Early Jurassic Selachians from the Hasle Formation on Bornholm, Denmark

Total Page:16

File Type:pdf, Size:1020Kb

Early Jurassic Selachians from the Hasle Formation on Bornholm, Denmark Early Jurassic selachians from the Hasle Formation on Bornholm, Denmark JAN REES Rees, J. 1998. Early Jurassic selachians from the Hasle Formation on Bornholm, Den- mark. - Acta Palaeontologica Polonica 43,3,439452. A selachian fauna from the early Pliensbachian (Uptonia jamesoni to Prodactylioceras davoei zones) is recorded from the Hasle Formation on the island of Bornholm. Three hybodont sharks, Hyb,odus reticulatus, H. delabechei and Lissodus hnsleensis sp. n., and three neoselachians, Synechodus occultidens, Paraorthacodus sp. andAgaleus dorseten- srs, are recognized in the fauna. The enameloid ultrastructure of teeth of A. dorsetensis was examined and found to be comprised of at least two layers, confirming a neosela- chian affinĘ, based on the overall tooth morphology. The palaeogeographical and stratigraphical records of the previously described species are extended. Plienslachian selachian faunas are not well investigated and the descńbed species in the Hasle fauna are all known from Sinemurian deposits elsewhere. K e y w o r d s : Selachians, hybodonts, neoselachians, palaeobiogeography, palaeoeco- logy, Pliensbachian, Early Jurassic, Bornholm, Denmark. Jan Rees pan.Rees@ geol.lu.se], Department of Geology, Lund University, Sólvegatan 13, SE-223 62 Lund, Sweden. Introduction Early Jurassic selachian faunas are dominatedby two groups, the euselachianhybo- donts and the neoselachianpalaeospinacids. The earliest certain records of hybodont sharks are from the Visóan, Early Carboniferous(Duffin 1985).They may originate, howevel as far back as the mid-Devontan(Zangerl 1981).fiie latestrecords are from the Maastrichtian, Late Cretaceous (Cappetta et al. 1993). The most characteristic externalfeatures of a hybodont shark are the large dorsal fin spines and, in malesoone or two pairs of cephalic spines, the latter featurebeing exclusive to the group. They inhabitedrivers, estuariesand lagoons as well as coastal marine environments.Fluvi- atile environments appear to be more frequently inhabited in the Early Cretaceous, or even the Late Jurassic, onwards.The decreaseof hybodontsin marine environments was probably due to overwhelmingcompetition with the rapidly diversĘing neosela- 440 Jurassic selachians : REES Fig. 1. A. General location of the island of Bornholm. B. The coastal cliff section with the type locality of the Hasle Formation marked with a star. chians. The enameloidof hybodont teethconsists of only one layer (single-crystallite enamel of Reif 1973), whereas most neoselachians have three layers making the teeth more resistant to breakage.The simple enameloid structurein hybodont teeth may explain why hybodontsrarely developeda cutting-typedentition with labio-lingually flattenedteeth. Palaeospinacid sharks are an extinct grrup of neoselachians,possibly ranging from the Early Triassic (Thies 1982). The earliest certain records are from the Ladinian, Middle Triassic, of Canada (Johnset ąl.1997). The latestoccuffences are from the Late Palaeocene (Cappetta et aI. 1993).Externally, palaeospinacid sharks are characterisedby att elongatedbody with a subterminalmouth and two dorsal fin spines (Cappetta 1987). The vertebral centra are calcified and there are many diagnostic cranial features,as well as an amphistylic jaw suspension(see Maisey 1985). Palaeospinacid teeth form a clutching type dentition and the root of the teeth is at a pseudopolyaulacorhize stage(Cappetta 1987).They have been the subject of a heateddebate in recent years (Thies I99I, 1993;Cappetta 1987, 199f; Duffin & Ward 1993). The most important result of this controversy came in 1993 when Duffin & Ward, in a paper on the palaeospinacidsof Lyme Regis, concluded that the type species of Palaeospinax, P. priscus, is a nomen dubium since its holotype consists of a single row of vertebrae,lacking generic or specific characters.Species previously referred to PąIaeospinax were reassignedto either of the two remaining valid genera in the family, Paraorthacodus and Synechodus. Geology and biostratigraphy The island of Bornholm (Fig. 1) is part of the Fenno-Scandian Border Znne and constitutesa fault block mosaic (Gravesen et al. 1982). Sporadic outcrops of Early Jurassic strataare exposedin the south-westernpart of the island and are dominatedby ACTA PALAEONTOLOGTCA POLOMCA (43) (3) 441 deltaic and lacustrine deposits.However, due to an early Pliensbachian transgression (Hallam 1975),the limonitic sandstonesand siltstonesof the Hasle Formation were primarily deposited in a shallow marine environment. The dominating sedimentary structuresof the formation include hummocky cross-stratificationand thin, poorly sorted,gravel laminae' representingerosional surfaces(Gravesen et ąl. |98f).Deposi- tion took place at