Neurite Outgrowth Stimulatory Activity of an Edible Mushroom Pleurotus Giganteus in Differentiating Neuroblastoma-2A Cells

Total Page:16

File Type:pdf, Size:1020Kb

Neurite Outgrowth Stimulatory Activity of an Edible Mushroom Pleurotus Giganteus in Differentiating Neuroblastoma-2A Cells NEURITE OUTGROWTH STIMULATORY ACTIVITY OF AN EDIBLE MUSHROOM PLEUROTUS GIGANTEUS IN DIFFERENTIATING NEUROBLASTOMA-2A CELLS PHAN CHIA WEI THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2015 ABSTRACT Neurite outgrowth is an important process for the establishment of synaptic connections during development, as well as neuronal regeneration in neuropathological conditions or injury. With growing concerns over neurodegenerative diseases attributed to impairment of neurite outgrowth e.g. dementia and Alzheimer’s disease, identification of alternative therapeutics has become paramount. One way to prevent and/or delay the onset of such diseases is by discovering alternative therapeutic molecules from functional foods. One such candidate is the edible mushroom (higher Basidiomycetes). In this study, eight culinary-medicinal mushrooms were evaluated for neurite outgrowth stimulatory effects by using neuroblastoma-2a (N2a) cells as an in vitro model. The mushroom extracts were also subjected to in vitro neuro- and embryotoxicity tests using N2a and 3T3 fibroblasts cell lines. The preliminary results showed that the aqueous extract of Pleurotus giganteus significantly (p < 0.05) promoted neurite outgrowth in N2a cells by 33.4 ± 4.6%. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 hours exposure of N2a and 3T3 cells to the mushroom extract. The basidiocarps of P. giganteus were then analysed for various nutritional attributes. The mushroom composed of protein (15.4–19.2 g/100 g), polysaccharides, phenolics, and flavonoids as well as vitamins B1, B2, and B3. The antioxidant properties of the aqueous and ethanol extracts of P. giganteus were investigated. The results indicated that the aqueous extract of P. giganteus exhibited scavenging of 2,2-diphenyl-1- picrylhyd-razyl (DPPH) radical with an IC50 value of 21.46 ± 6.95 mg/mL. Based on the ferric reducing antioxidant power (FRAP) assay, the reducing power of the mushroom extracts was in the range of 1.17–3.88 µM FeSO·7H2O/g mushroom and the ethanol extract showed lipid peroxidation inhibitory activity of 49.58–49.80%. The efficacy of the chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, iii caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) for neurite outgrowth activity was investigated. Uridine (100 µM) increased the number of neurite bearing cells by 43.1 ± 0.5%, which was about 1.8-fold higher than NGF (50 ng/mL)- treated cells. In this study, we demonstrated that uridine of P. giganteus (1.80 ± 0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt); simultaneously promoting neurite outgrowth in N2a cells. Neurite outgrowth stimulatory activity was inhibited by the inactivation of mitogen-activated protein kinase (MEK)/ERKs and Akt signaling with specific inhibitors. Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43), tubulin alpha 4a (TUBA4A), and tubulin beta 1 (TUBb1); all of which promoted neurite outgrowth of N2a cells. In conclusion, these findings demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecule responsible for neurite outgrowth is uridine. iv ABSTRAK Pengunjuran neurit merupakan satu proses yang penting untuk penubuhan sambungan sinaptik semasa perkembangan, dan regenerasi sel saraf (neuron) selepas keadaan neuropatologi ataupun kecederaan. Memandangkan penyakit neurodegenerasi yang berkaitan dengan kemerosotan pengunjuran neurit (demensia dan penyakit Alzheimer’s) semakin ketara, pengenalpastian cara perubatan alternatif menjadi lebih penting. Satu cara untuk menghindari dan/atau melewatkan