<<

Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 399

Dynamics of Selachian () Dental Morphology During the Early Mesozoic Dynamik av Selachian (haj) tandmorfologi under Tidig Mesozoisk

Alexander Paxinos

INSTITUTIONEN FÖR

GEOVETENSKAPER

DEPARTMENT OF EARTH SCIENCES

Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 399

Dynamics of Selachian (Shark) Dental Morphology During the Early Mesozoic Dynamik av Selachian (haj) tandmorfologi under Tidig Mesozoisk

Alexander Paxinos

ISSN 1650-6553

Copyright © Alexander Paxinos Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2017 Abstract

Dynamics of Selachian (Shark) Dental Morphology During the Early Mesozoic Alexander Paxinos

The ancestors of all modern day and rays (Neoselachii) may have appeared during the Late Palaeozoic, but their major diversification happened sometime during the Early Mesozoic. Taxonomic evidence places the first neoselachian diversification in the Early . Taxonomic diversity analyses, however, are often affected by incompleteness of the fossil record and sampling biases. On the other hand, the range of morphological variation (disparity) offers a different perspective for studying evolutionary patterns across time. Disparity analyses are much more resilient to sampling biases than diversity analyses, and disparity has the potential to provide a more ecologically-relevant context. This analysis focuses on the morphology of selachian teeth. Selachii include all neoselachian and stem-neoselachian sharks, but not batoids. In order to primarily test the hypothesis that the first selachian radiation took place in the Late , not the , and secondarily to depict the dental evolution of sharks across time, 424 selachian teeth ranging from the Middle Triassic to the Late Jurassic were quantified, using a landmark and semi-landmark geometric morphometric method, in order to analyze patterns of selachian tooth disparity and morphospace occupation across the Early Mesozoic. The results of the analysis indicate a two-pulse radiation of the selachians. The first radiation took place in the (). The Rhaetian Transgression saw the rise of a large, shallow epicontinental sea that covered the area which is now Western Europe. The transgressive event opened new niches for the selachians, as indicated by the appearance of almost all known shark dentition types during the Rhaetian. The second radiation spans the Callovian – Oxfordian – interval. Transgressive events during the Callovian and the Oxfordian introduced new cephalopod and actinopterygian faunas to the Central European Basin, thus playing an important role in selachian dental disparity and morphospace patterns. The main drive in shark evolution across the Early Mesozoic seems to have been the breakup of Pangaea. Transgressive/regressive events tied to tectonic activity affect tooth disparity and, indirectly, influence shark dentition patterns, by directly affecting the diversity of other faunas which, in turn, are preyed upon by selachians of the Early Mesozoic.

Keywords: Early Mesozoic, Selachii, morphological disparity, geometric morphometrics, early radiation

Degree Project E1 in Earth Science, 1GV025, 30 credits Supervisor: Nicolàs E. Campione Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala (www.geo.uu.se)

ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, No. 399, 2017

The whole document is available at www.diva-portal.org

Populärvetenskaplig sammanfattning

Dynamik av Selachian (haj) tandmorfologi under Tidig Mesozoisk Alexander Paxinos

Förfäderna i alla moderna hajar och strålar (Neoselachii) kan ha uppträtt under den sena palæozoiska, men deras stora diversifiering hände någon gång under den tidiga mesozoiska. Nyliga diversifieringsstudier baserade på antalet taxa, placerar den första neoselachiska diversifieringen för 199-190 miljoner år sedan, i tidiga jurassisk. De taxonomiska diversifiering analyser kan ofta bli påverkade av ofullständigheter i den fossila posten och även av den provtagnings tekniken. Längten av de morfologiska variationen (disparitet) ger ett annat perspektiv för att kunna studera evolutionära mönster över tiden. Disparitetsanalyser är mindre påverkade av provtagnings problem och ibland av de fåtaliga prov siffrorna. Studien av morfologiska mönster av biologiska strukturer (såsom tänder) kan markera beteendemönster relaterade till ekologin hos en grupp av organismer (såsom hajar), till och med villebråd val och föredragna livsmiljöer. Den här analysen fokuserar på morfologin av selachian tänder. I Selachimorpha tillhör alla neoselakiska hajar och deras förfäder, men inte strålar eller rockor. En geometrisk morfometrisk metod som använder två dimentionella, semi landmärken är implimenterad i den här studien för att testa hypotesen att den första selachiska utstrålningen ägde rum i den sena triassiska ~ 10 miljoner år tidigare än diversitets analyser hade uppskattat. Morfologin av 424 hajar tänder som tillhör 50 genera och 71 arter och spänner ifrån den mellersta triasisk till den sena jurassisk var kvantifierad genom användning av kurvor. Resultaten av analysen indikerar att selachierna diversifierades två gånger under den tidiga mesozoiska. Den första utstrålningen ägde rum i den Rhaetian (sen triassisk).Den Rhaetian Transgression såg uppkomsten av ett stort, grundt epikontinentalt hav som täckte en område som idag är Västeuropa. Den transgressiva händelsen öppnade nya ekologiska möjligheter för selachierna, vilket framgår av utseendet på nästan alla kända haj-dentitionstyper under Rhaetian. Den andra utstrålningen sträcker sig över Callovian-Oxfordian-Kimmeridgian-intervallet. Transgressiva händelser under Callovian och Oxfordian orsakade havsnivån att stiga och introducerade nya cefalopoder och aktinopterygiska faunor till de epikontinentala haven av Centraleuropa och kunde ha spelat därmed en viktig roll i selakiska tands disparitet och morfologisk mönster. Huvudfaktoren i hajutveckling över den tidiga mesozoiska kunde ha varit uppdelningen av Pangaea. Havsnivån fluktuationer orsakade av tektonisk aktivitet kopplad till Pangaeans uppdelningen kunde ha påverkat tändernas disparitet och indirekt orsakat förändringar i haj-dentitioner, genom att direkt påverka diversiteten hos andra faunor, som i sin tur är jagade av selachier från den tidiga mesozoiska.

Nyckelord: Tidig Mesozoisk, Selachimorpha, morfologisk disparitet, geometrisk morfometri, tidig strålning

Examensarbete E1 i geovetenskap, 1GV025, 30 hp Handledare: Nicolàs E. Campione Institutionen för geovetenskaper, Uppsala Universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se)

ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, Nr 399, 2017

Hela publikationen finns tillgänglig på www.diva-portal.org

Table of Contents 1 Introduction ...... 1 2 Background ...... 3 2.1 Diversity patterns ...... 3 2.2 Taxonomic richness vs morphological disparity ...... 3 2.3 Shark teeth ...... 4 3 Objectives & Hypotheses ...... 6 4 Methods ...... 7 4.1 Data collection ...... 7 4.2 Cataloguing & stratigraphy ...... 8 4.3 Geometric morphometrics ...... 9 4.4 Digitization & resampling ...... 9 4.5 Analysis ...... 11 4.6 Morphological disparity ...... 12 4.7 Sample bias ...... 12 4.8 Clade-specific disparity analysis ...... 12 5 Results ...... 14 5.1 Disparity patterns ...... 14 5.2 Morphospace patterns ...... 16 5.2.1 Morphospace distributions through time ...... 18 5.3 Clade-specific disparity patterns ...... 27 6 Discussion ...... 28 6.1 Error factors ...... 28 6.1.1 Analytical constraints ...... 28 6.1.2 Sample size ...... 28 6.2 Disparity & dental patterns across time ...... 28 6.2.1. Adaptive dental types ...... 29 6.2.2 Selachian patterns across the Triassic – Jurassic boundary ...... 29 6.2.3 Selachian patterns of the Jurassic ...... 31 7 Conclusion ...... 33 8 Acknowledgements ...... 34 9 References ...... 35 9.1 Published material ...... 35 9.2 Software & internet material ...... 44

Table of Contents (continued) Appendix A: Specimen Database ...... 45 Appendix B: Disparity ...... 55 Appendix C: Non-Synechodontiformes Disparity ...... 56

1 Introduction

Neoselachii are a group of fishes belonging to the class Chondricthyes that include modern sharks and rays, as well as their most recent common ancestor (Underwood, 2006), and are the sister group to the extinct hybodontiform sharks (figure 1) (Maisey et al., 2004). Neoselachians are characterized by teeth with a triple-layered enameloid, of which the central layer is considered an autapomorphy of the group (Reif, 1973; Reif, 1977; Cuny & Benton, 1999). The earliest neoselachian fish could have appeared as early as the Late (Mcmurdodus whitei Turner & Young, 1987; Hopleacanthus richelsdorfensis Schaumberg, 1982), however, their neoselachian affinity remains uncertain, due to the lack of complete specimens (Cuny & Benton, 1999; Burrow et al., 2008).

