Technical Sessions

Total Page:16

File Type:pdf, Size:1020Kb

Technical Sessions 2021 NOBCChE National Conference September 18, 2021 TECHNICAL SESSIONS Biochemistry/Biophysics 11:15 AM - 12:15 PM Collagen deposition during diabetic kidney disease enhances cellular communication (76) Haryana Thomas, Research Assistant, Chemical and Biological Engineering, University at Buffalo SUNY Diabetes is a significant burden on public health in the U.S. and worldwide. In the year 2015, over 400 million people were diagnosed with diabetes worldwide. One-third of these diabetic patients are expected to develop diabetic kidney disease, the leading cause of kidney failure. Our lack of understanding of how diabetic kidney disease progresses and affects cellular and tissue function has contributed to our inability to mitigate the rapidly rising burden of diabetic kidney disease. Excess collagen deposition is a hallmark of diabetic kidney damage, however, its impact on cellular and tissue function is still not well understood. Thus, our aim is to use a modeling approach to fill this gap in knowledge. During diabetic kidney damage, the collagen deposition that occurs in the mesangium changes the transport property of the matrix, and, therefore, the ability of signaling molecules to traverse through that medium. The extent to which collagen deposition impacts the ability of glomerular cells to communicate has not been previously investigated. Using established models, we investigated whether collagen deposition impacts glomerular cell communication. We hypothesize that the pathological deposition of collagen decreases the ability of glomerular cells to communicate. Our model predicted that collagen deposition enhances the signaling range of the mesangial cell. This enhancement can disrupt the controlled, localized inter-cellular signaling that occurs in health and thus contribute to the exacerbation of diabetic kidney damage. The novel insight gained from this mathematical study enhances our understanding of how pathological tissue damage induced by diabetes contributes to the disruption of cellular function. Key Words: Diabetic Nephropathy, Fibrosis, Transport, Cell-cell signaling Technical Sessions Biochemistry/Biophysics 1 2021 NOBCChE National Conference September 18, 2021 Regulation of MKP7 Functionality via Novel Allosteric Site (16) Ms. Shanele Shilingford, Chemistry/Chemical Biology, Yale university The dual-specificity phosphatases (DUSPs) responsible for the downregulation of the mitogen-activated protein kinases (MAPKs), are designated as the MAPK phosphatases (MKPs). MAPKs are a group of serine/threonine kinases that play important roles in cell proliferation, death, and migration. Due to their involvement in key cell functions, aberrant signaling of the MAPKs are associated with a wide range of diseases. Therefore, MKP inactivation of these kinases are vital in maintaining cellular homeostasis. The MKPs are a group of 11 catalytically active members with a somewhat conserved N-terminal and a highly conserved c-terminus catalytic domain. Catalytic activity of the MKPs have been exclusively linked to their active site cysteine and neighboring residues that facilitate MAP kinase dephosphorylation in the catalytic domain. However, we have discovered in the DUSP16, MKP7, a novel allosteric site that affects MKP7 activity. MKP7 preferentially dephosphorylates the MAPKs, JNK>>p38>ERK and is capable of trapping JNK and p38 in the cytoplasm to prevent activation of their downstream targets. Mutation of a key tyrosine (Y271) residue at this allosteric site has had a demonstrable effect on MKP’s catalytic activity. In vitro experiments using the catalytic domain of MKP7, as well as overexpression of the full- length protein in COS-7 cells show diminished activity of MKP7 Y271A, Y271S, Y271W compared to wild-type on the MAPKs JNK1/2 and p38-α. Not only is catalytic activity affected, but MKP7’s binding efficiency to JNK1/2 and p38-α is reduced when Y271 is mutated. Differences in binding affinity, encouraged us to investigate any effect Y271 has on MAPK localization and interestingly, a greater accumulation of nuclear JNK and p38 is observed in the presence of Y271 mutants compared to wild-type protein. These results provide greater insight into MKP7 interactions with MAP kinases, as well as a potential target site for small molecule therapeutics on MKP7. Key Words: