Precise Measurement of the Depolarization Ratio from Photoacoustic Raman Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Precise Measurement of the Depolarization Ratio from Photoacoustic Raman Spectroscopy JOURNAL OF RAMAN SPECTROSCOPY J. Raman Spectrosc. 2007; 38: 1206–1211 Published online 14 May 2007 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/jrs.1754 Precise measurement of the depolarization ratio from photoacoustic Raman spectroscopy Yuanqin Yu, Ke Lin, Xiaoguo Zhou, Hua Wang, Shilin Liu∗ and Xingxiao Ma Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China (USTC), Hefei, Anhui 230026, China Received 9 February 2007; Accepted 21 March 2007 A new method for the accurate determination of the Raman depolarization ratio is reported with an improved setup for photoacoustic Raman spectroscopy (PARS). The precise measurement is achieved by measuring the dependence of the acoustic signal intensity on the cross-angle between the polarizations of two incident laser beams. We demonstrate this sensitive and simple method with several gaseous molecules, such as CH4 and H2. The measured results of depolarization ratios agree well with the theoretical values with an upper error limit of ±0.005, which is comparable to that with polarization-resolved CARS spectroscopy. Copyright 2007 John Wiley & Sons, Ltd. KEYWORDS: depolarization ratio; precise measurement; PARS; counterpropagating laser beams; global fitting INTRODUCTION a large uncertainty, and consequently it is impossible to obtain the value with high precision. Second, unlike a The depolarization ratio is a fundamental physical plane wave with a well-defined direction of polarization, parameter in the studies of Raman spectroscopy and the scattered light collected with a lens in a finite solid molecular dynamics since it characterizes the symmetry of a angle is a spherical wave, and its polarization is relatively Raman-active vibrational mode of molecules in gaseous and complicated. Polarization measurements made in this way liquid phases and is helpful in the assignment of the Raman would bring some errors to the depolarization ratio and spectrum.1 The precise measurement of the depolarization need to be corrected.8 Third, the reflection efficiency of the ratio is also of great importance in the sense that it dispersing monochromator varies with the polarization of distinguishes different vibrational bands with close values, the scatted light, although this can be theoretically obviated and helps in the detection of small distortions of molecular using a polarization scrambler. structures in liquids and solutions caused by different Recently, Saito et al.12 reported a new method to mea- chemical environments in a quantitative manner.2–4 In recent sure the depolarization ratio, called polarization-resolved years, accurate determination of the depolarization ratio coherent anti-Stokes Raman scattering (CARS). With this has become essentially important in the spectroscopic and method, the depolarization ratio could be determined with dynamic studies of molecules at the vapor/liquid interface an unprecedented accuracy of š0.002. However, unlike in the using the sum frequency generation (SFG) technique.5–7 spontaneous Raman spectrum, a nonresonant background Traditionally, the depolarization ratio is obtained from usually exists in the CARS spectrum, since the third-order the conventional spontaneous Raman spectroscopy, and is nonlinear susceptibility tensor 3 consists of a resonant part, measured as the ratio of scattered light intensities I? to I , // and a nonresonant part which varies slowly with the Raman D I? I//,whereI? and I// are intensities of the scattered shift. In CARS spectroscopy, the depolarization ratio at the light with polarizations perpendicular and parallel to the Raman resonant position is defined as12–14 polarization plane of the incident laser beam, respectively. However, the precision of the depolarization ratio measured R R D 2112/1111 1 in this way is generally low.1,8–11 First, in the case of R R measuring small , the intensity I? is quite weak compared where 2112 and 1111 are the resonant parts of the third-order 3 3 to the intensity I//, and the measurement of I? usually has nonlinear susceptibility tensor elements of 2112 and 1111, respectively. Saito et al.12 deduced that the depolarization ŁCorrespondence to: Shilin Liu, Hefei National Laboratory for ratio in polarization-controlled CARS spectroscopy could be Physical Sciences at Microscale, Department of Chemical Physics, obtained from University of Science and Technology of China (USTC), Hefei, Anhui 230026, China. E-mail: [email protected] D tan R/ tan Â2 Copyright 2007 John Wiley & Sons, Ltd. Measurement of depolarization ratio from photoacoustic Raman spectroscopy 1207 where  is the cross-angle between polarizations of the PARS has been widely applied to gaseous trace component two incident laser beams, i.e. the pump laser and the analysis and molecular dynamic processes.19–23 Stokes laser, and R is the cross-angle between polarizations The basic theory of PARS has already been described of the pump beam and the resonant part of the CARS elsewhere.20,21 