Origin of Angiosperm Characters

Total Page:16

File Type:pdf, Size:1020Kb

Origin of Angiosperm Characters Origin of angiosperm characters Valentin A. Krassilov Krassilov VA 1996. Origin of angiosperm characters. Palaeobotanist45: 400-406. Models of origin for the typical angiosperm leaf, flower, stamen, pistil and double fertilization are based on evolutionary trends in proangiosperms. It is suggested that angiosperm organs are of chimeric origin, acquired by aggregation and fusion of progenitorial structures. J'hese morphological processes might involve different proangiosperm lineages in unstable (ecotonal, tectonically active) environments. An advantage of early angiosperms in such environments might be due to extended evolutionary potentials of their chimeric organs capable of acquiring new functions related to entomophily and zoochory. Key-words----Angiosperm origin, Morphology, Evolution, Proangiosperms. Valentin A. Krassilov, Palaeontological Institute, 123 Proftojusnaya, Moscow 117647, Russia. ~a:i1~aan-il~. ~. ~. '1fTlffrrv:ctft~tri~am:r-a:i1~aan-iltilmcfilFC1Cfi1mii ~ tR" ~ ~I ~ stfdlfqd ~ TfllT l ~ a:tl~do:ft\Jll WT ~ ~· tf; l"lfat"1Uf OITR CfiT ~ ~I ~ a:tiCfilR<fllll ~· ~~~it~ am:r-a:i1~ao:ft\Jll ~· CfiT ~ fcl'Cfim prrl I~ ~lt~::>il~daft;ffi4iit~Cfif4~~~-~<?f~~~cfil"~a:tT Tfl~I ANGIOSPERMS are plants of considerable structural ideal, or archetypal, rather than typical, for actually complexity including a number of characters, i.e., there could be none of the kind growing around. structural features essential for their description as a Even the expectations of finding archetypal an­ category of plant kingdom. There are characters they giosperm as a fossil are rapidly expiring with the share as well as those they do not share (or if share progress of palaeobotanical research. then reluctantly) with other plant categories. Among It is, thus, clear that the notion of angiosperm the non-shared characters, some are present in all or characters is meaningful only in comparison with majority of the hitherto studied angiosperms, the another plant category showing a number of similar It is character states alongside some dissimilar char­ the virtue which this latter category Our current no·- KRASSILOV-ORIGIN OF ANGIOSPERM CHARACTERS 401 PIATE 1 402 TIIE PALAEOBOTANIST angiosperms were taxonomically separated from giosperms, thus providing an angiosperm character gymnosperms. The mid-XIX century system-makers pool (Krassilov, 1975). Whether they all or any of have treated the both as divisions of Anthophyta, them actually gave rise to plants currently classified flowering plants, thus using the naked vs protected as angiosperms is another matter. More angiosperm ovules, and not the flower, as a principal distinction. characters are related to evolutionary trends in proan­ As far as the extant plants are concerned (and giosperms the more likely the angiosperm ancestry there was nothing else to be concerned at the time) of the latter would seem. Here I briefly summarize the the distinction is clear cut. With addition of fossil character origin models described in more details plants, such as cupuliferous pteridosperms or elsewhere (Krassilov, 1977, 1989, 1991): caytonias, it is not. On the other hand, the much 1. Proangiosperms including dirhopalostachians, debated problem whether the conifer seed-scale leptostrobaleans (czekanowskialeans), cayto­ complexes are flowers (of the same kind as the seed­ nias, and extinct gnetaleans were represented by scale complexes of grasses) or not seemed to have leptocaul trees with deciduous leafy spur shoots, been resolved by Florins (1938-1945) work on fossil shrubs and waterside - aquatic or semiaquatic - conifers showing that their seed-scales are herbs (Baisia: Krassilov & Bugdaeva, 1981). All ovuliferous shoots rather than ovuliferous leaves as these life forms might occur in early angiosperms. angiosperm carpels were then supposed to be. In Incidentally, Caspiocarpus, an early Albian an­ effect flowers were rendered typical of angiosperms giosperm from Kazakhstan with pistillate making synonymous to flowering plants. panicles attached to leafy shoots (Vachrameev & Flower itself was, with admirable circularity, defined Krassilov, 1979; Krassilov, 1991) was recons­ as a reproductive organ of flowering plants, although tructed as a herbaceous plant, and a quite similar bennettitalean flowers still posed some problems. form was then described from Koonwarra bed in when fossil data infringe a taxonomic Australia (Drinnan & Chambers, 1986). distinction the latter can nevertheless be sustained 2. The monocot-type parallel-veined leaves might either by ignoring the fossil data or by claiming the have phyllode origin (Arber, 1918) as evidenced fossil structures non-homologous - and therefore ir­ by histological studies (Kaplan, 1970) and similar relevant - to morphologically similar extant struc­ tendency in