Chemical Biology Assessing L-Carnitine efficacy in Chronic Chagas Disease (CD): Insights to novel treatments of CD (44) Danya A. Dean, Graduate Research Assistant, Chemistry and Biochemistry, University of Oklahoma Chagas Disease (CD) is a parasitic disease caused by Trypanasoma cruzi (T. cruzi). It is endemic to the Americas, with 6-7 million people infected worldwide and 300,000 infected in the USA. CD occurs in two stages, an acute stage with mild or no symptoms including fever and rashes, and a chronic stage which produces severe cardiac symptoms. Treatment for CD utilizes the antiparasitic benznidazole. However, it has severe side effects and low efficacy in the chronic stage of infection, due to low parasitemia. Therefore, there is a need for novel treatments for CD. We have already demonstrated the efficacy of l-carnitine as a novel treatment for acute CD. We determined that mice infected with T. cruzi had an increase in overall survival rate when treated with l-carnitine. Based on this study, we sought to investigate the efficacy of l-carnitine treatment in the chronic stage of T. cruzi infection. However, l- Technical Sessions Biochemistry/Biophysics 2 2021 NOBCChE National Conference September 18, 2021 carnitine is a precursor of the small molecule trimethyl amine-N-oxide (TMANO) which induces increased risk of cardiac disease. Our study utilizes targeted liquid chromatography mass spectrometry (LCMS/MS) analysis specifically to analyze changes in mice uninfected or infected with T. cruzi and treated with different concentrations of benznidazole, l-carnitine, or vehicle. Mice were infected and dosed 10 weeks post infection every day for 6 weeks and were euthanized 2 weeks post dosage. Blood serum was collected pre-treatment, post-treatment, and at endpoint. Based on targeted LCMS/MS analysis, TMANO production was not affected by l-carnitine treatment, indicating no increased risk of cardiac disease when compared to uninfected. Further analysis is being done focusing on protein markers of cardiac disease including collagen, fibronectin, and brain natriuretic peptide via RT-qPCR. This study thus far supports the use of l-carnitine in chronic CD. In addition, it provides insight to a novel CD treatment for future drug development. Key Words: T. cruzi, Chagas Disease, Targeted LCMS/MS, LCMS/MS, L-carnitine, Chronic Chagas Disease 12:15 PM - 1:15 PM Molecular Characterization Defines the Role of the Ig80 Subdomain for SMYD2-N2A Titin Binding (55) Mr. Adeleye Adewale, Graduate Research Assistant, Chemistry, Wayne State University SMYD2 is a protein methyltransferase whose role has been indicated in the organization of the muscle cell. SMYD2 associates with the giant muscle protein titin at one of its unique elements known as the N2A region. The N2A titin region has been recognized as a signaling hub in titin, and the binding of SMYD2 is indicated to protect this node from protease degradation, but SMYD2's mode of interaction is not well understood. We applied molecular cloning techniques, in making multiple subdomain constructs of the N2A region and studied their association with SMYD2 by bio-layer interferometry (BLI). Our analyses showed the Ig80 subdomain of N2A as the domain facilitating SMYD2’s binding to N2A. We also mapped the amino acid sequences in Ig80 allowing SMYD2‚Äôs binding to a PAVAP motif in proximity of its N-terminus. In addition, we observed that an additional motif in Ig80 interacts with SMYD2. Our subsequent analysis indicated a 13 sequence residue within Ig80 that may be exposed to interact with SMYD2 during unfolding of Ig80. Since Ig80’s unfolding may occur during muscle contraction and relaxation or pathologic conditions, our data may find a novel functional role of SMYD2 associated with an unfolded state of Ig80. Finally, we found that SMYD2 was able to bind and protect Ig80 that is susceptible to digestion by calpain-1. This indicates that Ig80 may be the segment of N2A predisposing its vulnerability to proteases. Putting together, our findings presents new understanding about SMYD2’s interaction in titin. Key Words: SMYD2; Titin; N2A Technical Sessions Biochemistry/Biophysics 3 2021 NOBCChE National Conference September 18, 2021 Impact of Multivalency and Encapsulation of Affinity Reagents and Catalysts (71) Brea Manuel, Chemistry, Emory University Increasing enzyme efficiency and protease resistance is highly