepted: 6 August 2011 / Published online: 31 August 2011 Editor’s note: This special issue of Aquatic Invasions includes papers from the 17th International Conference on Aquatic Invasive Species held in San Diego, California, USA, on August 29 to September 2, 2010. This conference has provided a venue for the exchange of information on various aspects of aquatic invasive species since its inception in 1990. The conference continues to provide an opportunity for dialog between academia, industry and environmental regulators within North America and from abroad. Abstract New Zealand’s current surveillance programme for marine pests does not include methods for identification of organisms in the water column, therefore dispersive forms go undetected. Molecular methods provide an opportunity to detect dispersive forms thereby contributing to a more robust surveillance programme.
    [Show full text]
  • Marine Bivalve Molluscs
    Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Relative Foraging Value to Lesser Scaup Ducks of Native and Exotic Clams from San Francisco Bay Samantha E
    Southern Illinois University Carbondale OpenSIUC Publications Department of Zoology 8-2004 Relative Foraging Value to Lesser Scaup Ducks of Native and Exotic Clams from San Francisco Bay Samantha E. Richman James R. Lovvorn Southern Illinois University Carbondale Follow this and additional works at: http://opensiuc.lib.siu.edu/zool_pubs © 2004 by the Ecological Society of America Published in Ecology, Vol. 14, No. 4 (August 2004) at doi: 10.1890/03-5032 Recommended Citation Richman, Samantha E. and Lovvorn, James R. "Relative Foraging Value to Lesser Scaup Ducks of Native and Exotic Clams from San Francisco Bay." (Aug 2004). This Article is brought to you for free and open access by the Department of Zoology at OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Ecological Applications, 14(4), 2004, pp. 1217±1231 q 2004 by the Ecological Society of America RELATIVE FORAGING VALUE TO LESSER SCAUP DUCKS OF NATIVE AND EXOTIC CLAMS FROM SAN FRANCISCO BAY SAMANTHA E. RICHMAN AND JAMES R. LOVVORN1 Department of Zoology, University of Wyoming, Laramie, Wyoming 82071 USA Abstract. Invasions of exotic invertebrates have greatly altered many aquatic com- munities, but impacts on the foraging energetics of predators seldom have been assessed. In San Francisco Bay, California (USA), a major community change occurred with intro- duction of the Asian clam (Potamocorbula amurensis) in 1986. This species now greatly outnumbers the previous clam prey of a variety of sharks, rays, sturgeon, ¯at®sh, and crabs, as well as several diving duck species for which the bay is the most important wintering area on the U.S.
    [Show full text]
  • Corbula Amurensis
    Pest Risk Assessment for Asian Brackish Water Clams in Oregon IDENTITY Name: Corbula amurensis (formerly Potamocorbula amurenis) Taxonomic Position: phylum Molluska; class Bivalvia; order Myodia; family Cobiculidae Common Names: Amur River clam, Asian clam (not to be confused with Corbicula fluminea also known as the Asian clam), overbite clam, brackish-water Corbula RISK RATING SUMMARY Relative Risk Rating: HIGH Numerical Score: 6 (on a 1-9 scale) Uncertainty: HIGH* The high level of uncertainty attributed to this risk assessment is due to several factors. The format the risk assessment follows was originally developed for forest pest species and, as such, fails to taken into consideration characteristics of invasive species that may be unique to aquatic organisms, especially marine ones. Secondly, while Corbula amurensis is considered a species of considerable concern, it is only present in one location outside of its native range. There may be a unique confluence of events needed for a successful establishment of this species. Some suggestions indicate that a scouring event of the extensive mudflats in the north portion of San Francisco Bay opened up opportunity for colonization (Cohen 2005) while others suggest that large brackish water dominated estuaries (NEMESIS) may be a key requirement for establishment. This would seem to indicate that, perhaps, there are environmental factors necessary for successful inoculation/establishment that have not taken into consideration by this risk assessment. RECOMMENDATION Corbula amurensis has been listed by the Invasive Species Specialist Group of the World Conservation Union (IUCN) as one of the '100 Worst Invasive Species' in the world. Ballast water, with its ability to inoculate a water body with numerous larvae at a time represents the pathway of primary concern for introduction, followed by hull fouling.