Here, only a brief description of PARS signal. For a certain Raman band and a prefixed angle Â, is introduced, and the relation of PARS intensity with the angle R was measured with a polarization analyzer, polarization cross-angle of the two laser beams will be shown. and the depolarization ratio could be determined from For parallely polarized pump and Stokes laser beams (both Eqn (2). The key step of this method is to eliminate the linearly polarized plane waves), the PARS signal intensity interference from the nonresonant background in the CARS can be expressed as spectrum. By simulating the CARS spectra at different angles of the polarization analyzer, the dependence of the I / NL//IPIS 3 Raman resonance signal intensity on the analyzer angle was obtained, and the angle R corresponding to the analyzer where N is the molecular number density, IP and IS are the angle at which the Raman resonance signal vanished was intensities of pump and Stokes laser beams, respectively, precisely determined. The accuracy of the depolarization // is the Raman cross section for parallel polarization of ratio thus measured was much higher than that with the two laser beams and L is the effective interaction length spontaneous Raman spectroscopy. Depolarization ratios of between sample and two laser beams. Similarly, when the several molecules have been precisely measured with this polarizations of two laser beams are orthogonal to each other, method.12,15 the PARS signal intensity can be written as In this paper, we introduce another nonlinear spectro- scopic method to measure the depolarization ratio, called I / NL?IPIS 4 polarized photoacoustic Raman spectroscopy (PARS). The accuracy with this method is comparable to that with the where ? is the Raman cross section for orthogonal polarization-resolved CARS spectroscopy. In addition, the polarization of the two laser beams. operation procedure of this method is simple and straight- Since the intrinsic property of stimulated Raman scatter- forward, and the spectral sensitivity is relatively high. ing is the same as that of spontaneous Raman scattering, the ratio between cross-sections ? and // is also the depolar- ization ratio, i.e. D ?///. When the polarizations of two DEPOLARIZATION RATIO FROM POLARIZED laser beams cross with a certain angle Â, the contributions of PARS parallel and orthogonal polarization configurations give the In PARS spectroscopy, the photoacoustic signal originates total PARS signal intensity, from a stimulated Raman scattering process by the pump and Stokes laser beams. When the frequency difference I / NL//IP,//IS C ?IP,?IS between the two spatially overlapped laser beams is in 2 2 D NL//IPIS cos  C ?IPIS sin  5 resonance with a Raman-active vibrational transition, a stim- ulated Raman scattering process occurs, and the molecules It can also be written in an alternative form, are populated from the ground vibrational level to an excited 2 2 vibrational level. The molecular population at this excited I / NL//IPIScos  C sin  6 level will be reduced by the subsequent collision-induced vibrational relaxation. Consequently, the translational tem- where the relation D ?/// isused.Itisevidentthat perature is increased in the local interaction area, and an the PARS signal intensity is periodically dependent on the excess pressure wave is generated and then detected by a cross-angle  between the polarizations of two laser beams. sensitive microphone or a piezoelectric transducer as the By measuring the I– curve, the depolarization ratio can photoacoustic signal. The PARS spectrum is obtained by be obtained from a global fitting with Eqn (6). As will be monitoring the photoacoustic signal intensity with the vari- seen in the following section, the depolarization ratio can be ation of the frequency difference between the pump and measured precisely with this method. Stokes laser beams. The sensitivity of the PARS technique is greatly increased in contrast to the direct measurement IMPROVED EXPERIMENTAL SETUP OF PARS of spontaneous Raman scattering photons. This technique was invented originally by Barrett and Berry to measure the The experimental setup is shown schematically in Fig. 1, Raman spectrum of gaseous methane.16 Almost simultane- which is similar to that described previously,24 but a ously, Patel and Tam developed and successfully applied few modifications were made for the purpose of the this method to experiments in liquid and solid phases using depolarization ratio measurement. The second-harmonic a piezoelectric transducer as the acoustic detector instead of output from a pulsed Nd : YAG laser (Spectra Physics, Pro- a microphone used in the gaseous phase.17,18 From then on, 190-10, 532.1nm, linewidth 1.0cm1, pulse width 10 ns) is Copyright 2007 John Wiley & Sons, Ltd. J. Raman Spectrosc. 2007; 38: 1206–1211 DOI: 10.1002/jrs 1208 Y. Yu et al. Figure 2. A typical global fitting of the I– curve with Eqn (6) to determine the depolarization ratio. The example here is obtained at the Q-branch of the 1 band of CH4.The theoretical depolarization ratio is 0, and the experimentally determined value is 0.002 within an error of š0.002.
