Advanced Fuels with Reduced Actinide Generation. Proceedings of A

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Fuels with Reduced Actinide Generation. Proceedings of A An jv 7 XA9743134 IAEA-TECDOC-916 Advanced fuels with reduced actinide generation Proceedings of a Technical Committee meeting held in Vienna, 21-23 November 1995 INTERNATIONAL ATOMIC ENERGY AGENCY November 1996 The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from INIS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A 1400 Vienna, Austria Orders should be accompanied by prepayment of Austrian Schillings 100, in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria ADVANCED FUELS WITH REDUCED ACTINIDE GENERATION IAEA, VIENNA, 1996 IAEA-TECDOC-916 ISSN 1011-4289 © IAEA, 1996 Printed by the IAEA in Austria November 1996 FOREWORD Nuclear energy can play an important future role in supplying the world population with energy. However, this form of energy will be successful only under certain conditions: it must meet very strict safety requirements, it must be economically competitive, and it must be acceptable to the public. Nuclear power produces radioactive wastes and in several countries the public raises concern about safety. Much development work on advanced nuclear power systems is going on in several countries, with participation of both governmental and private industries to meet these conditions. Advanced nuclear power systems are currently under development with the potential to make a significant contribution to meeting the energy needs of the world in an environmentally acceptable manner. These systems are being developed to meet the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Technological solutions to radioactive waste management and disposal are under intensive investigation in several countries. Because of the high cost of development of advanced nuclear power systems, especially the innovative concepts, Member States may find it attractive to co-operate internationally in technology development. The IAEA's programme in nuclear power technology development encourages international co-operation through technical information exchange and co-operative research. In the framework of this IAEA activity the Technical Committee Meeting on Advanced Fuels with Reduced Actinide Generation was organized. The aim of the meeting was to highlight current research activities and to identify new research areas and fields of possible co-operation. The scope of the meeting included advanced fuels for all types of nuclear reactors: light water reactors, heavy water reactors, high temperature reactors, fast reactors, molten salt reactors and for accelerator driven systems. Other topics covered a wide range of investigations made, or to be made in the Member States. The IAEA wishes to thank all those who participated in meeting. Special thanks are due to the session chairmen. The officers of the IAEA responsible for the preparation of this publication are V. Arkhipov and A. Grigoriev of the Division of Nuclear Power and the Fuel Cycle. EDITORIAL NOTE In preparing this publication for press, staff of the IAEA have made up the pages from the original manuscripts as submitted by the authors. The views expressed do not necessarily reflea those of the governments of the nominating Member States or of the nominating organizations. Throughout the text names of Member States are retained as they were when the text was compiled. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as tothe legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. CONTENTS SUMMARY ............................................................................................................................................... 7 PAPERS PRESENTED Emerging applications of advanced fuels for energy generation and transmutation. Overview of IAEA activities ....................................................................................................... 21 Pong Eil Juhn, V. A rkhipov Status of the nuclear fuel cycle in IAEA Member States ........................................................ 25 A. Grigoriev Criteria for achieving actinide reduction goals ............................................................................. 31 J.-O. Liljenzin The feasibility of MA transmutation in CEFR.............................................................................. 39 Zhang Yushan, Yi Xiaoyi, Su Lixin Liquid fuel concept benefits ................................................................................................................ 43 M. Hron Long term potential risk due to thorium mining ......................................................................... 55 J. P. Schapira, S. Menard Use of plutonium in pebble bed HTRs in a two ball type concept ....................................... 65 M. Khorochev, E. Teuchert Reduction requirements for actinides with special regard to the isolation time at final disposal ................................................................................................................................. 71 P.-W. Phlippen Build-up of plutonium isotopes in HTR fuel elements; Comparison between computed prediction and chemical analysis ........................................................................... 