permulaan penyakit tersebut ialah melalui penemuan molekul terapeutik alternatif daripada makan fungsian. Satu calon makan fungsian ialah cendawan (Basidiomysit tinggi). Dalam kajian ini, sekoleksi cendawan masakan-ubatan telah dinilai dari segi aktiviti perangsangan pengunjuran neurit atas sel neuroblastoma-2a (N2a). Ekstrak cendawan juga dinilai secara in vitro dari segi ketoksikan saraf dan embrio. Hasil awalan menunjukkan bahawa ekstrak akueus Pleurotus giganteus meningkatkan pengunjuran neurit sel N2a secara signifikan (p < 0.05) sebanyak 33.4 ± 4.6%. Nilai perencatan pada 50% kepekatan (IC50) yang didapati daripada asai tetrazolium (MTT), pengambilan neutral red (NRU) dan pembebasan laktat dehidrogenase (LDH) menunjukkan ketidakhadiran kesan toksik selepas pendedahan sel N2a dan 3T3 fibroblas kepada ekstrak cendawan selama 24 jam. Komposisi nutrisi basidiokarp (tubuh buah) P. giganteus juga dianalisa. Cendawan ini didapati tinggi dari segi kandungan proteinnya (154–192 g/kg), begitu juga polisakarida, fenolik, flavonoid, vitamin B1, B2, dan B3. Sifat antioksidaan ekstrak akueus dan etanol P. giganteus turut dikaji. Ekstrak akueus P. giganteus menunjukkan pemulungan radikel 2,2-diphenyl-1-picrylhyd-razyl (DPPH) pada kepekatan IC50 21.46 ± 6.95 mg/mL. Kuasa antioksidaan penurunan ferik ekstrak cendawan adalah dalam lingkungan 1.17– 3.88 µM FeSO·7H2O/g cendawan dan ekstrak etanol menunjukkan aktiviti perencatan pengoksidaan lipid sebanyak 49.58–49.80%. Keberkesanan juzuk kimia daripada P. giganteus (asid linoleik, asid oleik, asid cinnamic, asid kafeik, asid p-coumaric, asid v succinic, asid benzoik dan uridin) dalam pengunjuran neurit turut dikaji. Uridin (100 µM) meningkatkan peratusan sel yang mengandungi neurit sebanyak 43.1 ± 0.5%, dan ini adalah kira-kira 1.8 kali ganda daripada sel yang dirawat dengan NGF (50 ng/mL). Dalam kajian ini, uridin daripada P. giganteus (1.796 ± 0.032 g/100g ekstrak cendawan) meningkatkan pemfosforilan kinase yang dikawalselia oleh isyarat luaran sel (ERKs) dan protein kinase B (Akt); dan pada masa yang sama ia menggalakkan pengunjuran neurit pada N2a. Penyahaktifan protein kinase yang diaktifkan oleh mitogen (MEK)/ERKs dan Akt dengan perencat khusus merencatkan aktiviti stimulasi pengunjuran neurit. Tambahan pula, pemfosforilan sasaran mamalia rapamycin (mTOR) juga meningkat. MEK/ERK dan PI3K-Akt-mTOR mendorong pemfosforilan protein pengikat elemen tindak balas cAMP dan membawa kepada pengungkapan protein yang berkaitan dengan pertumbuhan 43 (GAP 43), tubulin alfa 4a (TUBA4A), dan tubulin beta 1(TUBb1); semua ini menggalakkan pengunjuran neurite sel N2a. Secara keseluruhannya, kajian ini mencadangkan bahawa P. giganteus mungkin dapat meningkatkan kesihatan otak dan persembahan kognitif; dan salah satu molekul bioaktif yang memainkan peranan yang penting dalam aktivi pengunjuran neurit ialah uridin. vi ACKNOWLEDGEMENTS I owe my gratitude to all those who contributed in many ways to the success of my study and made it an unforgettable experience for me. Foremost, my supervisor, Prof. Dr. Vikineswary Sabaratnam deserves an acknowledgement for skilfully guiding me in this research project from conception up to publication. I was immensely moved by her passion and learnt from her invaluable advice, as well as constructive criticism. I am also indebted to my co-supervisor, Dr. Rosie Pamela David from the Anatomy Department, who kept an eye on my progress and provided valuable suggestions in shaping the course of my research and thesis. I would also like to thank the Institute of Biological Science and all the staffs in the Faculty of Science, University of Malaya. In addition, I also wish to extend my thanks to the Institute of Postgraduate Study for the postgraduate research grant (PV007/2012A) and for the UM scholarship for my first year of