a depth of 10-40 meters on the open shelf, one or two kilometres from the coast line (Surlyk & Noe-Nygaard 1986).The sedimentarystructures show that sedimentation was active during storms that were either frequent or so vigorous that they erodedall fair-weatherdeposits. The age of the formation has been determinedby means of ammonitesto include the Zones of Uptonia jamesoni to ProdacĘIioceras davoei in the early Pliensbachian (Gravesen et al. 1982). Invertebrate fossils are very scarce in the section yielding selachianremains and it has not been possible to make a more precise age determination. Material and methods All fossils describedherein were collected during thę last decadeat the type locality of the Hasle Formation,situated along the coast,south of the harbourin the town of Hasle (Fig. 1B). The strataare exposed along the shore for approximately700 meters.The sandstonesare often too consolidatedto make bulk processingsuccessful. As a result, most of the selachianmaterial in this study was obtainedthrough surfacepicking. tn places, weatheńnghas softenedthe sandstoneallowing some bulk sampling.In total 18 kg were gently wet sieved and the residue above 500 pm was picked. Prior to photography,the large teeth were coated with ammonium chloride, while small teethwere coatedwith gold and photographedusing a SEM. The ultrastructureof the teethwas examined with a SEM after etching the teethwith 5 N hydrochloric acid (HCl) for 10 to 30 secondsand then coating themwith gold (see Reif 1973:p. 23f). Systematic palaeontology Genęral systematics,taxonomy and descriptive terminology for palaeospinacidsfol- low those of Cappetta (1987). Descriptive terminology for Agalerzs follows that of Duffin & Ward (1983)and terminology for hybodontsis modified from Duffin (1985) and shown in Fig. 2. All illustrated specimens are deposited in the Ępe collection of the Division of Historical Geology and Palaeontology,Lund University, Sweden and prefixed LO (Lund Original). The suffix 'T' denotes holotype and 't' denotes other illustrated specimens. Cohort Euselachii Hayo 1902 Superfamily Hybodontoidea Zangerl, 198 L Remarks. - As a result of the extreme rarity of skeletal remains or even associated teeth from single individuals, the interrelationships andtaxonomy of hybodonts is complicated. Arevision of hybodont 44f Jurassic selachians : REES cutting edge veńical ridges centralcusp lateralcusplets crownshoulder labial node ridge crown- root irregular junction foramina 0\000 e00( D rootbuttress labialpeg occlusalcrest F'tr B Fig.2. A generalizedhybodont shark tooth in labial (A) and occlusal @) views, showing descriptiveterms used in the text. taxonomy and systematics is greatly needed, as a few genera may be paraphyletic or even poly- phyletic. This is, however, beyond the scope of this paper and I will consequentĘ follow the current taxonomy. Family Hybodontidae Owen, 1846 Genus Hybodus Agassiz, 1837 Type species; Hybodus reticulatus Agassiz, 1837 from the Sinemurian, Early Jurassic of Lyme Regis, England. Hyb odus reticulatus Agassi z, 1837 Fig.3G-L. Hybodus reticulatus Agassiz 1837: p.50, pl. 22:22-23. Hybodus reticulatus Agassiz, 1837;Woodward 1889:p. 266-268,p1. 10: 16-18. Hybodus reticulatus Agassiz, L837; Malling & GrÓnwa]l 1909:p.f94,pl.II If. Hybodus reticulatus Agassiz, 1837;Maisey 1987:p. 1-39, figs 1:7,9-I3,18. Hybodus reticulatus Agassiz, 1837; Duffin 1993: p. 49 , ftg Id. Hybodus reticulatus Agassiz, 1837;Delsate & Duffin 1993:p. 110, pl. 1: 1 Material. -fI incomplete crowns, LO7953t,LO 7954t and LO 7955t, all others unnumbered. Description. - The teeth have a high central cusp and two to three pairs of lateral cusplets. All teeth are approximately as high as they are wide. The largest tooth measures 11 mm in height. The central cusp and the lateral cusplets are slender with circular to oval cross section. The cusp and the cusplets of lateral teeth are stightly inclined posteńorly. The cusplets vary from being very small elevations of the occlusal crest to reaching approximately one quarter of the height of the central cusp. Ornamentation consists of weak vertical ridges, occasionally bifurcating, covering the crown except for the apex of the central cusp. The cutting edges are moderately strong. The labial and lingual sides are equally convex. Monognathic heterodonĘ in this species is manifested by differen- ACTA PALAEONTOLOGTCA POLONTCA (43) (3) 443 Fig. 3. Hybodusteeth and hybodontfin spine.A. Hybodontfin spine,LO 7963tx 1.8.B-F. H. delabechei Charlesworth,1839 x 1.6.B-D. LO 7956tin labial (B), lingual (C), and occlusal(D) views (stereopair). E, F. LO 7957tinlabial (E) andlingual (F) views.G-L H. reticulatusAgassiz, 1837 x 3.5.G, H. LO 7953t in labial(G) andlingual (H) views.I, J. LO l954tin labial(I) andlingual (J) views.K, L. LO 7955tin lingual (K) and
Recommended publications
  • Papers in Press
    Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe).