desired for therapeutics such as enzyme replacement therapy (ERT) and for commercial uses such as pet waste degradation and removal. The most common method for increasing enzyme efficiency is mutating key residues in these enzymes. However, this is very time consuming, costly, and a matter of trial and error. In addition, many enzymes do not function properly when key residues are mutated. The most common method for bypassing protease degradation is pegylation. However, pegylation can also lead to an enzyme misfolding and functioning at a lower efficiency. Another method for bypassing protease degradation is encapsulating enzymes. We propose that by encapsulating an affinity reagent with an enzyme, we can sequester the enzyme substrate and place the substrate in close proximity to the enzyme via virus-like particle (VLP) encapsulation, leading to a higher
Recommended publications
  • Computational Modeling of Solvent Effects on Protein-Ligand
    Commun. Comput. Phys. Vol. 13, No. 1, pp. 31-60 doi: 10.4208/cicp.130911.121011s January 2013 Computational Modeling of Solvent Effects on Protein-Ligand Interactions Using Fully Polarizable Continuum Model and Rational Drug Design Fang Zheng and Chang-Guo Zhan∗ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, USA. Received 13 September 2011; Accepted (in revised version) 12 October 2011 Available online 12 June 2012 Abstract. This is a brief review of the computational modeling of protein-ligand in- teractions using a recently developed fully polarizable continuum model (FPCM) and rational drug design. Computational modeling has become a powerful tool in under- standing detailed protein-ligand interactions at molecular level and in rational drug design. To study the binding of a protein with multiple molecular species of a ligand, one must accurately determine both the relative free energies of all of the molecular species in solution and the corresponding microscopic binding free energies for all of the molecular species binding with the protein. In this paper, we aim to provide a brief overview of the recent development in computational modeling of the solvent ef- fects on the detailed protein-ligand interactions involving multiple molecular species of a ligand related to rational drug design. In particular, we first briefly discuss the main challenges in computational modeling of the detailed protein-ligand interactions involving the multiple molecular species and then focus on the FPCM model and its applications. The FPCM method allows accurate determination of the solvent effects in the first-principles quantum mechanism (QM) calculations on molecules in solu- tion.
    [Show full text]
  • September, 2008
    NIDA - Director's Report - September, 2008 NIDA Home > Publications > Director's Reports Director's Report to the National Advisory Council on Drug Abuse - September, 2008 Index Research Findings Cross-Divisional Research Basic Neurosciences Research Basic Behavioral Research Behavioral and Brain Development Research Clinical Neuroscience Research Epidemiology and Etiology Research Prevention Research Research on Behavioral and Combined Treatments for Drug Abuse Research on Pharmacotherapies for Drug Abuse Research on Medical Consequences of Drug Abuse and Co-Occurring Infections (HIV/AIDS, HCV) Services Research Clinical Trials Network Research International Research Intramural Research Program Activities Extramural Policy and Review Activities Congressional Affairs International Activities Meetings and Conferences Media and Education Activities Planned Meetings Publications Staff Highlights Grantee Honors https://archives.drugabuse.gov/DirReports/DirRep908/Default.html[11/17/16, 11:11:47 PM] NIDA - Director's Report - September, 2008 Archive Home | Accessibility | Privacy | FOIA (NIH) | Current NIDA Home Page The National Institute on Drug Abuse (NIDA) is part of the National Institutes of Health (NIH) , a component of the U.S. Department of Health and Human Services. Questions? _ See our Contact Information. https://archives.drugabuse.gov/DirReports/DirRep908/Default.html[11/17/16, 11:11:47 PM] NIDA - Director's Report - September, 2008 NIDA Home > Publications > Director's Reports > September, 2008 Index Director's Report to the National
    [Show full text]
  • Biochemical Characterization and Structural Analysis of a Highly Proficient Cocaine Esterase†,‡ James M