PhD. Also, thanks to Bright Sparks Scholarship Unit from the Chancellery Office for sponsoring my PhD study for two years. Special thanks go to all members of the Fungal Biotechnology Lab, B403 lab, microscopy lab of Anatomy Department, and HIR Functional Molecules Lab. Each colleague and staff of the mentioned laboratories has contributed uniquely in this PhD study of mine. I also want to acknowledge the contributions of Dr. Murali Naidu, Dr. Wong Kah Hui, Dr. Tan Yee Shin, Syntyche Seow, Eik Lee Fang, Priscilla Ann, Wong Wei Lun, and June Ha. Most importantly, none of this would have been possible without the love and patience of my family. I would like to express my heart-felt gratitude to my family for their unequivocal support throughout my life. vii CONTENTS ABSTRACT iii ABSTRAK v ACKNOWLEDGEMENTS vii CONTENTS viii LIST OF FIGURES xiv LIST OF TABLES xvii ABBREVIATIONS AND SYMBOLS xviii CHAPTER 1 1.1 Introduction 1 1.2 Research Objectives 3 CHAPTER II LITERATURE REVIEW 2.1 Neurite outgrowth 4 2.2 Neurite outgrowth in development 6 2.3 Neurite outgrowth in neurodegenerative diseases and 8 neuroregeneration 2.4 Measurements of neurite outgrowth 10 2.4.1 Semi quantitative method 11 2.4.2 Quantitative method 11 2.4.3 Biochemical marker 13 2.5 In vitro cell line model for neurite outgrowth 15 2.6 Neuritogenic substances that promotes neurite 18 outgrowth 2.6.1 Neurotrophic factors 18 2.6.2 Neuritogenic substances from plant 20 viii 2.7 Medicinal mushrooms for neurite outgrowth 22 2.7.1 Sarcodon cyrneus Maas Geest and Sarcodon 22 scabrosus (Fr.) P. Karst 2.7.2 Hericium erinaceus (Bull.: Fr.) Pers. 27 2.7.3 Ganoderma lucidum (Fr) P. Karst,
Recommended publications
  • Antioxidant Properties of Antrodia Cinnamomea: an Extremely Rare 6 and Coveted Medicinal Mushroom Endemic to Taiwan
    Antioxidant Properties of Antrodia cinnamomea: An Extremely Rare 6 and Coveted Medicinal Mushroom Endemic to Taiwan K.J. Senthil Kumar and Sheng-Yang Wang Abstract Antrodia cinnamomea is an extremely rare and endemic fungal species native to forested regions of Taiwan. In modern Taiwanese culture, A. cinnamomea is believed to be a valuable gift from the heaven. Thereby, it is claimed as the “National Treasure of Taiwan” and “Ruby” among mushrooms.” Traditionally, A. cinnamomea was used to prepare Chinese medicine for treating various illness including liver diseases, food and drug intoxication, diarrhea, abdominal pain, hypertension, itchy skin, and tumorigenic diseases. Recent scientific studies strongly support that the pharmacological activities of A. cinnamomea go far beyond the original usage, as A. cinnamomea has exhibited various pharmaco- logical properties including anticancer, antioxidant, hepatoprotection, antihyper- tensive, antihyperlipidemic, immunomodulatory, and anti-inflammatory properties. Till date, more than 400 scientific reports have been published on the therapeutic potential of A. cinnamomea, or its closely related species Antrodia salmonea, and their compounds. In the present review, the taxonomic description of A. cinnamomea, ethnomedical value, chemical constituents, and pharmaco- logical effects particularly antioxidant and Nrf2-mediated cytoprotective effects will be discussed. Keywords Antioxidant • Antrodia cinnamomea • Antrodia salmonea • Cytoprotection • Medicinal fungus • Nrf2 K.J.S. Kumar Department of Forestry, National Chung Hsing University, Taichung, Taiwan S-Y. Wang (*) Department of Forestry, National Chung Hsing University, Taichung, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan e-mail: [email protected] © Springer Nature Singapore Pte Ltd. 2017 135 D.C. Agrawal et al. (eds.), Medicinal Plants and Fungi: Recent Advances in Research and Development, Medicinal and Aromatic Plants of the World 4, https://doi.org/10.1007/978-981-10-5978-0_6 136 K.J.S.