83 H. Wenter MOX fuels for reduced actinide generation ................................................................................. 105 K. Anantharaman, P.D. Krishnani, H.D. Purandare, D.S.C. Purushotham Thorium fuel-cycle development through plutonium incineration by THORIMS-NES (thorium molten-salt nuclear energy synergetics) ................................................................ 115 K. Furukawa, K. Mitachi, A. Lecocq, A. Furuhashi, S.E. Chigrinov A study for optimal transmutation system ....................................................................................129 W.S. Park, T.Y. Song, H.S. Shin, C.K. Park A partitioning-free transmutation concept of nuclear waste reduction ...............................137 •S’. Taczanowski Some results on development, irradiation and post-irradiation examinations of fuels for fast reactor-actinide burner (MOX and inert matrix fuel)...............................151 V. Poplavsky, L. Zabudko, L. Moseev, B. Rogozkin, I. Kurina A strategy for Pu destruction in PWRs ......................................................................................... 159 J. Magill, P. Peerani, H. Matzke, J. Van Geel PAPERS SUBMITTED BUT NOT PRESENTED Studies on HTGR Th-U fuel cycle at the Institute of Nuclear Energy Technology, Tsinghua University ........................................................................................................................ 171 Zhu Y ongjin Neutronic analysis of a U-Th fuel cycle, lead cooled accelerator-driven system ........... 179 P.A. Landeyro, M. Guidotti LIST OF PARTICIPANTS 185 SUMMARY 1. INTRODUCTION The Technical Committee Meeting on Advanced Fuels with Reduced Actinide Generation was held in Vienna, from 21 to 23 November 1995 and was attended by 31 representatives and observers from three international organizations (the European Commission, CERN and the IAEA) and 14 Member States (China, Czech Republic, France, Germany, India, Italy, Japan, Republic of Korea, the Netherlands, Poland, the Russian Federation, Sweden, Ukraine and the United Kingdom). Sixteen papers were presented in seven sessions, followed by a panel discussion. The objective of the meeting was to exchange information on the feasibility and reliability of advanced fuels and related operation modes, aiming at a significant reduction in the generation of actinides in general and of plutonium, especially. The world is faced with an increasing population, an increasing demand for power but with diminishing resources of traditional fossil fuels and increasingly stringent controls on release of C02 and pollutants into the atmosphere. Against this background, there is a need for the increasing deployment of other energy sources. Renewables will clearly play a part but they are not able to meet the full demand. Considerable technology development and demonstration is required before fusion energy can achieve commercialization and the reducing level of funding by many countries is moving the prospects for its eventual use further into the future. Nuclear power will have to play an important role to meet the demand under environmentally benign conditions. However, a major concern is the public perception of nuclear safety and in the longterm the storage of nuclear waste. There is a further concern about the increasing production and stockpiling of plutonium which presents an ever present threat of diversion into weapons making. Ways in which both the waste problem and
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • The Stability of Lead Isotopes from Thorium
    MAY 24, I9I7] NATURE ---------------------------------------------------------245 but I Prof. Stefan lYle:yer may be I .have pointed out the unsuitability of makmg some exammatwn of the radiations of the thonum mmerals for age determination or correlation material, and the results he obtains will therefore be and this is particularly so i.n the case of minerals of very great value in deciding this point. the Palreozoic igneous rocks of Langesundfjord, Nor­ FREDERICK SoDDY. way. Mr. Lawson and myself based our former con­ Aberdeen, May 14. that lead could not be the end product of thonum largely on analyses of these minerals. How­ . PRO.F. SoDDY. having given me the privilege of read­ e:ver, I have recalculated the ratiQs on the assump­ mg h1s letter m advance, I should like to take the twn that thonum has one-seventh the lead-producing opportunity of directing attention to the geological age power of uranium, and it is satisfactory to find that :>f the thorium minerals of Ceylon, and to a few further when thorium is less than five times a·s abundant statistics bearing on the suggestion that only 35 per uranium, the ratios agree as closely on th'ts calculation cent. of thorium produces a stable isotope of lead. as do the simple lead-ratios. When thorium is more than five times as abundant as uranium neither set I a!ll to my friend, Mr. E. J. Wayland, late of ratios gives any approach to agreement although of Ceylon, for the follow­ mg prov1s1onal classdicat10n (in order of age) of the the minerals from anv one locality agree am'ong them­ older rocks of the island :- selves.