    Biochemistry 2002, 41, 12297-12307 12297 Biochemical Characterization and Structural Analysis of a Highly Proficient Cocaine Esterase†,‡ James M. Turner,§,| Nicholas A. Larsen,§,| Amrik Basran,⊥ Carlos F. Barbas, III,§,| Neil C. Bruce,⊥ Ian A. Wilson,*,§,| and Richard A. Lerner*,§,| Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Institute of Biotechnology, Cambridge UniVersity, Tennis Court Road, Cambridge CB2 1QT, U.K. ReceiVed May 15, 2002; ReVised Manuscript ReceiVed August 1, 2002 ABSTRACT: The bacterial cocaine esterase, cocE, hydrolyzes cocaine faster than any other reported cocaine -1 esterase. Hydrolysis of the cocaine benzoyl ester follows Michaelis-Menten kinetics with kcat ) 7.8 s and KM ) 640 nM. A similar rate is observed for hydrolysis of cocaethylene, a more potent cocaine metabolite that has been observed in patients who concurrently abuse cocaine and alcohol. The high catalytic proficiency, lack of observable product inhibition, and ability to hydrolyze both cocaine and cocaethylene make cocE an attractive candidate for rapid cocaine detoxification in an emergency setting. Recently, we determined the crystal structure of this enzyme, and showed that it is a serine carboxylesterase, with a catalytic triad formed by S117, H287, and D259 within a hydrophobic active site, and an oxyanion hole formed by the backbone amide of Y118 and the Y44 hydroxyl. The only enzyme previously known to use a Tyr side chain to form the oxyanion hole is prolyl oligopeptidase, but the Y44F mutation of cocE has a more deleterious effect on the specificity rate constant (kcat/KM) than the analogous Y473F mutation of prolyl oligopeptidase.
    [Show full text]
  • Enzyme Therapy: Current Challenges and Future Perspectives
    International Journal of Molecular Sciences Review Enzyme Therapy: Current Challenges and Future Perspectives Miguel de la Fuente 1,2 , Laura Lombardero 1, Alfonso Gómez-González 3, Cristina Solari 4, Iñigo Angulo-Barturen 5, Arantxa Acera 2, Elena Vecino 2 , Egoitz Astigarraga 1 and Gabriel Barreda-Gómez 1,* 1 Department of Research and Development, IMG Pharma Biotech S.L., 48160 Derio, Spain; [email protected] (M.d.l.F.); [email protected] (L.L.); [email protected] (E.A.) 2 Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; [email protected] (A.A.); [email protected] (E.V.) 3 Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; [email protected] 4 Department of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; [email protected] 5 The Art of Discovery, 48160 Derio, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-944-316-577 Abstract: In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against Citation: de la Fuente, M.; the enzyme.
    [Show full text]
  • Characterization and Engineering of a Two-Enzyme System for Plastics Depolymerization
    Characterization and engineering of a two-enzyme system for plastics depolymerization Brandon C. Knotta,1, Erika Ericksona,1, Mark D. Allenb,1, Japheth E. Gadoa,c,1, Rosie Grahamb, Fiona L. Kearnsd, Isabel Pardoa, Ece Topuzlua,e, Jared J. Andersona, Harry P. Austinb, Graham Dominicka, Christopher W. Johnsona, Nicholas A. Rorrera, Caralyn J. Szostkiewicza, Valérie Copiée, Christina M. Paynec, H. Lee Woodcockd, Bryon S. Donohoef, Gregg T. Beckhama,2, and John E. McGeehanb,2 aRenewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401; bCentre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom; cDepartment of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506; dDepartment of Chemistry, University of South Florida, Tampa, FL 33620; eDepartment of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717; and fBiosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved August 26, 2020 (received for review April 11, 2020) Plastics pollution represents a global environmental crisis. In re- glycol (EG). Given the prevalence of esterase enzymes in nature, sponse, microbes are evolving the capacity to utilize synthetic PET biodegradation has been studied for nearly two decades, with polymers as carbon and energy sources. Recently, Ideonella sakaien- multiple cutinase enzymes reported to perform depolymerization sis wasreportedtosecreteatwo-enzyme system to deconstruct (17–26). In 2016, Yoshida et al. (10) reported the discovery and polyethylene terephthalate (PET) to its constituent monomers. Spe- characterization of the soil bacterium, Ideonella sakaiensis 201-F6, cifically, the I.