    [Show full text]
  • Wild Mushroom- an Underutilized Healthy Food Resource and Income Generator: Experience from Tanzania Rural Areas Tibuhwa
    JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE Wild mushroom- an underutilized healthy food resource and income generator: experience from Tanzania rural areas Tibuhwa Tibuhwa Journal of Ethnobiology and Ethnomedicine 2013, 9:49 http://www.ethnobiomed.com/content/9/1/49 Tibuhwa Journal of Ethnobiology and Ethnomedicine 2013, 9:49 http://www.ethnobiomed.com/content/9/1/49 JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE RESEARCH Open Access Wild mushroom- an underutilized healthy food resource and income generator: experience from Tanzania rural areas Donatha D Tibuhwa Abstract Background: This study documents the use of a wild edible mushroom (WEM) in Tanzania rural areas and assesses its significance as a source of healthy food and income for the disadvantaged rural dwellers. Methodology: The data was gathered through local market surveys in order to conventionally identify different common WEM taxa using a semi-structured interview and it involved 160 people comprised of WEM hunters, traders and consumers. The collected data covered the information on where, how, when and who was the principal transmitter of the mycological knowledge learned and the general information on their market and values. Results: Results show that mushroom gathering is gender oriented, dominated by women (76.25%) whereas men account for 23.75%. Women possess vast knowledge of mushroom folk taxonomy, biology and ecology and are therefore the principal knowledge transmitters. It was also found that learning about WEM began at an early age and is family tradition based. The knowledge is acquired and imparted by practices and is mostly transmitted vertically through family dissemination. The results also revealed that 75 WEM species belong to 14 families sold in fresh or dry form.
    [Show full text]
  • Revision of <I>Termitomyces</I> in China
    MYCOTAXON Volume 108, pp. 257–285 April–June 2009 Revision of Termitomyces in China T.-Z. Wei1, B.-H. Tang2 & Y.-J. Yao1, 3, * [email protected] 1Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China 2Bioengineering Department, Zhengzhou University, Zhengzhou 450001, China 3Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK Abstract — A survey of Termitomyces was carried out to clarify the species in China based on examination of more than 600 specimens, of which one third were fresh material collected from the field in this study. Among 32 Chinese records, including 26 in Termitomyces and six in Sinotermitomyces, the distribution of 11 species in China, viz. T. aurantiacus, T. bulborhizus, T. clypeatus, T. entolomoides, T. eurrhizus, T. globulus, T. heimii, T. mammiformis, T. microcarpus, T. striatus and T. tylerianus, is recognized, whilst seven are excluded because of misidentification or misapplied names, and five are unconfirmable owing to the lack of specimen support. There are nine synonyms of other known Termitomyces species, eight of which were described as new species from China. The recognized Chinese species are described in detail with discussion on their morphological variation. A key to the Chinese species is provided and discussion on other Chinese records made. Keywords — Agaricales, taxonomy, Lyophyllaceae Introduction Termitomyces is an agaric genus cultivated by termites, with basidiomata growing in association with termite nests. The relationship between Termitomyces and termites is mutualistic or symbiotic (Batra & Batra 1966, 1967, 1979, Batra 1975, Heim 1977, Bels & Pataragetivit 1982, Shaw 1992). The colonies of Termitomyces are managed by termites in their nest as “fungus gardens” and in return the fungi degrade lignin and cellulose of plant material for termites as food.