    [Show full text]
  • Stillwellite-(Ce) (Ce, La, Ca)Bsio
    Stillwellite-(Ce) (Ce; La; Ca)BSiO5 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Hexagonal. Point Group: 3: As °at rhombohedral crystals, to 4 cm, and massive. Twinning: Observed about [100]. Physical Properties: Cleavage: One imperfect. Fracture: Conchoidal. Hardness = 6.5 D(meas.) = 4.57{4.60 D(calc.) = 4.67 » Optical Properties: Transparent to translucent. Color: Red-brown to pale pink; colorless in thin section. Streak: White. Optical Class: Uniaxial (+) to biaxial (+). ! = 1.765{1.784 ² = 1.780{1.787 2V(meas.) = 0±{6± Cell Data: Space Group: P 31: a = 6.841{6.844 c = 6.700{6.702 Z = 3 X-ray Powder Pattern: Mary Kathleen mine, Australia. 3.43 (s), 2.96 (s), 2.13 (ms), 4.44 (m), 1.864 (m), 2.71 (mw), 2.24 (mw) Chemistry: (1) (2) (1) (2) (1) (2) SiO2 22.40 22.06 La2O3 27.95 19.12 MgO 0.06 UO2 0.22 Ce2O3 33.15 30.82 CaO 0.95 0.34 ThO2 5.41 Pr2O3 1.82 F 0.30 + B2O3 12.23 [13.46] Nd2O3 5.36 H2O 0.85 Al2O3 0.42 Sm2O3 0.34 H2O¡ 0.10 Y2O3 0.74 0.28 Fe2O3 0.18 P2O5 0.67 Total [100.00] [99.26] (1) Mary Kathleen mine, Australia; recalculated to 100.00% after removal of very small amounts of uraninite and apatite determined by separate analysis. (2) Vico volcano, near Vetralla, Italy; by electron microprobe, B2O3 calculated from stoichiometry, original total given as 99.23%; corresponds to (Ce0:50La0:31Nd0:08Th0:05Pr0:03Ca0:02Sm0:01)§=1:00B1:02Si0:97O5: Occurrence: Locally abundant as a metasomatic replacement of metamorphosed calcareous sediments (Mary Kathleen mine, Australia); in alkalic pegmatites in syenite in an alkalic massif (Dara-i-Pioz massif, Tajikistan).
    [Show full text]
  • Crystallographic Study of Uranium-Thorium Bearing Minerals in Tranomaro, South-East Madagascar
    Journal of Minerals and Materials Characterization and Engineering, 2013, 1, 347-352 Published Online November 2013 (http://www.scirp.org/journal/jmmce) http://dx.doi.org/10.4236/jmmce.2013.16053 Crystallographic Study of Uranium-Thorium Bearing Minerals in Tranomaro, South-East Madagascar Frank Elliot Sahoa1, Naivo Rabesiranana1*, Raoelina Andriambololona1, Nicolas Finck2, Christian Marquardt2, Hörst Geckeis2 1Institut National des Sciences et Techniques Nucléaires (Madagascar-INSTN), Antananarivo, Madagascar 2Institute of Nuclear Waste and Disposal (INE), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Email: *[email protected] Received September 20, 2013; revised October 21, 2013; accepted November 5, 2013 Copyright © 2013 Frank Elliot Sahoa et al. This is an open access article distributed under the Creative Commons Attribution Li- cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Studies are undertaken to characterize the uranium and thorium minerals of south-east Madagascar. Seven selected uranothorianite bearing pyroxenites samples from old abandoned uranium quarries in Tranomaro, south Amboasary, Madagascar (46˚28'00"E, 24˚36'00"S) have been collected. To determine the mineral micro-structure, they were inves- tigated for qualitative identification of crystalline compounds by using X-ray powder diffraction analytical method (XRD). Results showed that the uranium and thorium compounds, as minor elements, were present in various crystal- line structures. Thorium, as thorianite, is present in a simple ThO2 cubic crystalline system, whereas the uranium com- ponent of the Tranomaro uranothorianite samples is oxide-based and is a mixture of complex oxidation states and crys- talline systems. Generally called uraninite, its oxide compounds are present in more than eight phases.