czekanowskians, gnetaleans ( tures, and both the methods have been vigorously witschia) and bennettites. Some of the by plant morphologists. Even aberrant phyllodial bracts still bearing miniature leaf living plants, such as gnetaleans, were treated in the blades (Harris, 1969; Krassilov, 1982a). same way. The morphological proximity of Cretaceous angiosperm leaves ly branching segments (Debeya, Proteophyllum, etc.), as well as Scoresbya-Sagenopteris leaf show inter- mediate shoot/leaf (caulome/ phyllome) ters (Krassilov, 1989). The typical dicot-type blade origin is modelled on the basis of segment fusion in compound leaves of peltasperms in­ cluding such supposedly proangiospermous plants as Furcula. Segment fusion by marginal meristems initially has not affected the originally open venation pattern. However, the PI.ATE 2 l. Pistillate head from the Palaeocene: of Kamchatka, x 20 (Maslova 4. Lemnoid fruit from the Maastrichtian of Mongolia. SEM, x 70 & Krassilov. in press). (Krassilov & Makulbekov, in press). 2. Individual flower of the same, SEM, x 30. 5. Ovule of the same showing funicle and embryo cap, SEM, x 10. 3. Flower showing distinct staminodes (s) and interfloral phyllomes (i), SEM, x 30. 6. Funicle of the same, SEM, 660. KRASSILOV-ORIGIN OF ANGIOSPERM CHARACTERS 403 PIATE 2 404 THE PALAEOBOTANIST hopalostachians. Some early angiospem flowers still retained a little modified anthocorm mor­ phology (Dilcher, 1979). Moreover, distinct inter­ floral phyllomes were recently found in florets of Palaeocene hamamelid heads (Maslova & Kras­ A silov, in press; Pl. 2, figs 1-3) indicating their primary rather than derived character in an­ giosperms. 5. Stamen origin is modelled on Meeusella, a staminate shoot with lateral branches bearing a pair of stalked sporangial heads (Krassilov & Bugdaeva, 1988; Pl. 1, fig. 3). Some lateral branches are sterile. The sporangial stalks­ second order branches, are of variable length along the axis. In the case of their extreme reduc­ tion the paired sporangial heads are sessile, with the primary branch apex protruding between them as a connective of bithecate anther. The latter thus might derive from a pair of second E order sporangiate branches while reduction of Text-figure I-Reconstruction of proangiospenn cupules: A- Lep­ the main axis would give a fascicle of stamens. tostrobus, B-Dtnopbyton, C-Eoantha, D-Batsia,. E-Caytonta and This model implies primary nature of fasciculate putative prototype with distinct subtending bract (after Krassilov, stamens (cf. Pauze & Sattler, 1978) as well as 1969). paired stamens, as in Saururaceae (Tucker, 1985) meristem occurring within the aggregate leaf and possibly also stamens with sterile ap­ blade might give rise to plate meristem which pendages (derived from sterile lateral branches mediated looping of the former midveins and, of Meeusella prototype), as in Monimiaceae and within the primary loops, oflateral veins and their Lauraceae. branches, thus forming areolate venation of 6. The tricolpate and triporate pollen grains appear­ several orders (Krassilov, 1991, 1995; Plate 1). ing rather early in the fossil record have no ob­ 3. The long debated homology of vessels in vious precursors among proangiosperms. How­ gnetaleans and angiosperms has been convinc­ ever, the monosulcate fossil pollen grains of ingly demons-trated by Muhammed and Sattler Eucommiiditestype have a zonal equatorial fur­ (1982). In addition, tracheid-like vessels with row (Hughes, 1994) or two additional furrows simple porous and scalariform perforation plates parallel to the sulcus. These furrows are scars of were found in bennettitalean leaf veins (Kras­ reduced sacci of monosaccate or bisaccate pollen silov, 1982a) evidencing the occurrence of this grains occurring in .caytonialeans and other character in more than one proangiosperm proangiosperms. A polarity change along is re­ groups. quired to transform Eucommiidites into tricolpate 4. Anthocorm model of angiosperm flower pollen grain of primitive angiosperms. Porate or (Meeuse, 1975) is supported by the occurrence of pseudoporate appertures first appeared in Clas­ anthocorms--essentially short shoots with apical sopollis, fossil pollen traditionally assigned to dusters of pistillate or staminate organs or both conifers but referred to extinct gnetaleans by mixed with interfloral phyllomes ( sterile leaves Krassilov Cl982b). Recently clumps of Classopol­ or cataphylls">--:-in several proangiosperm lis have been found in the guts ofJurassic insects groups, such as Irania, bennettites, czekano­ (Pl. 1, figs 4-6) evidencing pollinivory and possib­ wskias and possibly also caytonialeans and dir- ly entomophily. In these pollen grains the pore KRASSILOV-ORIGIN OF ANGIOSPERM CHARACTERS
Recommended publications
  • The Big Bloom—How Flowering Plants Changed the World