    [Show full text]
  • A Late Permian Ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region
    bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A late Permian ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region 2 3 Darja Dankina-Beyer1*, Andrej Spiridonov1,4, Ģirts Stinkulis2, Esther Manzanares3, 4 Sigitas Radzevičius1 5 6 1 Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania 7 2 Chairman of Bedrock Geology, Faculty of Geography and Earth Sciences, University 8 of Latvia, Riga, Latvia 9 3 Department of Botany and Geology, University of Valencia, Valencia, Spain 10 4 Laboratory of Bedrock Geology, Nature Research Centre, Vilnius, Lithuania 11 12 *[email protected] (DD-B) 13 14 Abstract 15 The late Permian is a transformative time, which ended in one of the most 16 significant extinction events in Earth’s history. Fish assemblages are a major 17 component of marine foods webs. The macroevolution and biogeographic patterns of 18 late Permian fish are currently insufficiently known. In this contribution, the late Permian 19 fish fauna from Kūmas quarry (southern Latvia) is described for the first time. As a 20 result, the studied late Permian Latvian assemblage consisted of isolated 21 chondrichthyan teeth of Helodus sp., ?Acrodus sp., ?Omanoselache sp. and 22 euselachian type dermal denticles as well as many osteichthyan scales of the 23 Haplolepidae and Elonichthydae; numerous teeth of Palaeoniscus, rare teeth findings of 1 bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • New Chondrichthyans from Bartonian-Priabonian Levels of Río De Las Minas and Sierra Dorotea, Magallanes Basin, Chilean Patagonia
    Andean Geology 42 (2): 268-283. May, 2015 Andean Geology doi: 10.5027/andgeoV42n2-a06 www.andeangeology.cl PALEONTOLOGICAL NOTE New chondrichthyans from Bartonian-Priabonian levels of Río de Las Minas and Sierra Dorotea, Magallanes Basin, Chilean Patagonia *Rodrigo A. Otero1, Sergio Soto-Acuña1, 2 1 Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile. [email protected] 2 Área de Paleontología, Museo Nacional de Historia Natural, Casilla 787, Santiago, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. Here we studied new fossil chondrichthyans from two localities, Río de Las Minas, and Sierra Dorotea, both in the Magallanes Region, southernmost Chile. In Río de Las Minas, the upper section of the Priabonian Loreto Formation have yielded material referable to the taxa Megascyliorhinus sp., Pristiophorus sp., Rhinoptera sp., and Callorhinchus sp. In Sierra Dorotea, middle-to-late Eocene levels of the Río Turbio Formation have provided teeth referable to the taxa Striatolamia macrota (Agassiz), Palaeohypotodus rutoti (Winkler), Squalus aff. weltoni Long, Carcharias sp., Paraorthacodus sp., Rhinoptera sp., and indeterminate Myliobatids. These new records show the presence of common chondrichtyan diversity along most of the Magallanes Basin. The new record of Paraorthacodus sp. and P. rutoti, support the extension of their respective biochrons in the Magallanes Basin and likely in the southeastern Pacific. Keywords: Cartilaginous fishes, Weddellian Province, Southernmost Chile. RESUMEN. Nuevos condrictios de niveles Bartoniano-priabonianos de Río de Las Minas y Sierra Dorotea, Cuenca de Magallanes, Patagonia Chilena. Se estudiaron nuevos condrictios fósiles provenientes de dos localidades, Río de Las Minas y Sierra Dorotea, ambas en la Región de Magallanes, sur de Chile.