    [Show full text]
  • Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application
    crystals Review Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application Changsuk Oh 1 , T. Doohun Kim 2,* and Kyeong Kyu Kim 1,* 1 Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; [email protected] 2 Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea * Correspondence: [email protected] (T.D.K.); [email protected] (K.K.K.) Received: 4 October 2019; Accepted: 7 November 2019; Published: 14 November 2019 Abstract: Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
    [Show full text]
  • An Engineered Cocaine Hydrolase Blunts and Reverses Cardiovascular Responses to Cocaine in Rats
    0022-3565/04/3103-1046–1052$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 310, No. 3 Copyright © 2004 by The American Society for Pharmacology and Experimental Therapeutics 68122/1161154 JPET 310:1046–1052, 2004 Printed in U.S.A. An Engineered Cocaine Hydrolase Blunts and Reverses Cardiovascular Responses to Cocaine in Rats Yang Gao and Stephen Brimijoin Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota Received March 9, 2004; accepted April 16, 2004 ABSTRACT There is increasing evidence that human plasma butyrylcho- baseline within 60 s. These transient pressor responses were Downloaded from linesterase can lower the toxicity of cocaine overdose. Re- prolonged up to 5 min when vagal reflexes were blocked with cently, with structure-based protein engineering, we converted atropine (1 mg/kg). Under such conditions, pretreatment with this enzyme into a more efficient cocaine hydrolase (CocE). CocE (3 mg/kg i.v.) reduced cocaine’s pressor effect, whereas When tested in rats, CocE shortened cocaine’s plasma half-life delayed treatment with CocE rapidly restored normal mean and decreased drug accumulation in heart and brain. Here, we blood pressure. CocE had no hemodynamic effects in control have investigated the potential of CocE to antagonize cardio- animals not treated with cocaine. The finding that CocE can vascular responses to cocaine. Anesthetized rats were instru- oppose pre-established physiologic actions of cocaine sug- jpet.aspetjournals.org mented for continuous recording of blood pressure from the gests that similar or improved hydrolases might help rescue femoral artery. Cocaine (7 mg/kg i.v.) caused blood pressure to patients from the life-threatening toxicity of drug overdose.
    [Show full text]
  • Review Human Carboxylesterase Isozymes: Catalytic Properties and Rational Drug Design
    Drug Metab. Pharmacokinet. 21 (3): 173–185 (2006). Review Human Carboxylesterase Isozymes: Catalytic Properties and Rational Drug Design Teruko IMAI Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan Full text of this paper is available at http://www.jstage.jst.go.jp/browse/dmpk Summary: Human carboxylesterase 1 (hCE-1, CES1A1, HU1) and carboxylesterase 2 (hCE-2, hiCE, HU3)areaserineesteraseinvolvedinbothdrugmetabolismandactivation.AlthoughbothhCE-1and hCE-2 are present in several organs, the hydrolase activity of liver and small intestine is predominantly attributed to hCE-1 and hCE-2, respectively. The substrate speciˆcity of hCE-1 and hCE-2 is signiˆcant- ly diŠerent. hCE-1 mainly hydrolyzes a substrate with a small alcohol group and large acyl group, but its wide active pocket sometimes allows it to act on structurally distinct compounds of either large or small alcohol moiety. In contrast, hCE-2 recognizes a substrate with a large alcohol group and small acyl group, and its substrate speciˆcity may be restricted by a capability of acyl-hCE-2 conjugate formation due to the presence of conformational interference in the active pocket. Furthermore, hCE-1 shows high transesteriˆcation activity, especially with hydrophobic alcohol, but negligible for hCE-2. Transesteriˆ- cation may be a reason for the substrate speciˆcity of hCE-1 that hardly hydrolyzes a substrate with hydrophobic alcohol group, because transesteriˆcation can progress at the same time when a compound is hydrolyzed by hCE-1. From the standpoint of drug absorption, the intestinal hydrolysis by CES during drug absorption is evaluated in rat intestine and Caco2-cell line. The rat in situ single-pass perfusion shows markedly exten- sive hydrolysis in the intestinal mucosa.