    The Big Bloom—How Flowering Plants Changed the World Written by Michael Klesius Republished from the pages of National Geographic magazine -- July 2002 In the summer of 1973 sunflowers appeared in my father's vegetable garden. They seemed to sprout overnight in a few rows he had lent that year to new neighbors from California. Only six years old at the time, I was at first put off by these garish plants. Such strange and vibrant flowers seemed out of place among the respectable beans, peppers, spinach, and other vegetables we had always grown. Gradually, however, the brilliance of the sunflowers won me over. Their fiery halos relieved the green monotone that by late summer ruled the garden. I marveled at birds that clung upside down to the shaggy, gold disks, wings fluttering, looting the seeds. Sunflowers defined flowers for me that summer and changed my view of the world. Flowers have a way of doing that. They began changing the way the world looked almost as soon as they appeared on Earth about 130 million years ago, during the Cretaceous period. That's relatively recent in geologic time: If all Earth's history were compressed into an hour, flowering plants would exist for only the last 90 seconds. But once they took firm root about 100 million years ago, they swiftly diversified in an explosion of varieties that established most of the flowering plant families of the modern world. Today flowering plant species outnumber by twenty to one those of ferns and cone-bearing trees, or conifers, which had thrived for 200 million years before the first bloom appeared.
    [Show full text]
  • Ordovician Land Plants and Fungi from Douglas Dam, Tennessee
    PROOF The Palaeobotanist 68(2019): 1–33 The Palaeobotanist 68(2019): xxx–xxx 0031–0174/2019 0031–0174/2019 Ordovician land plants and fungi from Douglas Dam, Tennessee GREGORY J. RETALLACK Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA. *Email: gregr@uoregon. edu (Received 09 September, 2019; revised version accepted 15 December, 2019) ABSTRACT The Palaeobotanist 68(1–2): Retallack GJ 2019. Ordovician land plants and fungi from Douglas Dam, Tennessee. The Palaeobotanist 68(1–2): xxx–xxx. 1–33. Ordovician land plants have long been suspected from indirect evidence of fossil spores, plant fragments, carbon isotopic studies, and paleosols, but now can be visualized from plant compressions in a Middle Ordovician (Darriwilian or 460 Ma) sinkhole at Douglas Dam, Tennessee, U. S. A. Five bryophyte clades and two fungal clades are represented: hornwort (Casterlorum crispum, new form genus and species), liverwort (Cestites mirabilis Caster & Brooks), balloonwort (Janegraya sibylla, new form genus and species), peat moss (Dollyphyton boucotii, new form genus and species), harsh moss (Edwardsiphyton ovatum, new form genus and species), endomycorrhiza (Palaeoglomus strotheri, new species) and lichen (Prototaxites honeggeri, new species). The Douglas Dam Lagerstätte is a benchmark assemblage of early plants and fungi on land. Ordovician plant diversity now supports the idea that life on land had increased terrestrial weathering to induce the Great Ordovician Biodiversification Event in the sea and latest Ordovician (Hirnantian)
    [Show full text]
  • The Paleohistory of California Oaks1
    1 The Paleohistory of California Oaks 2 Scott Mensing Abstract Oak woodlands are a fixture of California geography, yet as recently as 10,000 years ago oaks were only a minor element in the landscape. The first fossil evidence for California’s oaks is in the early Miocene (~20 million years ago) when oaks were present across the west, intermixed with deciduous trees typical of eastern North America. As climate became drier, species dependent upon summer precipitation went locally extinct and oaks retreated west of the Sierra Nevada. During the Pleistocene (the last 2 million years) oak abundance declined during cool glacial periods and expanded during warm interglacials. After the last glacial maximum (~18,000 years ago), oaks expanded rapidly to become the dominant trees in the Coast Ranges, Sierra Nevada foothills, and Peninsular Ranges. During the Holocene (the last 10,000 years) oaks in the Sierra Nevada were most abundant during a warm dry period between 8000 and 6000 years ago. Native American use of fire to manipulate plants for food, basketry, tools, and other uses helped maintain oak woodlands and reduce expansion of conifers where these forest types overlapped. Fire suppression, initiated by the Spanish and reinforced during the American period has allowed oak woodland density to increase in some areas in the Coast Range, but has decreased oaks where pines are dominant. Extensive cutting of oaks has reduced their populations throughout much of the state. Key words: California, oak woodlands, paleoecology, Quercus, vegetation history Introduction Oak woodlands characterize much of the California landscape, but widespread oak communities are of relatively recent origin in the state.