    [Show full text]
  • Under Peer Review
    UNDER PEER REVIEW Wild edible mushrooms depict a dissimilar biogeographical distribution in humid forests of Cameroon. Abstract For millennia, wild edible mushrooms (WEM) had always been considered as substantial food and medicinal sources, for local communities, both Bantu and autochthonous people. However, few information and sparse data are available on useful mushrooms of Cameroon. A study was undertaken to update the checklist of WEM in humid forests of Cameroon. From mushroom excursions, surveys and inventories, thousand fungal specimens were collected in situ , described and identified using key features and references. Wild edible mushrooms were recruited in three trophic groups. They denoted a dissimilar biogeographical national distribution. Saprophytes and Termitomyces were encountered throughout the country; ectomycorrhizal mushrooms occurred in forest clumps, only in three regions: South, Southeast and Southwest. 108 WEM were listed belonging to 17 families and 43 genera, including nearly 15 Termitomyces , 30 ectomycorrhizal and 63 saprophyte species. 15 WEM were also claimed to have medicinal properties. This vast mushroom diversity related to various specific habitats and ecological niches. Five fungal groups were considered as excellent edibles. Amanita and Boletus species were seldom consumed. Most mushroom species were harvested solely for home consumption, with the exception of Termitomyces , the only mushroom market. In fine , the diversity of WEM was very high but poorly known and weakly valorized. To fulfill the Nagoya
    [Show full text]
  • Wild Edible Mushrooms Depict a Dissimilar Biogeographical Distribution in Humid Forests of Cameroon
    Annual Research & Review in Biology 31(4): 1-13, 2019; Article no.ARRB.32472 ISSN: 2347-565X, NLM ID: 101632869 Wild Edible Mushrooms Depict a Dissimilar Biogeographical Distribution in Humid Forests of Cameroon A. N. Onguene1* and Th. W. Kuyper2 1Department of Soils, Water and Atmosphere, Institute of Agricultural Research for Development, Yaoundé, Cameroon. 2Department of Soil Quality, University of Wageningen, Netherlands. Authors’ contributions This work was carried out in collaboration between both authors. Author ANO designed the study, performed the mycological analysis and wrote the protocol and the first draft of the manuscript. Author TWK managed the analyses of the study, the literature searches. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2019/v31i430056 Editor(s): (1) Dr. Jin-Zhi Zhang, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, China. (2) Dr. George Perry, Dean and Professor of Biology, University of Texas at San Antonio, USA. Reviewers: (1) Halil Demir, Akdeniz University, Turkey. (2) Hasan Hüseyin Doğan, Selcuk University, Turkey. Complete Peer review History: http://www.sdiarticle3.com/review-history/32472 Received 14 December 2016 Original Research Article Accepted 17 April 2017 Published 06 April 2019 ABSTRACT For millennia, wild edible mushrooms (WEM) had always been considered as substantial food and medicinal sources, for local communities, both Bantu and indigenous peoples. However, few information and sparse data are available on useful mushrooms of Cameroon. A study was undertaken to update the checklist of WEM in humid forests of Cameroon. From mushroom excursions, surveys and inventories, thousand fungal specimens were collected in situ, described and identified using key features and references.