    [Show full text]
  • Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
    Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B.
    [Show full text]
  • Spatial Variability in Recruitment of an Infaunal Bivalve
    Spatial Variability in Recruitment of an Infaunal Bivalve: Experimental Effects of Predator Exclusion on the Softshell Clam (Mya arenaria L.) along Three Tidal Estuaries in Southern Maine, USA Author(s): Brian F. Beal, Chad R. Coffin, Sara F. Randall, Clint A. Goodenow Jr., Kyle E. Pepperman, Bennett W. Ellis, Cody B. Jourdet and George C. Protopopescu Source: Journal of Shellfish Research, 37(1):1-27. Published By: National Shellfisheries Association https://doi.org/10.2983/035.037.0101 URL: http://www.bioone.org/doi/full/10.2983/035.037.0101 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 37, No. 1, 1–27, 2018. SPATIAL VARIABILITY IN RECRUITMENT OF AN INFAUNAL BIVALVE: EXPERIMENTAL EFFECTS OF PREDATOR EXCLUSION ON THE SOFTSHELL CLAM (MYA ARENARIA L.) ALONG THREE TIDAL ESTUARIES IN SOUTHERN MAINE, USA 1,2 3 2 3 BRIAN F.
    [Show full text]
  • Lentidium Dalyfluvialis Hallan & Willan, 2010
    Lentidium dalyfluvialis Hallan & Willan, 2010 Diagnostic features This species is easily recognised based on its brittle, very thinly valved (almost transparent) orange shell of up to 13 mm in length. Classification Lentidium dalyfluvialis (adult size 8-13 mm) Daly River, NT. Photo A. Hallan. Distribution of Lentidium dalyfluvialis. Lentidium burrows, Daly River. Photo A. Hallan. Lentidium dalyfluvialis Hallan & Willan, 2010 Class Bivalvia I nfraclass Heteroconchia Cohort Heterodonta Megaorder Neoheterodontei Order Myida Superfamily Myoidea Family Corbulidae Subfamily: Lentidiinae Genus Lentidium Cristofori & Jan, 1832 (Type species Lentidium maculatum Cristofori & Jan, 1832, = Lentidium mediterraneum Costa, 1830) (Synonyms Corbulomya Nyst, 1845; Dentina Megerle von Mühlfeld, 1841). Original name: Lentidium dalyfluvialis Hallan & Willan, 2010. Hallan, A. and Willan, R. C. (2010). Two new species of Lentidium (Myida: Corbulidae) from tropical northern Australia: remarkable fresh/fluviatile to brackish-water bivalves. Molluscan Research 30(3): 143-153. Type locality: Browns Creek, Daly River, Northern Territory. State of taxonomy We follow the taxonomy of Hallan and Willan (2010). However, this species probably belongs to a new genus as it is quite distinct from any other corbulid. Biology and ecology This species is a shallow burrower in sandy sediments overlain with a thin layer of mud, where it commonly lies at an angle with its siphons exposed in the water column. For the family, L. dalyfluvialis is rather active and can readily reposition itself in the sediment when disturbed. Commonly found in high densities of up to 1000 individuals/m2, in a narrow section of the upper estuarine, freshwater to slightly brackish parts of the Daly River, Northern Territory.