Recommended publications
  • Polarization- and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures
    nanomaterials Review Polarization- and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures Martin Šubr * and Marek Procházka * ID Faculty of Mathematics and Physics, Institute of Physics, Charles University, 121 16 Prague 2, Czech Republic * Correspondence: [email protected] (M.S.); [email protected] (M.P.); Tel.: +420-221-911-463 (M.S.); +420-221-911-474 (M.P.) Received: 10 May 2018; Accepted: 7 June 2018; Published: 9 June 2018 Abstract: A sometimes overlooked degree of freedom in the design of many spectroscopic (mainly Raman) experiments involve the choice of experimental geometry and polarization arrangement used. Although these aspects usually play a rather minor role, their neglect may result in a misinterpretation of the experimental results. It is well known that polarization- and/or angular- resolved spectroscopic experiments allow one to classify the symmetry of the vibrations involved or the molecular orientation with respect to a smooth surface. However, very low detection limits in surface-enhancing spectroscopic techniques are often accompanied by a complete or partial loss of this detailed information. In this review, we will try to elucidate the extent to which this approach can be generalized for molecules adsorbed on plasmonic nanostructures. We will provide a detailed summary of the state-of-the-art experimental findings for a range of plasmonic platforms used in the last ~15 years. Possible implications on the design of plasmon-based molecular sensors for maximum signal enhancement will also be discussed. Keywords: SERS; Raman; plasmonics; metallic nanostructures; polarization and angular dependences; molecular orientation; ellipsometry 1. Introduction Methods of optical spectroscopy, such as absorption spectroscopy, Raman scattering spectroscopy or fluorescence spectroscopy, can be performed in a wide range of experimental setups relying on a proper choice of instrumentation, light sources, waveguides, monochromators, detectors etc.
    [Show full text]
  • Raman Spectra of Methane, Ethylene, Ethane, Dimethyl Ether, Formaldehyde and Propane for Combustion Applications
    Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications Item Type Article Authors Magnotti, G.; KC, Utsav; Varghese, P.L.; Barlow, R.S. Citation Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications 2015 Journal of Quantitative Spectroscopy and Radiative Transfer Eprint version Post-print DOI 10.1016/j.jqsrt.2015.04.018 Publisher Elsevier BV Journal Journal of Quantitative Spectroscopy and Radiative Transfer Rights NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Quantitative Spectroscopy and Radiative Transfer. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Quantitative Spectroscopy and Radiative Transfer, 8 May 2015. DOI: 10.1016/ j.jqsrt.2015.04.018 Download date 04/10/2021 05:45:56 Link to Item http://hdl.handle.net/10754/552799 Author's Accepted Manuscript Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications G. Magnotti, U. KC, P.L. Varghese, R.S. Barlow www.elsevier.com/locate/jqsrt PII: S0022-4073(15)00169-7 DOI: http://dx.doi.org/10.1016/j.jqsrt.2015.04.018 Reference: JQSRT4982 To appear in: Journal of Quantitative Spectroscopy & Radiative Transfer Received date: 21 January 2015 Revised date: 27 April 2015 Accepted date: 28 April 2015 Cite this article as: G.