    [Show full text]
  • AR TICLE Calocybella, a New Genus for Rugosomyces
    IMA FUNGUS · 6(1): 1–11 (2015) [!644"E\ 56!46F6!6! Calocybella, a new genus for Rugosomyces pudicusAgaricales, ARTICLE Lyophyllaceae and emendation of the genus Gerhardtia / X OO !] % G 5*@ 3 S S ! !< * @ @ + Z % V X ;/U 54N.!6!54V N K . [ % OO ^ 5X O F!N.766__G + N 3X G; %!N.7F65"@OO U % N Abstract: Calocybella Rugosomyces pudicus; Key words: *@Z.NV@? Calocybella Gerhardtia Agaricomycetes . $ VGerhardtia is Calocybe $ / % Lyophyllaceae Calocybe juncicola Calocybella pudica Lyophyllum *@Z NV@? $ Article info:@ [!5` 56!4K/ [!6U 56!4K; [5_U 56!4 INTRODUCTION .% >93 2Q9 % @ The generic name Rugosomyces [ Agaricus Rugosomyces onychinus !"#" . Rubescentes Rugosomyces / $ % OO $ % Calocybe Lyophyllaceae $ % \ G IQ 566! * % @SU % +!""! Rhodocybe. % % $ Rubescentes V O Rugosomyces [ $ Gerhardtia % % . Carneoviolacei $ G IG 5667 Rugosomyces pudicus Calocybe Lyophyllum . Calocybe / 566F / Rugosomyces 9 et al5665 U %et al5665 +!""" 2 O Rugosomyces as !""4566756!5 9 5664; Calocybe R. pudicus Lyophyllaceae 9 et al 5665 56!7 Calocybe <>/? ; I G 566" R. pudicus * @ @ !"EF+!"""G IG 56652 / 566F
    [Show full text]
  • Shahina NK-BLB FTR-PDF
    NUTRITIONAL AND BIOCHEMICAL STUDIES OF WILD EDIBLE MUSHROOMS USED BY TRIBES OF PALGHAT AND WAYANAD DISTRICTS OF KERALA FINAL TECHNICAL REPORT BACK TO LAB PROGRAMME (Project Reference No: 61/WSD-BLS/2014/CSTE) WOMEN SCIENTISTS DIVISION Kerala State Council for Science, Technology and Environment (GOVT. OF KERALA) Principal Investigator: Shahina. N. K Scientist Mentor: Dr. Madhusudhanan. K Department of Botany and Research Centre, St. Albert’s College, (Autonomous) Ernakulam-682018, Kerala December 2018 AUTHORIZATION The work entitled “Nutritional and Biochemical Studies of Wild Edible Mushrooms used by Tribes of Palghat and Wayanad Districts of Kerala,” by Shahina N. K was carried out under the “Back to lab” programme of Women Scientists Division, Kerala State Council for Science Technology and Environment, Govt. of Kerala. The work was carried out at the Department of Botany & Research Centre, St. Albert’s College, Ernakulam, Kerala under the mentorship of Dr. K. Madhusudhanan, Assistant Professor. The project was initiated wide Sanction No. 661/2015/KSCSTE for the duration of 3 years with Project Reference No: 061/WSD- BLS/2014/CSTE. The project was started on 11. 12. 2015 and completed on 10. 12. 2018 with a financial expenditure of Rs. 15,94,487 (Fifteen Lakh Ninety Four Thousand Four Hundred and Eighty Seven only). ACKNOWLEDGMENTS I express my profound gratitude for the strength, courage and perseverance offered to me by Almighty God. His holy blessings on me to help me finish this arduous task on time. I am genuinely obliged to Kerala State Council for Science, Technology and Environment (KSCSTE) for the financial assistance through “Back to Lab program” of the Women Scientists Division (WSD), which enabled me to obtain an independent project and thus helped me to re enter in to the mainstream research.
    [Show full text]
  • (Congo Belge Et Afrique Noire Française). Bull. Jard
    Heim, R. 1955a. Les Lactaires d’Afrique intertropicale (Congo Belge et Afrique noire Française). Bull. Jard. Bot. Etat Brux. 25(1): 1-91. Heim, R. 1955b. Lactarius. Fl. Icon. Champ. Congo 4: 83-97, pl. 13-15. Heim, R. 1958. Termitomyces. Fl. Icon. Champ. Congo 7: 139-151, pl. 23-25. Heim, R. 1963a. La nomenclature mycologique des Lisongos. Cah. Maboké 1: 77- 85. Heim, R. 1963b. Les Termitomyces de la République centrafricaine. Cah. Maboké 1: 20-26. Heim, R. 1963c. Signes imprévus de civilisation: Les champignons des Lisongos. Sciences & Enseign. Sci. 26: 16-37. Heim, R. 1967. Etudes de mycologie centrafricaine. 2. La grande coulemelle d’Afrique équatoriale. Cah. Maboké 5: 63-66. Heim, R. 1968. Breves diagnoses latinae novitatum genericarum specificarumque nuper descriptarum. Rev. Mycol. 33(2-3): 211-217. Heim, R. 1977. Termites et champignons. Les champignons termitophiles d’Afrique noire et d’Asie méridionale. Paris, Boubée: 207 pp. Heim, R. 1978. Les champignons toxiques et hallucinogènes (2ème ed.). Paris, Boubée : 270 pp, 15 pl. Heim, R. & Cailleux, R. 1965. Culture industrielle d’une psalliote tropicale dans les régions chaudes. Cah. Maboké 3: 109-113. Heinemann, P. 1956a. Champignons récoltés au Congo belge par Mme M. Goossens- Fontana 2. Agaricus Fries s.s. Bull. Jard. Bot. Etat Brux. 26(1): 1-127. Heinemann, P. 1956b. Agaricus 1. Fl. Icon. Champ. Congo 5: 99-119, pl. 16-19. Heinemann, P. 1959. Cantharellineae. Fl. Icon. Champ. Congo 8: 153-165, pl. 26-28. Heinemann, P., 1966 – Cantharellineae du Katanga. Bull. Jard. Bot. Etat Brux. 36: 335-352. Heinemann, P.