    [Show full text]
  • Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation
    i1 Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation William A. DiMichele, William E. Stein, and Richard M. Bateman DiMichele, W.A., Stein, W.E., and Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: W.D. Allmon and D.J. Bottjer, eds. Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. pp. 285-335 THE DISTINCTIVE BODY PLANS of vascular plants (lycopsids, ferns, sphenopsids, seed plants), corresponding roughly to traditional Linnean classes, originated in a radiation that began in the late Middle Devonian and ended in the Early Carboniferous. This relatively brief radiation followed a long period in the Silurian and Early Devonian during wrhich morphological complexity accrued slowly and preceded evolutionary diversifications con- fined within major body-plan themes during the Carboniferous. During the Middle Devonian-Early Carboniferous morphological radiation, the major class-level clades also became differentiated ecologically: Lycopsids were cen- tered in wetlands, seed plants in terra firma environments, sphenopsids in aggradational habitats, and ferns in disturbed environments. The strong con- gruence of phylogenetic pattern, morphological differentiation, and clade- level ecological distributions characterizes plant ecological and evolutionary dynamics throughout much of the late Paleozoic. In this study, we explore the phylogenetic relationships and realized ecomorphospace of reconstructed whole plants (or composite whole plants), representing each of the major body-plan clades, and examine the degree of overlap of these patterns with each other and with patterns of environmental distribution. We conclude that 285 286 EVOLUTIONARY PALEOECOLOGY ecological incumbency was a major factor circumscribing and channeling the course of early diversification events: events that profoundly affected the structure and composition of modern plant communities.
    [Show full text]
  • Fundamentals of Palaeobotany Fundamentals of Palaeobotany
    Fundamentals of Palaeobotany Fundamentals of Palaeobotany cuGU .叮 v FimditLU'φL-EjAA ρummmm 吋 eαymGfr 伊拉ddd仇側向iep M d、 況 O C O W Illustrations by the author uc削 ∞叩N Nn凹創 刊,叫MH h 咀 可 白 a aEE-- EEA First published in 1987 by Chapman αndHallLtd 11 New Fetter Lane, London EC4P 4EE Published in the USA by Chα~pman and H all 29 West 35th Street: New Yo地 NY 10001 。 1987 S. V. M秒len Softcover reprint of the hardcover 1st edition 1987 ISBN-13: 978-94-010-7916-7 e-ISBN-13: 978-94-009-3151-0 DO1: 10.1007/978-94-009-3151-0 All rights reserved. No part of this book may be reprinted, or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the publisher. British Library Cataloguing in Publication Data Mey凹, Sergei V. Fundamentals of palaeobotany. 1. Palaeobotany I. Title 11. Osnovy paleobotaniki. English 561 QE905 Library 01 Congress Catα loging in Publication Data Mey凹, Sergei Viktorovich. Fundamentals of palaeobotany. Bibliography: p. Includes index. 1. Paleobotany. I. Title. QE904.AIM45 561 8ι13000 Contents Foreword page xi Introduction xvii Acknowledgements xx Abbreviations xxi 1. Preservation 抄'pes αnd techniques of study of fossil plants 1 2. Principles of typology and of nomenclature of fossil plants 5 Parataxa and eutaxa S Taxa and characters 8 Peculiarity of the taxonomy and nomenclature of fossil plants 11 The binary (dual) system of fossil plants 12 The reasons for the inflation of generic na,mes 13 The species problem in palaeobotany lS The polytypic concept of the species 17 Assemblage-genera and assemblage-species 17 The cladistic methods 18 3.