    [Show full text]
  • Quantitative Analysis of Light Scattering in Polarization-Resolved Nonlinear Microscopy Hilton B
    Quantitative analysis of light scattering in polarization-resolved nonlinear microscopy Hilton B. de Aguiar, Paulina Gasecka, Sophie Brasselet To cite this version: Hilton B. de Aguiar, Paulina Gasecka, Sophie Brasselet. Quantitative analysis of light scattering in polarization-resolved nonlinear microscopy. Optics Express, Optical Society of America - OSA Publishing, 2015, 23, pp.8960-8973. 10.1364/OE.23.008960. hal-01216129 HAL Id: hal-01216129 https://hal-amu.archives-ouvertes.fr/hal-01216129 Submitted on 15 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Quantitative analysis of light scattering in polarization-resolved nonlinear microscopy Hilton B. de Aguiar,1,∗ Paulina Gasecka1 and Sophie Brasselet1,2 1Aix-Marseille Universite,´ CNRS, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France [email protected][email protected] Abstract: Polarization resolved nonlinear microscopy (PRNM) is a powerful technique to gain microscopic structural information in biological media. However, deep imaging in a variety of biological specimens is hindered by light scattering phenomena, which not only degrades the image quality but also affects the polarization state purity. In order to quantify this phenomenon and give a framework for polarization resolved microscopy in thick scattering tissues, we develop a characterization methodology based on four wave mixing (FWM) process.
    [Show full text]
  • An Empirical Approach to the Bond Additivity Model in Quantitative
    An Empirical Approach to the Bond Additivity Model in Quantitative Interpretation of Sum Frequency Generation Vibrational Spectra Hui Wua†, Wen-kai Zhangb†, Wei Ganb, Zhi-feng Cuia, and Hong-fei Wanga,b∗ a. Department of Physics, Anhui Normal University, Wuhu, Anhui Province, China 241000; b. State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, the Chinese Academy of Sciences, Beijing, China, 100080 (Dated: October 29, 2018) Knowledge of the ratios between different polarizability βi′j′k′ tensor elements of a chemical group in a molecule is crucial for quantitative interpretation and polarization analysis of its SFG- VS spectrum at interfaces. The bond additivity model or the hyperpolarizability derivative model along with experimentally obtained Raman depolarization ratios has been widely used to obtain such tensor ratios for the CH3, CH2, and CH groups. Successfully, such treatment can quantitatively reproduce the intensity polarization dependence in SFG-VS spectra for the symmetric (ss) and asymmetric (as) stretching modes of CH3 and CH2 groups, respectively. However, the relative intensity between the ss and as modes usually does not agree with each other within this model even for some of the simplest molecular systems, such as the air/methanol interface. This fact certainly has cast uncertainties on the effectiveness and conclusions based on the bond additivity model. One of such examples is that the as mode of CH3 group has never been observed in SFG- VS spectra from the air/methanol interface, while this as mode is usually very strong for SFG-VS spectra from the air/ethanol, other short chain alcohol, as well as long chain surfactants, interfaces.
    [Show full text]
  • Article Depolar- Back-Trajectory Analysis Was Performed for the Air Mass Over Ization Ratio at 532 Nm for This Session
    Atmos. Meas. Tech., 12, 119–128, 2019 https://doi.org/10.5194/amt-12-119-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Profiling of CH4 background mixing ratio in the lower troposphere with Raman lidar: a feasibility experiment Igor Veselovskii1, Philippe Goloub2, Qiaoyun Hu2, Thierry Podvin2, David N. Whiteman3, Mikhael Korenskiy1, and Eduardo Landulfo4 1Physics Instrumentation Center of General Physics Institute, Troitsk, Moscow, Russia 2Laboratoire d’Optique Atmosphérie, Université de Lille-CNRS, Villeneuve-d’Ascq, France 3NASA Goddard Space Flight Center, Greenbelt, USA 4Instituto de Pesquisas Energeticas e Nucleares, São Paulo, Brazil Correspondence: Igor Veselovskii ([email protected]) Received: 3 September 2018 – Discussion started: 20 September 2018 Revised: 7 December 2018 – Accepted: 12 December 2018 – Published: 7 January 2019 Abstract. We present the results of methane profiling in 1 Introduction the lower troposphere using LILAS Raman lidar from the Lille University observatory platform (France). The lidar is Raman spectroscopy is a powerful technique for identifica- based on a frequency-tripled Nd:YAG laser, and nighttime tion of different gases in the atmosphere and for the estima- profiling up to 4000 with 100 m height resolution is possi- tion of their concentration (Weber, 1979), which can be used ble for methane. Agreement between the measured photon- in conjunction with lidar technology (Inaba and Kobayasi, counting rate in the CH4 Raman channel in the free tropo- 1972). An example of such synergy is the Raman lidar for sphere and numerical simulations for a typical CH4 back- water vapor monitoring (Whiteman et al., 1992).