    [Show full text]
  • Long-Lasting Effects of a Pegylated Mutant Cocaine Esterase (Coce) on the Reinforcing and Discriminative Stimulus Effects of Cocaine in Rats
    Neuropsychopharmacology (2012) 37, 1092–1103 & 2012 American College of Neuropsychopharmacology. All rights reserved 0893-133X/12 www.neuropsychopharmacology.org Long-Lasting Effects of a PEGylated Mutant Cocaine Esterase (CocE) on the Reinforcing and Discriminative Stimulus Effects of Cocaine in Rats Gregory T Collins*,1,2, Diwahar Narasimhan1, Alyssa R Cunningham1, Matthew E Zaks1, Joseph Nichols1, Mei-Chuan Ko1, Roger K Sunahara1 and James H Woods1 1 Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA Recent mutagenesis studies have identified a mutant G4C/S10C/T172R/G173Q cocaine esterase (CCRQ CocE) with an in vitro duration of action of 440 days. Although the in vivo duration of CCRQ CocE’s action was o24 h, modification of this enzyme with polyethylene glycol (PEG) polymers resulted in a CocE (PEG-CCRQ CocE) capable of preventing cocaine-induced lethality for up to 72 h. The current studies were aimed at providing a detailed characterization of the effectiveness, selectivity, and duration of PEG-CCRQ CocE’s actions in cocaine self-administration and discrimination assays in rats. Pretreatment with PEG-CCRQ CocE produced dose-dependent rightward shifts in the dose–response curves for cocaine self-administration and discrimination, with the highest dose of PEG-CCRQ CocE capable of producing an initial shift of cocaine’s reinforcing and interoceptive effects of 430-fold to the right, with significant inhibition of these effects observed for up to 72 h. Although PEG-CCRQ CocE also produced slight reductions in the rates of methylphenidate- and food- reinforced responding, these effects were short-lived, lasting o24 h. Finally, when taken together with the finding that PEG-CCRQ CocE failed to alter the cocaine-like interoceptive effects of either methylphenidate or d-amphetamine, these results suggest that PEG-CCRQ CocE possesses a high degree of pharmacologic specificity for cocaine and a prolonged in vivo duration of action.
    [Show full text]
  • Front Matter
    JOURNAL OF BACTERIOLOGY VOLUME 174 * DECEMBER 1992 * NUMBER 24 Graham C. Walker, Editor in Chief (1996) Dale Kaiser, Minireview Editor (1994) Massachusetts Institute of Technology, Stanford University School of Cambridge, Mass. Susan Gottesman, Editor (1994) Medicine, Stanford, Calif. National Cancer Institute, Editor (1997) Bethesda, Md. A. L. Sonenshein, Editor (1995) Terrance J. Beveridge, Boston, Mass. University of Guelph, Guelph, Canada E. Peter Greenberg, Editor (1996) Tufts University, University ofIowa, Iowa Kenneth N. Timmis, Editor (1997) James G. Ferry, Editor (1996) City, Iowa Virginia Polytechnic Institute and GBF, Braunschweig, Gennany State University, Blacksburg, Va. Carol A. Gross, Editor (1995) Robert A. Weisberg, Editor (1995) University of Wisconsin, National Institute of Child Dan Fraenkel, Editor (1996) Madison, Wis. Health and Human Harvard Medical School, Boston, Mass. Development, Bethesda, Md. EDITORIAL BOARD Sankar Adhya (1993) Susan H. Fisher (1994) Thomas Lessie (1992) H. Steven Seifert (1994) Stuart J. Austin (1993) Patricia L. Foster (1993) Roger C. Levesque (1994) Peter Setlow (1993) Barbara Bachmann (1993) Michael G. Fried (1994) Mary E. Lidstrom (1993) Hideo Shinagawa (1994) Margaret H. Bayer (1992) David I. Friedman (1992) E. C. C. Lin (1994) Howard A. Shuman (1994) Douglas E. Berg (1994) Barbel Friedrich (1993) Lasse Lindahl (1993) Gerald Smith (1994) Robert W. Bernlohr (1994) Clement Furlong (1993) John W. Little (1992) Issar Smith (1993) Volkmar Braun (1992) Robert Gennis (1994) Jack London (1993) G. Dennis Sprott (1992) Richard Calendar (1994) Costa P. Georgopoulos (1993) Sharon Long (1992) Catherine Squires (1993) George M. Carman (1994) Jane Gibson (1994) Paul S. Lovett (1993) Gary Stacey (1994) Sherwood Casjens (1994) Larry Gold (1994) Paul W.