    [Show full text]
  • Late Devonian Spermatophyte Diversity and Paleoecology at Red Hill, North-Central Pennsylvania, U.S.A. Walter L
    West Chester University Digital Commons @ West Chester University Geology & Astronomy Faculty Publications Geology & Astronomy 2010 Late Devonian spermatophyte diversity and paleoecology at Red Hill, north-central Pennsylvania, U.S.A. Walter L. Cressler III West Chester University, [email protected] Cyrille Prestianni Ben A. LePage Follow this and additional works at: http://digitalcommons.wcupa.edu/geol_facpub Part of the Geology Commons, Paleobiology Commons, and the Paleontology Commons Recommended Citation Cressler III, W.L., Prestianni, C., and LePage, B.A. 2010. Late Devonian spermatophyte diversity and paleoecology at Red Hill, north- central Pennsylvania, U.S.A. International Journal of Coal Geology 83, 91-102. This Article is brought to you for free and open access by the Geology & Astronomy at Digital Commons @ West Chester University. It has been accepted for inclusion in Geology & Astronomy Faculty Publications by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact [email protected]. ARTICLE IN PRESS COGEL-01655; No of Pages 12 International Journal of Coal Geology xxx (2009) xxx–xxx Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Late Devonian spermatophyte diversity and paleoecology at Red Hill, north-central Pennsylvania, USA Walter L. Cressler III a,⁎, Cyrille Prestianni b, Ben A. LePage c a Francis Harvey Green Library, 29 West Rosedale Avenue, West Chester University, West Chester, PA, 19383, USA b Université de Liège, Boulevard du Rectorat B18, Liège 4000 Belgium c The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA, 19103 and PECO Energy Company, 2301 Market Avenue, S9-1, Philadelphia, PA 19103, USA article info abstract Article history: Early spermatophytes have been discovered at Red Hill, a Late Devonian (Famennian) fossil locality in north- Received 9 January 2009 central Pennsylvania, USA.
    [Show full text]
  • Ferns from the Chinle Formation (Upper Triassic) in the Fort Wingate Area, New Mexico
    Ferns From the Chinle Formation (Upper Triassic) in the Fort Wingate Area, New Mexico GEOLOGICAL SURVEY PROFESSIONAL PAPER 613-D Ferns From the Chinle Formation (Upper Triassic) in the Fort Wingate Area, New Mexico By SIDNEY R. ASH CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 613-D Revision ofJive Late Triassic ferns and a review of previous paleobotanical investigations in the Triassic formations of the Southwest UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price ?1.00 (paper cover) CONTENTS Page Summary of pre-Cenozoic stratigraphy Continued !*w Abstract.__________________________________________ Dl Permian System_______-____----__-_-_-----____- D17 Introduction. ______________________________________ 1 Glorieta Sandstone___________-_----____-__ 17 Acknowledgments. _____________________________ 4 San Andres Limestone.____________________ 17 Previous investigations ______________________________ 4 Unconformity between the Permian and Triassic U.S. Army exploring expeditions..________________ 5 rocks._______-_-______-__--_--_-----_--_-_-__ 19 Washington expedition._____________________ 5 Triassic System_______________________________ 19 Sitgreaves expedition._______________________ 5 Moenkopi(?) Formation.____________________ 19 Whipple expedition _________________________ 5 Pre-Chinle
    [Show full text]
  • Megaphylls, Microphylls and the Evolution of Leaf Development
    Opinion Megaphylls, microphylls and the evolution of leaf development Alexandru M.F. Tomescu Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA Originally coined to emphasize morphological differ- However, the microphyll–megaphyll divide is not as ences, ‘microphyll’ and ‘megaphyll’ became synon- clear cut, and morphological definitions that contrast ymous with the idea that vascular plant leaves are not microphylls and megaphylls as mutually exclusive con- homologous. Although it is now accepted that leaves cepts of leaves are inconsistent. Moreover, current under- evolved independently in several euphyllophyte standing of plant phylogeny and leaf development fails to lineages, ‘megaphyll’ has grown to reflect another type shed light on the origin of microphylls, and supports of homology, that of euphyllophyte leaf precursor struc- several independent origins of megaphylls. Here, I review tures. However, evidence from the fossil record and plant phylogeny and developmental data from fossil and developmental pathways fails to indicate homology extant trachephytes, as well as the current understanding and suggests homoplasy of precursor structures. Thus, of genetic pathways controlling leaf development, to argue as I discuss here, ‘megaphyll’ should be abandoned that the megaphyll concept should be abandoned because because it perpetuates an unsupported idea of it perpetuates misconceptions and confusion based on homology, leading to misconceptions that pervade plant unsupported homology. biology thinking and can bias hypothesis and inference in developmental and phylogenetic studies. Alternative Morphological inconsistencies and overlap in the definitions are needed that are based on development microphyll–megaphyll dichotomy and phylogeny for different independently evolved leaf Microphylls are defined as leaves of small size, with simple types.