    [Show full text]
  • Raman Optical Activity: a Novel Version of Chiroptical Spectroscopy
    CORE Metadata, citation and similar papers at core.ac.uk Provided by IACS Institutional Repository Indian J. Phys. 82(8) 987-1001(2008) Iw Raman optical activity: a novel version of chiroptical spectroscopy Moitrayee Mukherjee, Anamika Mukhopadhyay and Tapas Chakraborty* Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India E-mail : [email protected] Abstract : We present here an introductory review of Raman optical activity (ROA), a newly developed version of Raman spectroscopy suitable for predicting the absolute configuration of chiral molecules. The phenomenon involves minute differential scattering of the left and right circularly polarized lights from the chiral molecules, compared to the parent Raman scattering the ROA process is weaker by nearly three to five orders of magnitude. An operational theory of the phenomenon is presented with working equations. The connection between the experimentally observed quantities and the molecular parameters of interests is established. A brief description of the layout of the apparatus currently used for ROA measurements is presented along with a concise review of selected studies highlighting the possibilities of potential applications of this new version of chiroptical spectroscopy in the analysis of structural features of chiral molecules. Keywords : Raman scattering, molecular vibrations, optical activity, circular dichroism, chiral molecules, absolute configurations PACSNo. : 33.20.Fb 1. Introduction Polarization is an intrinsic attribute of Raman scattered light {1]. In early days of the discovery, the so called inelastically scattered Stokes shifted 'feeble fluorescence' noticed by Sir C V Raman and co-workers when dry and pur* glycerine was irradiated by ultraviolet light appeared to be strongly polarized [2].
    [Show full text]
  • Raman Depolarization Ratio of Liquids Probed by Linear Polarization Coherent Anti-Stokes Raman Spectroscopy F
    Research Article Received: 10 October 2008 Accepted: 9 February 2009 Published online in Wiley Interscience: (www.interscience.wiley.com) DOI 10.1002/jrs.2289 Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy F. Munhoz, S. Brustlein, D. Gachet†, F. Billard‡, S. Brasselet and H. Rigneault∗ We present a simple analytical model to describe the linear polarization coherent anti-Stokes Raman scattering (CARS) spectroscopy. In this scheme, the pump and Stokes beams can have arbitrary linear polarization states and the CARS emitted signal is analyzed along two perpendicular directions. We concentrate on isotropic media without electronic resonances and show that only two polarization CARS measurements performed at the peak and the dip of a CARS spectrum are sufficient to deduce the Raman depolarization ratio, the resonant versus nonresonant contribution, the Raman resonance frequency and the linewidth. We demonstrate the applicability of our scheme to toluene and cyclohexane solutions. Copyright c 2009 John Wiley & Sons, Ltd. Keywords: CARS; polarization; spectroscopy; microscopy Introduction Although we are interested in CARS micro-spectroscopy, we present here a simple approach where we neglect the spatial Among nonlinear optical processes, the specificity of the coherent confinement of the pump and Stokes focused beams. This crude anti-Stokes Raman scattering (CARS) is its coherent and resonant approximation leads to a complete analytic description of the [1] nature. The interaction of the incident fields with the sample spectral polarized CARS signal, including the ratio between the induces a third-order nonlinear polarization, whose properties resonant and nonresonant contributions. Careful inspection of depend on the vector nature and frequencies of the incident the outcomes shows that performing only two measurements electromagnetic fields, as well as the structure of the medium.