    [Show full text]
  • Benzoic Acid Is Formed Predominantly from the Benzoyl Ester Hydrolysis in the Presence of Cocaine Hydrolase
    LETTER LETTER REPLY TO CURRY AND COOMBS: Benzoic acid is formed predominantly from the benzoyl ester hydrolysis in the presence of cocaine hydrolase Fang Zhenga,b,1 and Chang-Guo Zhana,b,1 As is well known, and also pointed out correctly by the detected highest NC concentration generated by Curry and Coombs (1), cocaine has three metabolic intravenous injection of 5 mg/kg cocaine was 4.9 ng/mL, pathways associated with butyrylcholinesterase (BChE), less than 1% of the highest cocaine concentration carboxylesterase, and microsomal cytochrome P450 of ∼1,700 ng/kg. Hence, the NC concentrations were 3A4, which convert cocaine to ecgonine methyl ester negligible compared with the corresponding co- (EME) + benzoic acid (BA), benzoylecgonine (BE) + caine and BE concentrations under the experimental methanol, and norcocaine (NC), respectively. However, conditions used in our study in rats (2). Therefore, both in contrast to what Curry and Coombs describe, BA BA and EME are formed predominantly and equally cannot be formed from EME. Instead, further hydrolysis from the hydrolysis of the cocaine benzoyl ester group of EME can only produce ecgonine and methanol. (cocaine → EME + BA). It is reasonable to detect either Therefore, further metabolism of EME does not contrib- EME or BA for analyzing the effects of CocH3-Fc(M3) ute to BA formation at all. The questions raised by Curry on cocaine metabolism via the benzoyl ester hydroly- and Coombs (1) are based on a misunderstanding of the sis, though it would not hurt to detect all of the me- metabolic pathway via EME. tabolites individually, as we have done more recently.
    [Show full text]
  • Table Continues on Reverse Perilipin-1 (PLIN1) O60240 Ras Association Domain-Containing Protein 2 (RASSF2) P50749
    5'-AMP-activated protein kinase subunit beta-1 (PRKAB1) Q9Y478 Erythropoietin (EPO) P01588 Adhesion G-protein coupled receptor G1 (ADGRG1) Q9Y653 Fatty acid-binding protein 9 (FABP9) Q0Z7S8 Aldehyde dehydrogenase, dimeric NADP-preferring (ALDH3A1) P30838 Forkhead box protein O1 (FOXO1) Q12778 Anterior gradient protein 2 homolog (AGR2) O95994 Fructose-2,6-bisphosphatase TIGAR (TIGAR) Q9NQ88 Apoptosis-inducing factor 1, mitochondrial (AIFM1) O95831 Hematopoietic prostaglandin D synthase (HPGDS) O60760 B-cell scaffold protein with ankyrin repeats (BANK1) Q8NDB2 Inactive tyrosine-protein kinase 7 (PTK7) Q13308 BH3-interacting domain death agonist (BID) P55957 Integrin beta-1-binding protein 1 (ITGB1BP1) O14713 BMP and activin membrane-bound inhibitor homolog (BAMBI) Q13145 Interferon-inducible double-stranded RNA-dependent protein kinase O75569 activator A (PRKRA) Calcitonin (CALCA) P01258 Kidney Injury Molecule (KIM1) Q96D42 Calreticulin (CALR) P27797 Killer cell immunoglobulin-like receptor 3DL1 (KIR3DL1) P43629 Carbonic anhydrase 12 (CA12) O43570 Leukotriene A-4 hydrolase (LTA4H) P09960 Carbonic anhydrase 14 (CA14) Q9ULX7 Linker for activation of T-cells family member 2 (LAT2) Q9GZY6 Casein kinase I isoform delta (CSNK1D) P48730 Lutropin subunit beta (LHB) P01229 Claspin (CLSPN) Q9HAW4 Macrophage erythroblast attacher (MAEA) Q7L5Y9 CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3- Q11201 Macrophage-capping protein (CAPG) P40121 sialyltransferase 1 (ST3GAL1) Cocaine esterase (CES2) O00748 Melanoma-associated antigen D1 (MAGED1) Q9Y5V3
    [Show full text]