    [Show full text]
  • Unit-V PALEOBOTANY )
    CORE COURSE II PLANT BIODIVERSITY II (Unit-V PALEOBOTANY ) Concepts of Paleobotany, A general account on Geological Time Scale. Techniques for paleobotanical study. Fossil types: Compressions, incrustation, casts, molds, petrifactions, coalballs and compactions. Age determination and methods of study of fossils. Systematic and Nomenclature of fossil plants. Paloclimates and fossil plants. Role of fossil in oil exploration and coal excavation, Paleopalynology. Palaeobotany is the study of fossil plants. These fossils are found in the layers of earth and certain layers of rocks. It is also spelled as Palaeobotany (Gr. Palaeon = old; botany = study of plants). It is the branch of Palaeology. It deals with the identification of the plant remains from geological contexts and use for the biological construction of the plant environments (paleography) and both the evolutionary history of plants with a bearing upon the evolution of life in general. Palaeobotany includes the study of terrestrial plant fossils as well as the study of prehistoric marine autotrophs such as photo synthetic algae, weeds or kelps. Its synonym is Palaeophytology. A closely related field is palynology which is the study of fossilized and extinct spores and pollens. Stenbery (1761-1838) is known as the father of Palaeobotany. The most ancient plant fossils were microscopic algae that lived more than one billion years ago during Precambrian times. Concept of Paloebotany: Palaeobotany is the study of fossil plants. , i.e., the plants existed in the past and now are entirely extinct. These fossils are found in the layers of earth and certain layers of rocks. It is also spelled as Palaeobotany (Gr.
    [Show full text]
  • Seedless Plants 14.3: Seed Plants: Gymnosperms 14.4: Seed Plants: Angiosperms
    Concepts of Biology Chapter 14 | Diversity of Plants 325 14 | DIVERSITY OF PLANTS Figure 14.1 Plants dominate the landscape and play an integral role in human societies. (a) Palm trees grow in tropical or subtropical climates; (b) wheat is a crop in most of the world; the flower of (c) the cotton plant produces fibers that are woven into fabric; the potent alkaloids of (d) the beautiful opium poppy have influenced human life both as a medicinal remedy and as a dangerously addictive drug. (credit a: modification of work by “3BoysInSanDiego”/Wikimedia Commons”; credit b: modification of work by Stephen Ausmus, USDA ARS; credit c: modification of work by David Nance, USDA ARS; credit d: modification of work by Jolly Janner) Chapter Outline 14.1: The Plant Kingdom 14.2: Seedless Plants 14.3: Seed Plants: Gymnosperms 14.4: Seed Plants: Angiosperms Introduction Plants play an integral role in all aspects of life on the planet, shaping the physical terrain, influencing the climate, and maintaining life as we know it. For millennia, human societies have depended on plants for nutrition and medicinal compounds, and for many industrial by-products, such as timber, paper, dyes, and textiles. Palms provide materials 326 Chapter 14 | Diversity of Plants including rattans, oils, and dates. Wheat is grown to feed both human and animal populations. The cotton boll flower is harvested and its fibers transformed into clothing or pulp for paper. The showy opium poppy is valued both as an ornamental flower and as a source of potent opiate compounds. Current evolutionary thought holds that all plants are monophyletic: that is, descendants of a single common ancestor.