    [Show full text]
  • Antrodia Camphorata with Potential Anti- Cancerous Activities: a Review
    Journal of Medicinal Plants Studies 2017; 5(1): 284-291 ISSN 2320-3862 JMPS 2017; 5(1): 284-291 Antrodia camphorata with potential anti- © 2017 JMPS Received: 12-11-2016 cancerous activities: A review Accepted: 13-12-2016 Dr. Rashmi A Joshi Scientist, Patanjali Herbal Dr. Rashmi A Joshi Research Department, Patanjali Research Institute, Abstract Uttarakhand, India Antrodia camphorata has long been used in traditional medicines of Taiwan for protection of diverse health related conditions as this fungal species possess over more than 78 active compounds which are responsible for its medicinal properties. These compounds are mainly terpenoids, polysaccharides, benzoquinone derivatives, succinic and maleic derivatives. The purpose of this review is to summarize available information about the anticancer activities of the crude extract and the different main bioactive compounds of A. camphorata. The clinical trials of its crude extract or pure compounds on humans are either limited or not performed, but still based on the research activities A. camphorata can be considered as an alternative synergizer or phytotherapeutic agent in the treatment of cancer and reflects that the present situation promise to prepare some medicines from it so that the mankind can be benefited. Keywords: Anticancer activities, cytotoxicity, polysaccharides, terpenoids 1. Introduction st Cancer is one of the most deadly disease in the 21 century and globally remains one of the leading cause of morbidity and mortality. After cardiovascular disease, it is the second noncommunicable diseases causing death [1-4] and is responsible for one in eight deaths worldwide, more than AIDS, tuberculosis, and malaria together [5] and accounting for about 8 million deaths worldwide [6].
    [Show full text]
  • Download Download
    IJM - Italian Journal of Mycology ISSN 2531-7342 - Vol. 50 (2021): 30-43 Journal homepage: https://italianmycology.unibo.it/ Review Agaricomycetes mushrooms (Basidiomycota) as potential neuroprotectants Susanna M. Badalyan1* and Sylvie Rapior2* 1 Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Department of Biomedicine, Yerevan State University, Yerevan, Armenia - E-mail: [email protected] 2 Laboratoire de Botanique, Phytochimie et Mycologie, CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France - E-mail: [email protected] Corresponding author e-mail: [email protected], [email protected] ARTICLE INFO Received 22/2/2021; accepted 14/4/2021 https://doi.org/10.6092/issn.2531-7342/12542 Abstract The edible and medicinal agaricoid and polyporoid mushrooms (phylum Basidiomycota, order Agaricomycetes) have long been known by humans as valuable food and medicines. They are producers of different groups of high- and low- molecular weight bioactive compounds (alkaloids, phenolics, polysaccharides, proteins, terpenoids, vitamins etc.) with around 130 therapeutic effects, including neuroprotective. Mushroom-derived biotech products are reported as effective neuroprotectants, however their potential to prevent or mitigate several neurodegenerative pathologies, such as Alzheimer and Parkinson diseases, epilepsy, depression and others has not been fully explored. This review discusses the neuroprotective potential of Agaricomycetes fungi and possibilities for their application as natural neuroprotectants. Keywords Agaricomycetes, antioxidant, anti-inflammatory, bioactive compounds, neurodegenerative, neuroprotective Introduction Neurodegeneration is incurable pathological process of progressive loss of structure and function of nerve cells, which lead to their death. In recent years age-related neurodegenerative diseases (NDD), such as Alzheimer’s, Parkinson’s and Meniere’s diseases, multiple sclerosis affecting more than 35 million people worldwide.