    [Show full text]
  • (Chondrichthyes, Elasmobranchii) from the Middle Jurassic of SW Germany and NW Poland
    Neoselachian remains (Chondrichthyes, Elasmobranchii) from the Middle Jurassic of SW Germany and NW Poland JÜRGEN KRIWET Kriwet, J. 2003. Neoselachian remains (Chondrichthyes, Elasmobranchii) from the Middle Jurassic of SW Germany and NW Poland. Acta Palaeontologica Polonica 48 (4): 583–594. New neoselachian remains from the Middle Jurassic of SW Germany and NW Poland are described. The locality of Weilen unter den Rinnen in SW Germany yielded only few orectolobiform teeth from the Aalenian representing at least one new genus and species, Folipistrix digitulus, which is assigned to the orectolobiforms and two additional orectolobi− form teeth of uncertain affinities. The tooth morphology of Folipistrix gen. nov. indicates a cutting dentition and suggests specialised feeding habits. Neoselachians from Bathonian and Callovian drill core samples from NW Poland produced numerous selachian remains. Most teeth are damaged and only the crown is preserved. Few identifiable teeth come from uppermost lower to lower middle Callovian samples. They include a new species, Synechodus prorogatus, and rare teeth attributed to Palaeobrachaelurus sp., Pseudospinax? sp., Protospinax cf. annectans Woodward, 1919, two additional but unidentifiable Protospinax spp. and Squalogaleus sp. Scyliorhinids are represented only by few isolated tooth crowns. No batoid remains have been recovered. The two assemblages contribute to the knowledge about early neoselachian distribution and diversity. Key words: Chondrichthyes, Neoselachii, Jurassic, Germany, Poland, taxonomy, diversity. Jürgen Kriwet [[email protected]], Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom. Introduction Woodward 1889; Frass 1896; Thies 1992, 1993), Northern France (Duffin and Ward 1993), Luxembourg (Delsate Neoselachii is a well−defined monophyletic clade and repre− 1995), Belgium (Delsate and Thies 1995; Delsate and Gode− sents one of the most successful groups of selachians.
    [Show full text]
  • Palaeoecology and Depositional Environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 19-44 10.11.2002 Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania) Martin Aberhan ', Robert Bussert2, Wolf-Dieter Heinrich', Eckhart Schrank2, Stephan Schultkal, Benjamin Sames3, Jiirgen =wet4 & Saidi Kapilima5 With 6 figures, 2 tables, and 2 plates Abstract The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German- Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinverte- brates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere.
    [Show full text]
  • Chondrichthyes: Neoselachii) in the Jurassic of Normandy
    FIRST MENTION OF THE FAMILY PSEUDONOTIDANIDAE (CHONDRICHTHYES: NEOSELACHII) IN THE JURASSIC OF NORMANDY by Gilles CUNY (1) and Jérôme TABOUELLE (2) ABSTRACT The discovery of a tooth of cf. Pseudonotidanus sp. is reported from the Bathonian of Normandy. Its morphology supports the transfer of the species terencei from the genus Welcommia to the genus Pseudonotidanus. It also supports the idea that Pseudonotidanidae might be basal Hexanchiformes rather than Synechodontiformes. KEYWORDS Normandy, Arromanches, Jurassic, Bathonian, Chondrichthyes, Elasmobranchii, Synechodontiformes, Hexanchiformes, Pseudonotidanidae. RÉSUMÉ La découverte d’une dent de cf. Pseudonotidanus sp. est signalée dans le Bathonien de Normandie. Sa morphologie soutient le transfert de l’espèce terencei du genre Welcommia au genre Pseudonotidanus . Elle soutient également l’idée que les Pseudonotidanidae pourraient appartenir aux Hexanchiformes basaux plutôt qu’aux Synechodontiformes. MOTS-CLEFS Normandie, Arromanches, Jurassique, Bathonien, Chondrichthyes, Elasmobranchii, Synechodontiformes, Hexanchiformes, Pseudonotidanidae. References of this article: CUNY G. and TABOUELLE J. (2014) – First mention of the family Pseudonotidanidae (Chondrichthyes: Neoselachii) in the Jurassic of Normandy. Bulletin Sciences et Géologie Normandes , tome 7, p. 21-28. 1 – INTRODUCTION In 2004, Underwood and Ward erected the new family Pseudonotidanidae for sharks showing teeth with a hexanchid-like crown (compressed labio-lingually with several cusps) and a Palaeospinacid-like root (lingually