    [Show full text]
  • A Brief Overview Including Uses, Worldwide Resources, and Known Occurrences in Alaska
    A brief overview including uses, worldwide resources, and known occurrences in Alaska Information Circular 61 David J. Szumigala and Melanie B. Werdon STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys (DGGS) 3354 College Road, Fairbanks, AK 99709-3707 www.dggs.alaska.gov COVER PHOTO CAPTIONS: TOP: Sheeted REE-bearing veins, Dotson Trend, Bokan Mountain property, Alaska. Photo from http://www.ucoreraremetals.com/docs/SME_2010_Keyser.pdf BOTTOM: Rare-earth-element-bearing quartz vein exposed in granite, Bokan Mountain, Alaska. Photo from http://www.ucoreraremetals.com/docs/SME_2010_Keyser.pdf RARE-EARTH ELEMENTS: A brief overview including uses, worldwide resources, and known occurrences in Alaska David J. Szumigala and Melanie B. Werdon GGS Minerals Program The Alaska Division of Geological & Geophysical Surveys (DGGS), part of the Department of Natural Resources, is charged by statute with determining the potential of Alaska’s land for production of metals, minerals, fuels, and geothermal resources; the locations and supplies of groundwater and construction Dmaterial; and the potential geologic hazards to buildings, roads, bridges, and other installations and structures. The Mineral Resources Section at DGGS collects, analyzes, and provides information on the geological and geophysical framework of Alaska as it pertains to the state’s mineral resources. The results of these studies include reports and maps, which are used by scientists for various associated studies, by mining company geologists as a basis for their more focused exploration programs, and by state and federal agency personnel in resource and land-use management decisions. This paper provides a brief overview of rare-earth elements, their uses, and current worldwide sources of their production.
    [Show full text]
  • Uranothorite from Eastern Ontario1
    URANOTHORITEFROM EASTERN ONTARIO1 S. C. ROBINSON2 eno SYDNEY ABBEYB Geol,og'ical, Survey of Canadn, Ottawa ABSTRACT Uranothorite is found in manydeposits of the Grenville sub-province in Ontario and Quebec, and in some mines.is an important ore mineral of uranium. Its occurrence, habit, and physical properties are reviewed. Analyses for eleven specimens of uran- othorite are presented and variations in analysesand physical properties are discussed. For chemical analysis, silica was separated by perchloric dehydration and lead by sulphide and sulphate precipitation. Uranium was determined by a cupferron-oxine method, thorium and rare eartfrs via oxalate and "thorin", iron with o-phenanthroline, and calcium by oxalate precipitation. Water was determined by a modified Penfield metJrod, carbon dioxide by acid evolution and total carbon by combustion, each on a separate sample. Panr I: OccunnBxcE AND DBscnrprroN (S.C.R.) Intrad,uction Uranoth5rite was first identified and analysed in Canada by H. V. Ellsworth (L927)4 in specimens from the MacDonald feldspar mine, near Hybla, Ontario. Since that time, it has been identified in many other deposits of the Grenville sub-province of the Canadian Shield, both in eastern Ontario and in southwestern Quebec. In the past four years uranothorite has emerged as a minor ore mineral of uranium in mines of the Bancroft-Wilberforce camp where uraninite is the principal source of uranium. Few additional data on uranothorite in Canada have been published since Ellsworth's original paper. In the course of a field project on the mineralogy of uranium deposits in the Bancroft-Wilberforce region by one of us (S.C.R.), it became obvious that although uranothorite is an important contributor of uranium in ores of some mines, knowledge of its occurrence and com- position was inadequate.
    [Show full text]
  • Thorianite Tho2 C 2001-2005 Mineral Data Publishing, Version 1
    Thorianite ThO2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. Typically as more or less rough cubes, rarely modified by {111} and {113}, to 9 cm; as rounded grains. Twinning: Common on {111}, interpenetrant. Physical Properties: Cleavage: {001}, poor. Fracture: Uneven to subconchoidal. Tenacity: Brittle. Hardness = 6.5–7, unaltered. VHN = 1132–1278, 1180 average (100 g load). D(meas.) = 9.7–9.8 D(calc.) = 9.991 Radioactive; diamagnetic. Optical Properties: Opaque, transparent in very thin fragments. Color: Black, brownish black, dark gray, dark reddish brown, may have a bronzy tarnish; in transmitted light, dark brown, reddish brown, greenish; gray with red-brown internal reflections in reflected light. Streak: Gray to greenish gray. Luster: Submetallic when fresh, altering to resinous or hornlike. Optical Class: Isotropic; may show weak anomalous anisotropism. n = 2.20–2.35 R: (400) 16.6, (420) 16.6, (440) 16.6, (460) 16.5, (480) 16.3, (500) 16.0, (520) 15.7, (540) 15.4, (560) 15.2, (580) 15.1, (600) 15.0, (620) 14.9, (640) 14.8, (660) 14.7, (680) 14.6, (700) 14.5 Cell Data: Space Group: Fm3m. a = 5.595 Z = 4 X-ray Powder Pattern: Synthetic; may be confused with uraninite or cerianite. 3.234 (100), 1.689 (64), 1.980 (58), 2.800 (35), 1.284 (26), 1.1432 (20), 1.0779 (19) Chemistry: (1) (2) UO3 18.88 ThO2 93.02 62.16 UO2 4.73 10.32 (Ce, La)2O3 1.84 Fe2O3 0.29 1.11 PbO 1.80 2.29 CaO 0.59 H2O 1.05 insol.