    [Show full text]
  • Managing Light Polarization Via Plasmon–Molecule Interactions Within an Asymmetric Metal Nanoparticle Trimer
    Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer Timur Shegai*†, Zhipeng Li†‡, Tali Dadosh§, Zhenyu Zhang¶ʈ, Hongxing Xu‡**††, and Gilad Haran*†† *Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel; ‡Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China; §Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel; ¶Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; ʈDepartment of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200; and **Division of Solid State Physics, Lund University, Box 118, S-22100 Lund, Sweden Communicated by E. Ward Plummer, The University of Tennessee, Knoxville, TN, August 26, 2008 (received for review May 10, 2008) The interaction of light with metal nanoparticles leads to novel a scanning tip was used to flip the fluorescence polarization of phenomena mediated by surface plasmon excitations. In this article single molecules between two directions, in-plane or out-of- we use single molecules to characterize the interaction of surface plane. plasmons with light, and show that such interaction can strongly Here, we employ Raman-scattered light from individual mol- modulate the polarization of the emitted light. The simplest ecules to probe the response of asymmetric nanoparticle aggre- nanostructures that enable such polarization modulation are asym- gates over a range of wavelengths, and to show that these metric silver nanocrystal trimers, where individual Raman scatter- aggregates can dramatically modulate the polarization of the ing molecules are located in the gap between two of the nano- emitted light.
    [Show full text]
  • On the SERS Depolarization Ratio
    Nanospectroscopy 2015; 1: 26–32 Research Article Open Access Antonino Foti, Cristiano D’Andrea, Elena Messina, Alessia Irrera, Onofrio M. Maragò, Barbara Fazio, Pietro G. Gucciardi* On the SERS depolarization ratio Abstract: The Raman depolarization ratio is a quantity According to the E4 model,[18-24] in SERS the that can be easily measured experimentally and offers nanoantenna plays a twofold role: firstly it amplifies the unique information on the Raman polarizability tensor local field (excitation-field enhancement) confining it to of molecular vibrations. In Surface Enhanced Raman nanoscale regions (hot spots), and secondly it magnifies Scattering (SERS), molecules are near-field coupled with the Raman scattering (re-radiation enhancement). optical nanoantennas and their scattering properties Molecules lying in the hot spots (located at the edges of are strongly affected by the radiation patterns of the individual nanoantennas or in the nanocavities between nanoantenna. The polarization of the SERS photons is near-field coupled NPs[15,25-29]) experience an amplified consequently modified, affecting, in a non trivial way, the local field and an enhanced re-radiation whenever both measured value of the SERS depolarization ratio. In this the wavelengths of the laser pump (λL) and of the induced article we elaborate a model that describes how the SERS Raman dipole (λR) are close to the LSPR wavelength (λLSPR) depolarization ratio is influenced by the nanoantenna [24]. It is well known that the enhanced local field is re-radiation properties, suggesting how to retrieve polarization sensitive. The only component of the incident information on the Raman polarizability from SERS field yielding the local field amplification is the one experiments.