    [Show full text]
  • Introduction
    BELGIAN GEOLOGICAL SURVEY. Professional Paper, 278: Elasmobranches et Stratigraphie (1994), 11-21,1995. Chondrichthyens mésozoïques du Grand Duché de Luxembourg par Dominique DELSATE (*) Résumé: Rappel des faunes de Chondrichthyens du Grand Duché de Luxembourg précédemment décrites. Des spécimens nouveaux sont signalés. Description d'une dent d 'Acrodus de l'Hettangien de Burmerange, et d'une dent â'Hybodus grossiconus du Toarcien inférieur de Soleuvre. Deux aiguillons de nageoire dorsale d'Hybodontoidea, de l'Hettangien (Brouch) et du Toarcien (Soleuvre), sont présentés. Identification formelle du genre Sphenodus parmi les dents du Bajocien luxembourgeois. Mots-clés: Chondrichthyes, Mésozoïque, Luxembourg. Abstract: Previously described Chondrichthyes teeth from the Grand Duchy of Luxembourg are reminded. New specimens are reported. A tooth of Acrodus from the Hettangian of Burmerange and a tooth of Hybodus grossiconus from the lower Toarcian of Soleuvre are described. A very large fin spine from the Lower Toarcian of Soleuvre and a small one from the Hettangian of Brouch are introduced. Some Bajocian teeth are assigned to the genus Sphenodus. Key words: Chondrichthyes, Mesozoic, Luxembourg Kurzfassung: Ein Zahn von Acrodus aus dem Hettangium von Biirmeningen wird beschrieben; ein Zahn aus dem Unter-Toarcium von Zolver wird Hybodus grossiconus zugeordnet. Zwei fossile Stacheln von Rückenflossen, einer aus dem Hettangium (Brouch) und einer aus dem Toarcium (Soleuvre) stammen von Hybodontoidea. Einige Zähne des Toarciums und Bajociums werden der Gattung Sphenodus zugewiesen. Schlüsselwörter: Chondrichthyes, Mesozoicum, Luxemburg * Dominique DELSATE: Centre de Recherches Lorraines (B-6760 Ethe) ou 5 Rue du Quartier (B-6792 Battincourt), Belgique. Introduction Le Centre de Recherches Lorraines, le Service Géologique de Belgique et l'Institut Royal des Sciences Naturelles de Belgique ont entrepris conjointement l'exploration systématique des différents niveaux du Mésozoïque grand- ducal ainsi que l'examen des collections nationales ou privées existantes.
    [Show full text]
  • Universidade Federal Do Rio Grande Do Sul Instituto De Geociências Programa De Pós-Graduação Em Geociências Contribuição
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS CONTRIBUIÇÃO AO CONHECIMENTO DOS PTEROSSAUROS DO GRUPO SANTANA (CRETÁCEO INFERIOR) DA BACIA DO ARARIPE, NORDESTE DO BRASIL FELIPE LIMA PINHEIRO ORIENTADOR – Prof. Dr. Cesar Leandro Schultz Porto Alegre - 2014 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS CONTRIBUIÇÃO AO CONHECIMENTO DOS PTEROSSAUROS DO GRUPO SANTANA (CRETÁCEO INFERIOR) DA BACIA DO ARARIPE, NORDESTE DO BRASIL FELIPE LIMA PINHEIRO ORIENTADOR – Prof. Dr. Cesar Leandro Schultz BANCA EXAMINADORA Prof. Dr. Marco Brandalise de Andrade – Faculdade de Biociências, PUC, RS Profa. Dra. Marina Bento Soares – Departamento de Paleontologia e Estratigrafia, UFRGS Profa. Dra. Taissa Rodrigues – Departamento de Biologia, UFES, ES Tese de Doutorado apresentada ao Programa de Pós-Graduação em Geociências como requisito parcial para a obtenção do título de Doutor em Ciências. Porto Alegre – 2014 “Ao ser destampado pelo gigante, o cofre deixou escapar um hálito glacial. Dentro havia apenas um enorme bloco transparente, com infinitas agulhas internas nas quais se despedaçava em estrelas de cores a claridade do crepúsculo. Desconcertado, sabendo que os meninos esperavam uma explicação imediata, José Arcadio Buendía atreveu-se a murmurar: – É o maior diamante do mundo.” Gabriel García Marquez AGRADECIMENTOS Um trabalho como esse não é feito apenas a duas mãos. Durante o percurso de meu mestrado e doutorado, tive o privilégio de contar com o apoio (por vezes, praticamente incondicional) de diversas pessoas. Em primeiro lugar, pelo apoio irrestrito em todos os momentos, agradeço a minha família, em especial a meus pais, Sandra e Valmiro e a meus irmãos, Fernando e Sacha.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • The Tendaguru Formation (Late Jurassic to Early Cretaceous, Southern Tanzania): Definition, Palaeoenvironments, and Sequence Stratigraphy