    [Show full text]
  • Conserve O Gram Volume 11 Issue 10: Radioactive Minerals
    Conserve O Gram September 2006 Number 11/10 Radioactive Minerals Radioactive Minerals Alpha rays are the nuclei of helium atoms, two protons and two neutrons bound together. See also the NPS Museum Handbook, Part 1, Alpha rays have a net positive charge. Alpha Chapter 11 and Appendix H, Curatorial Health particles have only a weak ability to penetrate. and Safety and COG 2/5 Fossil Vertebrates as A couple of inches of air or a few sheets of Radon Source: Health Update. paper can effectively block them. Examples of common radioactive minerals Beta rays are identical to the electrons found include Autunite (hydrated calcium uranium in atoms. Beta rays have a net negative charge. phosphate), Brannerite (uranium titanate), Car- Beta rays have a greater penetrating power than notite (potassium uranium vanadate), Alpha rays and can penetrate 3 mm of alumi- Monazite (a mixed rare earth and thorium num. phosphate), Thorianite (thorium dioxide) and Uraninite (uranium dioxide). The vast majority Gamma rays are high-energy photons. This of the radioactive content in minerals or ores type of ray has the greatest penetrating power. is either uranium-238 or thorium-232. Many It is able to pass through several centimeters of these minerals may become deposited in of lead and still be detected on the other side. both bone and wood fossils. If you are not Thick lead is needed to protect against gamma able to identify the minerals yourself based on radiation. available references try to contact the geology department at the local university and see if a member of the faculty can aid with the identi- fication.
    [Show full text]
  • Geological Mapping and Mineralization on the Northern Half of the Desmont Claim Monmouth Township, Ontario
    We are committed to providing accessible customer service. If you need accessible formats or communications supports, please contact us. Nous tenons à améliorer l’accessibilité des services à la clientèle. Si vous avez besoin de formats accessibles ou d’aide à la communication, veuillez nous contacter. 1 Geological Mapping and Mineralization on the northern half of the Desmont Claim Monmouth Township, Ontario Cell claims; 167120, 281885, 118830, 180531 and 215872. By Bradley S Wilson Kingston, Ontario For Municipality of Highlands East P.O. Box 295 2249 Loop Road Wilberforce, Ontario, K0L 3C0 March 31, 2020 Page 1 Geological Mapping and Mineralization on the northern half of the Desmont Claim Monmouth Township, Ontario Cell claims; 167120, 281885, 118830, 180531 and 215872. By Bradley S Wilson For Municipality of Highlands East March 31, 2020 Introduction For decades, recreational mineral collectors from around the world have been coming to south eastern Ontario to pursue their fascinating hobby by searching out mineral samples from the many available collecting sites for which the region is famous. For this reason, many consider the region, often referred to in general as the Bancroft area, the “Mineral Capital of Canada”. A wide variety of minerals are known from hundreds of different occurrences throughout the region. Sadly, over the years, many of these localities have been closed to mineral collectors due in part to park and cottage development and a host of other land access issues. It has been suggested that fewer mineral collectors are coming to the region now than in the past. If this is true it may be, in part, because there are fewer collecting sites available to the collector.
    [Show full text]
  • Thorium Occurrences in the Czech Republic and Their Mineralogy
    Uranium Deposits, B. Kribek & J. Zeman (eds) © Czech Geological Survey, Prague, ISBN 80-7075-583-0 Thorium Occurrences in the Czech Republic and their Mineralogy V. Goliáš Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Prague, Czech Republic ABSTRACT: Short description and characteristics of several types of thorium mineralization in the Bohemian Massif are given: orthogneisses with 200 ppm of Th (Moldanubicum), Permian volcanites in the Intra-Sudetic basin (U-Th-V to 450 ppm Th), REE-Th pegmatites (Moldanubicum), metasomatic (the Sudety Mts.) and Ordovician Ti-Zr-Th-REE paleo-placers (Saxothuringicum), recent Ti-Zr-Th-REE-Nb placers (Lužnice, S. Bohemia), vein type – Moldanubicum (Th-U). At the Budišov location (vein type in melanosyenites), resources of 87 tons Th have been calculated in the Estimated Additional II category. Figure 1. Thorium radiometric anomalies in the Czech Republic. Selected from databaze of Krištiak & Záliš (1994). 1 INTRODUCTION The field gamma spectrometry were carried out at chosen localities. On the basis of the results Thorium has not been mined in the Czech Republic obtained, samples with increased Th content were to date and thorium deposits have not been taken (ore samples). The selected ore samples were systematically explored or studied. This paper subjected to silicate analysis, quantitative X-ray briefly describes main types of thorium powder diffraction and analysis of micro-elements mineralization of the Bohemian Massif. Their by the ICP-MS and AAS methods; laboratory geochemical and mineralogical characteristics are gamma spectrometry was employed to analyze the given and their economic potential is discussed. content of radioactive elements.