    [Show full text]
  • Fossil Flora and Fauna of Bosnia and Herzegovina D Ela
    FOSSIL FLORA AND FAUNA OF BOSNIA AND HERZEGOVINA D ELA Odjeljenje tehničkih nauka Knjiga 10/1 FOSILNA FLORA I FAUNA BOSNE I HERCEGOVINE Ivan Soklić DOI: 10.5644/D2019.89 MONOGRAPHS VOLUME LXXXIX Department of Technical Sciences Volume 10/1 FOSSIL FLORA AND FAUNA OF BOSNIA AND HERZEGOVINA Ivan Soklić Ivan Soklić – Fossil Flora and Fauna of Bosnia and Herzegovina Original title: Fosilna flora i fauna Bosne i Hercegovine, Sarajevo, Akademija nauka i umjetnosti Bosne i Hercegovine, 2001. Publisher Academy of Sciences and Arts of Bosnia and Herzegovina For the Publisher Academician Miloš Trifković Reviewers Dragoljub B. Đorđević Ivan Markešić Editor Enver Mandžić Translation Amra Gadžo Proofreading Amra Gadžo Correction Sabina Vejzagić DTP Zoran Buletić Print Dobra knjiga Sarajevo Circulation 200 Sarajevo 2019 CIP - Katalogizacija u publikaciji Nacionalna i univerzitetska biblioteka Bosne i Hercegovine, Sarajevo 57.07(497.6) SOKLIĆ, Ivan Fossil flora and fauna of Bosnia and Herzegovina / Ivan Soklić ; [translation Amra Gadžo]. - Sarajevo : Academy of Sciences and Arts of Bosnia and Herzegovina = Akademija nauka i umjetnosti Bosne i Hercegovine, 2019. - 861 str. : ilustr. ; 25 cm. - (Monographs / Academy of Sciences and Arts of Bosnia and Herzegovina ; vol. 89. Department of Technical Sciences ; vol. 10/1) Prijevod djela: Fosilna flora i fauna Bosne i Hercegovine. - Na spor. nasl. str.: Fosilna flora i fauna Bosne i Hercegovine. - Bibliografija: str. 711-740. - Registri. ISBN 9958-501-11-2 COBISS/BIH-ID 8839174 CONTENTS FOREWORD ...........................................................................................................
    [Show full text]
  • List of Bivalve Molluscs from British Columbia, Canada
    List of Bivalve Molluscs from British Columbia, Canada Compiled by Robert G. Forsyth Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria, BC V8W 9W2; [email protected] Rick M. Harbo Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria BC V8W 9W2; [email protected] Last revised: 11 October 2013 INTRODUCTION Classification rankings are constantly under debate and review. The higher classification utilized here follows Bieler et al. (2010). Another useful resource is the online World Register of Marine Species (WoRMS; Gofas 2013) where the traditional ranking of Pteriomorphia, Palaeoheterodonta and Heterodonta as subclasses is used. This list includes 237 bivalve species from marine and freshwater habitats of British Columbia, Canada. Marine species (206) are mostly derived from Coan et al. (2000) and Carlton (2007). Freshwater species (31) are from Clarke (1981). Common names of marine bivalves are from Coan et al. (2000), who adopted most names from Turgeon et al. (1998); common names of freshwater species are from Turgeon et al. (1998). Changes to names or additions to the fauna since these two publications are marked with footnotes. Marine groups are in black type, freshwater taxa are in blue. Introduced (non-indigenous) species are marked with an asterisk (*). Marine intertidal species (n=84) are noted with a dagger (†). Quayle (1960) published a BC Provincial Museum handbook, The Intertidal Bivalves of British Columbia. Harbo (1997; 2011) provided illustrations and descriptions of many of the bivalves found in British Columbia, including an identification guide for bivalve siphons and “shows”. Lamb & Hanby (2005) also illustrated many species.
