Radiation Dose Determination Using Mosfet and Rpl Dosimeters in X-Ray Imaging
Total Page:16
File Type:pdf, Size:1020Kb
D 1514 OULU 2019 D 1514 UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATIS OULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTA DMEDICA Antti Kotiaho Antti Kotiaho University Lecturer Tuomo Glumoff RADIATION DOSE University Lecturer Santeri Palviainen DETERMINATION USING Senior research fellow Jari Juuti MOSFET AND RPL DOSIMETERS IN X-RAY Professor Olli Vuolteenaho IMAGING University Lecturer Veli-Matti Ulvinen Planning Director Pertti Tikkanen Professor Jari Juga University Lecturer Anu Soikkeli Professor Olli Vuolteenaho UNIVERSITY OF OULU GRADUATE SCHOOL; UNIVERSITY OF OULU, FACULTY OF MEDICINE; MEDICAL RESEARCH CENTER OULU; Publications Editor Kirsti Nurkkala OULU UNIVERSITY HOSPITAL ISBN 978-952-62-2264-6 (Paperback) ISBN 978-952-62-2265-3 (PDF) ISSN 0355-3221 (Print) ISSN 1796-2234 (Online) ACTA UNIVERSITATIS OULUENSIS D Medica 1514 ANTTI KOTIAHO RADIATION DOSE DETERMINATION USING MOSFET AND RPL DOSIMETERS IN X-RAY IMAGING Academic dissertation to be presented with the assent of the Doctoral Training Committee of Health and Biosciences of the University of Oulu for public defence in Auditorium 7 of Oulu University Hospital, on 24 May 2019, at 12 noon UNIVERSITY OF OULU, OULU 2019 Copyright © 2019 Acta Univ. Oul. D 1514, 2019 Supervised by Professor Miika Nieminen Docent Juha Nikkinen Reviewed by Docent Mika Kortesniemi Docent Jari Heikkinen Opponent Docent Paula Toroi ISBN 978-952-62-2264-6 (Paperback) ISBN 978-952-62-2265-3 (PDF) ISSN 0355-3221 (Printed) ISSN 1796-2234 (Online) Cover Design Raimo Ahonen JUVENES PRINT TAMPERE 2019 Kotiaho, Antti, Radiation dose determination using MOSFET and RPL dosimeters in x-ray imaging. University of Oulu Graduate School; University of Oulu, Faculty of Medicine; Medical Research Center Oulu; Oulu University Hospital Acta Univ. Oul. D 1514, 2019 University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland Abstract Medical x-ray imaging is used to visualise patients’ anatomical structures and in some cases their physiology. X-rays are ionizing radiation, thus their use needs to be optimised, as stochastic effects are assumed to increase linearly with the exposure dose. Imaging protocols need to be optimised to a radiation dose level that follows the as low as reasonably achievable principle without compromising the diagnostic value of the image. Different methods can be used to help in the optimisation process, such as simulations, radiation dose and image quality assessments with dosimeters and phantoms and utilising the latest technology in the most efficient way. The purpose of this doctoral thesis was to investigate the applicability of metal-oxide- semiconductor-field-effect-transistor (MOSFET) dosimeters for dose determinations in conventional x-ray and computed tomography (CT) examinations. Additionally, dose optimising methods were investigated in dental panoramic imaging using radiophotoluminescence (RPL) dosimeters. Anthropomorphic phantoms were used in every study to simulate patients, as their structures enable dosimeters to be positioned at locations that correspond to different organs. The MOSFET’s properties for dose determinations were evaluated against the reference dosimeter in a conventional x-ray set-up. Comparisons of absorbed and effective doses in thorax x-ray imaging were made between RPLs, MOSEFTs and Monte Carlo simulations. The effect of the organ-based tube current modulation and bismuth shields were compared against the reference imaging method in a chest CT with one scanner model. Absorbed doses and quantitative image quality were evaluated using each method. Possible dose reduction from segmented dental panoramic tomography (sDPT) imaging was compared against full DPT. Dose measurements were done using RPL dosimeters in pediatric and adult set-up using phantoms. MOSFETs are accurate enough to be used in conventional x-ray and CT, but they require a careful calibration before use as their reproducibility is limited with low doses. Bismuth shields provided the best dose reduction, but with a negative impact on quantitative image quality, especially when metal artefact removal software was used. The final study showed that the use of sDPT programmes and pediatric protocols enable a notably dose reduction compared to the full DPT adult protocol. Keywords: computed tomography, dental panoramic imaging, optimisation, radiation dose, x-ray Kotiaho, Antti, Säteilyannoksen määritys röntgenkuvantamisessa käyttäen MOSFET- ja RPL-dosimetreja. Oulun yliopiston tutkijakoulu; Oulun yliopisto, Lääketieteellinen tiedekunta; Medical Research Center Oulu; Oulun yliopistollinen sairaala Acta Univ. Oul. D 1514, 2019 Oulun yliopisto, PL 8000, 90014 Oulun yliopisto Tiivistelmä