    [Show full text]
  • X-Ray Diffraction Data on Some Radio- Active Oxide Minerals*
    X-RAY DIFFRACTION DATA ON SOME RADIO- ACTIVE OXIDE MINERALS* Rowerr J. Anworr A mer ic an Cy anamid C om p any, St amJ or d, Conne clicut AssrnAcr X-ray powder photographs and specific gravity determinations of specimens belonging to the uraninite-thorianite series and the pyrochlore-microlite series gave, for the former, o:5.403-5.575A (19 specimens),G:6.43-9.55 (9),and for pyrochlore-microlile, o:10.296- l0.Ml A (5). Indexed powder data are given for uraninite and for ignited microlite. The powder pattern of orthorhombic euxenite (ignitedat 1000"C), interpretedwith the aid of establishedmorphological descriptions,gave for this mineral,o:5.520,b:14.57,c:5.166A,, most probable space-groupPcmn, Z:4, G (meas.):5.23, p (calc for Y:Er:2:1):5.58. An indexed powder pattern is given. Two specimens of .'tanteuxenite" gave pattems of the uraninite type with o-5.10 A thus casting doubt on their identity with euxenite. Radioactive minerals are currently of general interest because they frequently contain uranium and related elements, but they hold a specialinterest mineralogically becausethey include most of the minerals classedas((metamict." The possessionof this characteristicis probably the main reason why certain of these minerals have not previously been studied by o-ray diffraction methods. The author of this paper becamein- terested in radioactive minerals during the summer of 1948while working in the radioactive laboratory of the Mineralogical Section of the Geo- logical Survey of Canada, at Ottawa. Dr. H. V. Ellsworth, mineralogist in charge of that laboratory, kindly donated a representative collection of these minerals, mostly from Canadian localities, many of which he had analyzed chemically (Ellsworth, 1932).
    [Show full text]
  • Thorium Data Sheet
    170 THORIUM [Data in kilograms gross weight unless otherwise noted] Domestic Production and Use: The world’s primary source of thorium is the rare-earth and thorium phosphate mineral monazite. In 2019, monazite may have been produced as a separated concentrate or included as an accessory mineral in heavy-mineral concentrates. Essentially, all thorium compounds and alloys consumed by the domestic industry were derived from imports. The number of companies that processed or fabricated various forms of thorium for commercial use was not available. Thorium’s use in most products was generally limited because of concerns over its naturally occurring radioactivity. Imports of thorium compounds are sporadic owing to changes in consumption and fluctuations in consumer inventory levels. The estimated value of thorium compounds imported for consumption by the domestic industry in 2019 was about $533,000, compared with $567,000 in 2018. Salient Statistics—United States: 2015 2016 2017 2018 2019e Production, mine1 — NA NA e, 2500,000 21,200,000 Imports for consumption: Thorium ore and concentrates (monazite) — 16,000 — 1,000 1,000 Thorium compounds (oxide, nitrate, etc.) 2,740 3,120 8,510 9,000 8,300 Exports: Thorium ore and concentrates (monazite) — NA NA 520,000 1,200,000 Thorium compounds (oxide, nitrate, etc.) 32,700 36,000 36,100 33,000 33,200 Consumption, apparent:4 Thorium ore and concentrates (monazite) — 16,000 — (5) 1,000 Thorium compounds (oxide, nitrate, etc.) 40 (5) 2,410 6,000 5,100 Value, thorium compounds, gross weight, dollars per kilogram, India6 63 65 73 72 72 Net import reliance7 as a percentage of apparent consumption NA NA NA NA NA Recycling: None.
    [Show full text]