    Fossil Record 12 (2) 2009, 141–174 / DOI 10.1002/mmng.200900004 The Tendaguru Formation (Late Jurassic to Early Cretaceous, southern Tanzania): definition, palaeoenvironments, and sequence stratigraphy Robert Bussert1, Wolf-Dieter Heinrich2 and Martin Aberhan*,2 1 Institut fr Angewandte Geowissenschaften, Technische Universitt Berlin, Skr. BH 2, Ernst-Reuter-Platz 1, 10587 Berlin, Germany. E-mail: [email protected] 2 Museum fr Naturkunde – Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany. E-mail: [email protected]; [email protected] Abstract Received 8 December 2008 The well-known Late Jurassic to Early Cretaceous Tendaguru Beds of southern Tanza- Accepted 15 February 2009 nia have yielded fossil plant remains, invertebrates and vertebrates, notably dinosaurs, Published 3 August 2009 of exceptional scientific importance. Based on data of the German-Tanzanian Tenda- guru Expedition 2000 and previous studies, and in accordance with the international stratigraphic guide, we raise the Tendaguru Beds to formational rank and recognise six members (from bottom to top): Lower Dinosaur Member, Nerinella Member, Middle Dinosaur Member, Indotrigonia africana Member, Upper Dinosaur Member, and Ruti- trigonia bornhardti-schwarzi Member. We characterise and discuss each member in de- tail in terms of derivation of name, definition of a type section, distribution, thickness, lithofacies, boundaries, palaeontology, and age. The age of the whole formation appar- ently ranges at least from the middle Oxfordian to the Valanginian through Hauterivian or possibly Aptian. The Tendaguru Formation constitutes a cyclic sedimentary succes- sion, consisting of three marginal marine, sandstone-dominated depositional units and three predominantly coastal to tidal plain, fine-grained depositional units with dinosaur remains.
    [Show full text]
  • Szabo Marton.Indd
    FRAGMENTA PALAEONTOLOGICA HUNGARICA Volume 34 Budapest, 2017 pp. 49–61 Fish remains from the Lower Cretaceous (Valanginian-Hauterivian) of Hárskút (Hungary, Bakony Mts) Márton Szabó1, 2 1Department of Palaeontology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; 2Department of Palaeontology and Geology, Hungarian Natural History Museum, H-1083 Budapest, Ludovika tér 2, Hungary. E-mail [email protected] Abstract – Lower Cretaceous (Valanginian-Hauterivian) fi sh remains, collected in the Közöskút Ravine (nearby Hárskút, Hungary) in the 1960s are detailed here. Although the material is poorly preserved, it is of great importance, because this geographical region and stratigraphical prove- nance are relatively undersampled for marine vertebrates. Th e collected material includes four or- ders of fi sh: Hexanchiformes, Synechodontiformes, Semionotiformes and Pycnodontiformes. Th is is the fi rst, actualized report of some of the Hárskút fi sh taxa from the Mesozoic of Hungary. Th e results add important data to the distribution of the identifi ed taxa, especially to that of Gyrodus. With 20 fi gures and 1 table. Key words – Gyrodus, Hauterivian, Hárskút, Hexanchidae, Lepidotes, Sphenodus, Valanginian INTRODUCTION Our knowledge on the Mesozoic marine fi shes of the Pannonian Basin is yet incomplete. Only a few papers describe these faunas (or faunal elements) in de- tail (e.g., Ősi et al. 2013, 2016; Pászti 2004; Szabó et al. 2016a, b; Szabó & Ősi 2017), while further works mention Mesozoic fi sh remains shortly (e.g., Dulai et al. 1992; Főzy & Szente 2014). A large amount of Mesozoic fi sh remains were collected in the last century, however, most of them were found during excava- tions aft er invertebrate faunas.
    [Show full text]