Lääketieteellisessä kuvantamisessa käytetään röntgensäteilyä potilaan anatomian ja joissain tapauksissa fysiologian visualisointiin. Röntgensäteily on ionisoivaa ja stokastisten vaikutusten kasvaessa oletettavasti lineaarisesti säteilyn funktiona, tulee säteilyn olla kokonaisvaltaisesti optimoitua. Kuvauksissa käytetyn röntgensäteilyn käytön tulee noudattaa ALARA-periaatetta, minkä vuoksi kuvauksessa tulee käyttää niin vähän säteilyä kuin vain mahdollista, diagnostiikan vaarantumatta. Optimoinnin apuna voidaan käyttää esim. simulointeja, annos- ja kuvanlaatu- määrityksiä dosimetreilla ja fantomeilla, tai laitevalmistajien tuomia uusia teknologioita. Tämän väitöskirjan tarkoituksena oli tutkia metallioksidi-puolijohdekanavatransistorien (MOSFET) soveltuvuutta natiiviröntgentutkimuksissa ja tietokonetomografiassa (TT). Lisäksi työssä tutkittiin hammaskuvauksissa käytettyjä annossäästömenetelmiä radiofotoluminesenssi- dosimetreilla (RPL). Potilasvasteena työssä käytettiin antropomorfisia fantomeita, minkä ansios- ta säteilyannoksia voidaan mitata eri elimiä vastaavilta kohdilta. MOSFET annosmittarin ominaisuuksia arvioitiin natiiviröntgenasetelmassa referenssimitta- riin nähden. Absorboituneiden ja efektiivisten annosten eroa MOSFET:tien, RPL:ien ja simu- lointien kesken tutkittiin keuhkoröntgentutkimuksessa. Pintakudoksia säästävän putkivirranmo- dulointimenetelmän ja vismuttisuojien vaikuttavuutta verrattiin TT:ssä referenssimetelmää vas- ten. Vaikuttavuutta arvioitiin absorboituneiden annosten ja kvantitatiivisen kuvanlaadun avulla. Segmentoidun hammaspanoraamakuvauksen (sDPT) annossäästömahdollisuuksia verrattiin tavalliseen panoraamakuvaukseen. Annosmääritykset tehtiin käyttäen RPL dosimetreja lapsi- ja aikuisfantomeissa. MOSFET dosimetreja voidaan käyttää annosmäärityksiin natiiviröntgenkuvauksissa ja TT:ssä, mutta niiden kalibrointi ja toistettavuus matalilla annoksilla aiheuttaa kuitenkin rajoituk- sia niiden käytölle. Vismuttisuojat tuottivat parhaan annossäästön, huonontaen kuitenkin kuvan- laatua. Kuvanlaadun huonontuminen oli erityisen huomattavaa, kun metallista aiheutuvien kuva- virheiden poistamiseen suunniteltua ohjelmaa käytettiin. Viimeinen tutkimus osoitti, että sDPT ohjelmat ja lapsille suunnatut protokollat mahdollistavat huomattavan annossäästön verrattuna aikuisten kokopanoraamaan. Asiasanat: optimointi, panoraamakuvaus, röntgen, säteilyannos, tietokonetomografia At my age, the radiation will probably do me good. Sir Norman Wisdom To my loved ones 8 Acknowledgements This study was carried in the Department of Diagnostic Radiology, Oulu University Hospital and the University of Oulu during the years of 2012-2019. I owe my gratitude to my principal supervisor Professor Miika Nieminen, Ph.D., for his guidance and advices throughout this project and for giving me an opportunity to do my thesis alongside with my medical physicist residency. I’m most grateful to my second supervisor Docent Juha Nikkinen, Ph.D., who guided me to the field of Computed Tomography and has given me advices beyond count. I want to express my most sincere thanks to my colleague and co-author Ph.D.Anna-Leena Manninen for her teachings in dosimetry and giving me counsel whenever needed. I’m deeply grateful to my co-author DDS., Ph.D., Annina Sipola for her ideas, assistance and enthusiasm in our study. I wish to thank the official pre-examiners Docent Mika Kortesniemi, Ph.D., and Docent Jari Heikkinen, Ph.D., for their constructive criticism, numerous comments and suggestions to improve the quality of the thesis. I would like to thank Docent Eveliina Lammentausta, Ph.D., the chairperson of my follow-up group for her guidance during these years. I’d like to thank my colleagues/co-authors Matti Hanni, Ph.D., Arttu Peuna, M.Sc., Sakari Karhula, Ph.D., Marianne Haapea, Ph.D., Soili Kallio-Pulkkinen, DDS., Ph.D., and Essi Happo, DDS., for their efforts and guidance in these years during these studies. Finally, I want to express my deepest gratitude to my family. My better half Suvi, brother Henri, sister-in-law Päivi and my parents Tuula and Harri for their endless support, patience and love. Oulu, April 2019 Antti Kotiaho 9 10 Abbreviations ALARA As low as reasonably achievable AP Anterior-posterior CF Calibration factor CTDI Computed tomography dose index CV Coefficient of variation DAP Dose area product DICOM Digital Imaging and Communication in Medicine DLP Dose-length product DPT Dental panoramic tomography E Effective dose ESD Entrance surface dose FDD Focus-to-detector distance FOV Field of view FSD Focus-to-skin distance HU Hounsfield unit ICRP International Commission of Radiation Protection KERMA Kinetic energy released per unit mass LAT Lateral MOSFET Metal oxide semiconductor field effect transistor OBTCM Organ-based tube current modulation OEM Organ effective modulations,