    [Show full text]
  • Alexandru Mihail Florian Tomescu, Ph.D. Curriculum Vitae
    Alexandru Mihail Florian Tomescu, Ph.D. Curriculum Vitae Department of Biological Sciences 1 Harpst Street Humboldt State University Arcata, California 95521-8299 USA ORCID: 0000-0002-2351-5002 Phone: (+1) 707-826-3229 (office) / Fax: (+1) 707-826-3201 [email protected] Tomescu Lab Group web page: http://mihaibotany.online/#welcome Humboldt State University faculty web page: http://www.humboldt.edu/~biosci/faculty/tomescu.htm Academic Background Ph.D., Biological Sciences – Environmental and Plant Biology, Ohio University, Athens, Ohio. 2004. Advisor: Dr. Gar W. Rothwell. Late Ordovician - Early Silurian terrestrial biotas of Virginia, Ohio, and Pennsylvania: an investigation into the early colonization of land M.S., Geology (Paleobotany and Palynology), University of Bucharest, Romania. 1993. Advisor: Dr. Ovidiu Dragastan. The palynology of Pliocene coal-bearing deposits of Oltenia (SW Romania) Professional Experience and Appointments 2016-present – Professor, Department of Biological Sciences, Humboldt State University, Arcata CA. 2011-2016 – Associate Professor, Department of Biological Sciences, Humboldt State University, Arcata CA. 2005-2011 – Assistant Professor, Department of Biological Sciences, Humboldt State University, Arcata CA. 2005-2006 – Visiting Scholar (summer), Department of Geological Sciences, Indiana University, Bloomington IN. 1999-2004 – Graduate Teaching Assistant, Department of Environmental and Plant Biology, Ohio University, Athens OH. 1999-2003 – Scientific Imaging Facility technician, Ohio University, Athens OH. 1999 – Archeological field camp supervisor for the National Center for Pluridisciplinary Research, National History Museum of Romania. 1997-1999 – Research team leader, National Center for Pluridisciplinary Research, National History Museum of Romania. 1997-1998 – Adjunct lecturer, Department of Geology and Geophysics, University of Bucharest (Romania). 1996-1997 – Archeological field camp manager for the National Center for Pluridisciplinary Research, National History Museum of Romania.
    [Show full text]
  • Embryophyta - Jean Broutin
    PHYLOGENETIC TREE OF LIFE – Embryophyta - Jean Broutin EMBRYOPHYTA Jean Broutin UMR 7207, CNRS/MNHN/UPMC, Sorbonne Universités, UPMC, Paris Keywords: Embryophyta, phylogeny, classification, morphology, green plants, land plants, lineages, diversification, life history, Bryophyta, Tracheophyta, Spermatophyta, gymnosperms, angiosperms. Contents 1. Introduction to land plants 2. Embryophytes. Characteristics and diversity 2.1. Human Use of Embryophytes 2.2. Importance of the Embryophytes in the History of Life 2.3. Phylogenetic Emergence of the Embryophytes: The “Streptophytes” Concept 2.4. Evolutionary Origin of the Embryophytes: The Phyletic Lineages within the Embryophytes 2.5. Invasion of Land and Air by the Embryophytes: A Complex Evolutionary Success 2.6. Hypotheses about the First Appearance of Embryophytes, the Fossil Data 3. Bryophytes 3.1. Division Marchantiophyta (liverworts) 3.2. Division Anthocerotophyta (hornworts) 3.3. Division Bryophyta (mosses) 4. Tracheophytes (vascular plants) 4.1. The “Polysporangiophyte Concept” and the Tracheophytes 4.2. Tracheophyta (“true” Vascular Plants) 4.3. Eutracheophyta 4.3.1. Seedless Vascular Plants 4.3.1.1. Rhyniophyta (Extinct Group) 4.3.1.2. Lycophyta 4.3.1.3. Euphyllophyta 4.3.1.4. Monilophyta 4.3.1.5. Eusporangiate Ferns 4.3.1.6. Psilotales 4.3.1.7. Ophioglossales 4.3.1.8. Marattiales 4.3.1.9. Equisetales 4.3.1.10. Leptosporangiate Ferns 4.3.1.11. Polypodiales 4.3.1.12. Cyatheales 4.3.1.13. Salviniales 4.3.1.14. Osmundales 4.3.1.15. Schizaeales, Gleicheniales, Hymenophyllales. 5. Progymnosperm concept: the “emblematic” fossil plant Archaeopteris. 6. Seed plants 6.1. Spermatophyta 6.1.1. Gymnosperms ©Encyclopedia of Life Support Systems (EOLSS) PHYLOGENETIC TREE OF LIFE – Embryophyta - Jean Broutin 6.1.2.
    [Show full text]