    [Show full text]
  • Hepatoprotective Effects of Mushrooms
    Molecules 2013, 18, 7609-7630; doi:10.3390/molecules18077609 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Hepatoprotective Effects of Mushrooms Andréia Assunção Soares 1, Anacharis Babeto de Sá-Nakanishi 1, Adelar Bracht 1, Sandra Maria Gomes da Costa 2, Eloá Angélica Koehnlein 3, Cristina Giatti Marques de Souza 1 and Rosane Marina Peralta 1,* 1 Department of Biochemistry, State University of Maringá, Maringá 87015-900, Brazil; E-Mails: [email protected] (A.S.S.); [email protected] (A.B.S.-N.); [email protected](A.B.); [email protected] (C.G.M.S.) 2 Department of Biology, State University of Maringá, Maringá 87015-900, Brazil; E-Mail: [email protected] 3 Department of Nutrition, Federal University of the Southern Frontier, Realeza 85770-000, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +55-44-3011-4715. Received: 27 May 2013; in revised form: 26 June 2013 / Accepted: 27 June 2013 / Published: 1 July 2013 Abstract: The particular characteristics of growth and development of mushrooms in nature result in the accumulation of a variety of secondary metabolites such as phenolic compounds, terpenes and steroids and essential cell wall components such as polysaccharides, β-glucans and proteins, several of them with biological activities. The present article outlines and discusses the available information about the protective effects of mushroom extracts against liver damage induced by exogenous compounds. Among mushrooms, Ganoderma lucidum is indubitably the most widely studied species. In this review, however, emphasis was given to studies using other mushrooms, especially those presenting efforts of attributing hepatoprotective activities to specific chemical components usually present in the mushroom extracts.
    [Show full text]
  • Identification and Phylogenetic Analysis of Antrodia Camphorata and Related Species Based on the Polymorphic D2 Region of LSU Rdna
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Fooyin J Health Sci 2009;1(1):33−40 ORIGINAL ARTICLE Identification and Phylogenetic Analysis of Antrodia camphorata and Related Species Based on the Polymorphic D2 Region of LSU rDNA Hua-Hsien Chiu1,2*, Feng-Ping Lee3, Jau-Kai Wang1, Chih-Chung Chou1,2 1School of Environmental and Life Sciences, Fooyin University, Kaohsiung, Taiwan 2Division of Genomic Medicine, Fooyin University Hospital, Ping Tung, Taiwan 3School of Nursing, Fooyin University, Kaohsiung, Taiwan Received: March 31, 2009 Revised: June 8, 2009 Accepted: June 9, 2009 Mushroom polysaccharides are biologically active ingredients and potentially medicinally useful. In this study, we examined the medicinal fungus Antrodia camphorata. D2 Sequences of large subunit (LSU) ribosomal DNA (rDNA) were obtained from A. camphorata and related fungal taxa using the MicroSeq D2 LSU rDNA sequencing kit. This kit was used to reveal sequence similarities and phylogenetic relationships. A matrix analysis of sequence similarity for the LSU D2 region of six A. camphorata strains—B85, B86, B71 BCRC35396, BCRC35398, and BCRC35716—displayed 100% sequence identity. Sequence similarities of 91.1%, 86.4%, 82.4% and 83.1% were found when Antrodia camphorata TF971, A. malicola, Antrodiella spp., and Trametes versicolor were compared with A. camphorata B85, respectively. A phylogenetic tree with 12 strains, generated using a maximum parsimony method, did not show much difference compared with a neighbor-joining tree. According to the sequence data obtained, phylogenetic analysis allowed us to infer the phylogenetic relationships among Antrodia, Antrodiella, and Trametes species.
    [Show full text]