    [Show full text]
  • Type, Figured and Cited Specimens in the Museum of Isle of Wight Geology (Isle of Wight, England)
    THE GEOLOGICAL CURATOR VOLUME 6, No.5 CONTENTS PAPERS TYPE, FIGURED AND CITED SPECIMENS IN THE MUSEUM OF ISLE OF WIGHT GEOLOGY (ISLE OF WIGHT, ENGLAND). by J.D. Radley ........................................ ....................................................................................................................... 187 THE WORTHEN COLLECTION OF PALAEOZOIC VERTEBRATES AT THE ILLINOIS STATE MUSEUM by R.L. Leary and S. Turner ......................... ........................................................................................................195 LOST AND FOUND ......................................................................................................................................................207 DOOK REVIEWS ........................................................................................ ................................................................. 209 GEOLOGICAL CURATORS' GROUP .21ST ANNUAL GENERAL MEETING .................................................213 GEOLOGICAL CURATORS' GROUP -April 1996 TYPE, FIGURED AND CITED SPECIMENS IN THE MUSEUM OF ISLE OF WIGHT GEOLOGY (ISLE OF WIGHT, ENGLAND) by Jonathan D. Radley Radley, J.D. 1996. Type. Figured and Cited Specimens in the Museum of Isle of Wight Geology (Isle of Wight, England). The Geological Curator 6(5): 187-193. Type, figured and cited specimens in the Museum of Isle of Wight Geology are listed, as aconseouence of arecent collection survev and subseauentdocumentation work. Strengths.. currently lie in Palaeogene gas tropods, and Lower
    [Show full text]
  • SCAMIT Newsletter Vol. 13 No. 5 1994 September
    Southern California Association of Marine Invertebrate Taxonomists 3720 Stephen White Drive San Pedro, California 90731 September, 1994 Vol. 13, No.5 NEXT MEETING: SCBPP Trawl Caught Invertebrates (Final) GUEST SPEAKER: None DATE: October 17, 1994 (third Monday of the month) TIME: 9:30am - 3:30pm LOCATION: SCCWRP 7171 Fenwick Lane Westminster OCTOBER 17 MEETING This will be the final meeting on SCBPP trawl caught invertebrates. Please bring any FID, voucher, or problem specimens from SCBPP trawl surveys for help with identification or just general discussion. Problems with trawl identifications need resolution so loading and analysis of trawl data can begin. Trawl voucher data will be examined to look for differences in usage between participating agencies. Bring along problem SCBPP infaunal organisms for &Lv discussion if time allows. (from Word et al. 1977) FUNDS FOR THIS PUBLICATION PROVIDED, IN PART, BY THE ARCO FOUNDATION, CHEVRON USA, AND TEXACO INC. SCAMIT Newsletter is not deemed to be a valid publication for formal taxonomic purposes. September, 1994 Vol. 13, No. 5 crab in San Diego, believed to be a second POLYDORID MEETING specimen of the rare Micropanope latimanus, prompted a letter from member Mary The second half of the Polydora-Boccardia Wicksten. She sent along a copy of Rathbun's complex meeting has been postponed until (1930) description of the taxon and November. This meeting will cover only commented "As far as a description goes, species of the genus Polydora, and will be 'What you see is what you get'. There never given by Larry Lovell at his home. Due to the has been an illustration of yM.
    [Show full text]
  • Mollusca: Corbulidae) from the Caribbean Neogene
    Palaeontologia Electronica http://palaeo-electronica.org ROLE OF CONSTRAINT AND SELECTION IN THE MORPHOLOGIC EVOLUTION OF CARYOCORBULA (MOLLUSCA: CORBULIDAE) FROM THE CARIBBEAN NEOGENE Laurie C. Anderson and Peter D. Roopnarine ABSTRACT We examined patterns of morphologic evolution in Caryocorbula, a common bivalve genus of the Caribbean Neogene, to evaluate the roles that constraint and selection play in its apparent morphologic conservatism. With multivariate analyses using landmark-based geometric morphometrics, we examined the relationship of valve size and outline shape within the Caryocorbula + (Bothrocorbula + Hexacorbula) clade, and within 21 morphospecies of Caryocorbula, all from Neogene deposits of the Caribbean region. We found that each genus is morphologically distinct both in shape and size, and that Caryocorbula shows strong interspecific allometry that persists despite species turnover and the vagaries of geographic and temporal sample cover- age. Persistence of this allometric trend indicates that constraints shape Caryocorbula morphology. Constraint mechanisms may relate to 1) space limitations in the inequiva- lved shells that characterize Corbulidae, and/or 2) the need for functional articulation of unequal valves through a complex shell accretion history. Alternatively, environmental conditions, particularly nutrient availability, may control the spatial and temporal distri- bution of large Caryocorbula, but constraint via pleiotropy could restrict the shape of these bivalves. Finally, although constraints appear to play an important role in the morphologic evolution of Neogene Caryocorbula, an adaptive relationship of size and shape to environment is not precluded, as illustrated for Caryocorbula species from the late Miocene-early Pliocene of the northern Dominican Republic. The morphology of these species falls along the interspecific allometric curve, but each is also characteris- tic of a particular paleoenvironmental setting, with valve size and shape tracking with inferred depth and physical energy gradients.
    [Show full text]