    [Show full text]
  • Surface Enhanced Raman Scattering Polarization and Angular
    www.nature.com/scientificreports OPEN Anisotropic Optical Response of Silver Nanorod Arrays: Surface Enhanced Raman Scattering Received: 28 December 2016 Accepted: 17 May 2017 Polarization and Angular Published: xx xx xxxx Dependences Confronted with Ellipsometric Parameters Martin Šubr1, Martin Petr2, Ondřej Kylián2, Josef Štěpánek1, Martin Veis1 & Marek Procházka1 Silver nanorod arrays prepared by oblique angle deposition (AgOADs) represent versatile, simple and inexpensive substrates for high sensitivity surface enhanced Raman scattering (SERS) applications. Their anisotropic nature suggests that their optical responses such as the SERS signal, the depolarization ratio, reflectivity and ellipsometric parameters critically depend on the states of polarization, nanorod angular arrangement and specific illumination-observation geometry. SERS polarization and angular dependences of AgOADs were measured using methylene blue (MB) molecule. Our study constitutes, to our knowledge, the most detailed investigation of such characteristics of plasmonic nanostructures to date. This is due to the 90°-scattering geometry used in which two out of three Euler angles determining the nanorod spatial orientation and four polarization combinations can be varied simultaneously. We attributed the anisotropic optical response to anisotropic (pseudo) refractive index caused by different periodicity of our structures in different directions since the plasmonic properties were found rather isotropic. For the first time we demonstrate very good correspondence
    [Show full text]
  • Surface Enhanced Raman Scattering Enhancement Factors: a Comprehensive Study
    13794 J. Phys. Chem. C 2007, 111, 13794-13803 Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study E. C. Le Ru,* E. Blackie, M. Meyer, and P. G. Etchegoin† The MacDiarmid Institute for AdVanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria UniVersity of Wellington, PO Box 600, Wellington 6140, New Zealand ReceiVed: December 21, 2006; In Final Form: July 17, 2007 This paper presents an in-depth study of Surface Enhanced Raman Scattering (SERS) enhancement factors (EFs) and cross-sections, including several issues often overlooked. In particular, various possible rigorous definitions of the SERS EFs are introduced and discussed in the context of SERS applications, such as analytical chemistry and single molecule SERS. These definitions highlight the importance of a careful characterization of the non-SERS cross-sections of the probes under consideration. This aspect is illustrated by experimental results for the non-SERS cross-sections of representative SERS probes along with average SERS EFs for the same probes. In addition, the accurate experimental determination of single molecule enhancement factors is tackled with two recently developed techniques, namely: bi-analyte SERS (BiASERS) and temperature- dependent SERS vibrational pumping. We demonstrate that SERS EFs as low as 107, as opposed to the figure of 1014 often claimed in the literature, are sufficient for the observation of single molecule SERS signals, with maximum single molecule EFs typically on the order of ∼1010. I. Introduction electromagnetic (EM) enhancements are believed to contribute, at most, to a factor ∼1010, an additional chemical enhancement A. Historical Background. The “magnitude’’ of the en- must be invoked to “bridge the gap”.
    [Show full text]
  • Arxiv:1611.06252V2 [Physics.Chem-Ph] 2 Mar 2017 [5]
    Compact and versatile laser system for polarization-sensitive stimulated Raman spectroscopy Hugo Kerdoncuff,1, ∗ Mark R. Pollard,1 Philip G. Westergaard,1, 2 Jan C. Petersen,1 and Mikael Lassen1 1Danish Fundamental Metrology, Matematiktorvet 307, DK-2800 Kgs. Lyngby, Denmark 2Current address: OFS Fitel Denmark ApS, Priorparken 680, DK-2605 Brøndby, Denmark We demonstrate a compact and versatile laser system for stimulated Raman spectroscopy (SRS). The system is based on a tunable continuous wave (CW) probe laser combined with a home-built semi-monolithic nanosecond pulsed pump Nd:YVO4 laser at 1064 nm. The CW operation of the probe laser offers narrow linewidth, low noise and the advantage that temporal synchronization with the pump is not required. The laser system enables polarization-sensitive stimulated Raman spectroscopy (PS-SRS) with fast high resolution measurement of the depolarization ratio by simul- taneous detection of Raman scattered light in orthogonal polarizations, thus providing information about the symmetry of the Raman-active vibrational modes. Measurements of the depolarization ratios of the carbon-hydrogen (CH) stretching modes in two different polymer samples in the spec- tral range of 2825{3025 cm−1 were performed. Raman spectra are obtained at a sweep rate of 20 nm/s (84 cm−1/s) with a resolution of 0.65 cm−1. A normalization method is introduced for the direct comparison of the simultaneously acquired orthogonal polarized Raman spectra. I. INTRODUCTION nant background arising from nonresonant contributions to the nonlinear optical response, which alters the Ra- There is a growing demand for novel compact laser sys- man spectra. This background is absent from SRS sig- tems for vibrational spectroscopy and microscopy tools, nals, thus SRS provides an advantage over CARS.
    [Show full text]