Figure 1. Phylogenetic relationships of major elasmobranch clades, combined with stratigraphical information. The systematic position of Synechodontiformes is still being debated (Data from Klug et al., 2009; Kriwet et al., 2009; Benton, 2012; Cappetta, 2012. Shapes from Guinot & Cavin, 2016; Orolotitan, 2010 [internet source]. Stratigraphic scale from Cohen et al., 2013).

1

Unambiguous neoselachians appeared during the Early Triassic, but they show low diversity during that time (Cuny, 1998). The earliest diversification of neoselachians seems to have happened during the Late Triassic (Cuny & Benton, 1999). Most Late Triassic belong to the order Synechodontiformes (Duffin & Ward, 1993), while older species are usually referred to as stem- neoselachians, although it is possible that they too are synechodontiforms (Cuny & Benton, 1999; Underwood, 2006). The Early Jurassic neoselachian record includes even more genera and species than Late Triassic. Palaeospinacidae (synechodontiform sharks) dominated the Hettangian, but several other families appeared subsequently (figure 2). The families Agaleidae, Hexanchidae and occur during the Sinemurian and continue into the , along with a few other families (Heterodontidae and Protospinacidae) that occur during that time (Rees, 2000). The Orectolobiformes and Heterodontiformes first appear during the Toarcian, indicating a rapid period of cladogenesis (Delsate & Godefroit, 1995; Underwood, 2006).

Figure 2. Distribution of major neoselachian shark families across the Early Jurassic (Modified from: Rees, 2000).

The has not been studied as extensively regarding neoselachian fossils however a few studies suggest that during that time, most faunas remained similar to those of the Toarcian, with some diversification in orectolobiforms (Thies, 1983; Delsate, 1993; Underwood, 2006). The neoselachian faunas of the seem to be more diverse than older ages, with new families Scyliorhinidae and Proscyllidae appearing at that time, as well as several new species (Underwood & Ward, 2004; Underwood, 2006). Callovian faunas are very similar to Bathonian (Underwood, 2006). The Late Jurassic has often been described as a time of stasis in diversity, due to the faunal assemblages strongly resembling those of Bathonian – Callovian (Underwood, 2006; Kriwet et al., 2009; Guinot & Gavin, 2016).

2

2 Background

2.1 Diversity patterns

Initial attempts to quantify diversity patterns across the Triassic suggest that neoselachians underwent a major radiation during the Late Triassic. Based on a taxonomic data set, Cuny & Benton (1999) found that the final stages of the Triassic were a key moment for the early evolution of modern neoselachian sharks, especially in Western Europe, where the Rhaetian Transgression may have played an important role, with the appearance of a large epicontinental sea that greatly affected marine life. On the other hand, subsequent analyses suggest that neoselachians radiated during the Early Jurassic, around 10 – 15 million years later than previously proposed, based on molecular phylogenetics (Maisey et al., 2004), taxonomic richness (Kriwet et al., 2009), and phylogenetic diversity (Guinot & Cavin, 2016). Kriwet et al. (2009) suggested that the first major diversification of modern neoselachian families took place during the Toarcian. Guinot & Gavin (2016) suggest that there were three diversification events during the Early-Middle Jurassic, during the Sinemurian, the Toarcian and the Bathonian. The Triassic-Jurassic event could have played a major role in the extinction of other elasmobranch groups and the breakup of Pangaea resulted in the opening of new ecological niches (Guinot et al., 2012; Guinot & Gavin, 2016), during the Hettangian-Sinemurian. The Early Toarcian Oceanic Anoxic Event (Jenkyns, 1988; Gomez et al., 2008) reportedly caused several of invertebrate benthic faunas, but resulted in increased elasmobranch diversity, as well as other planktonic and nectic organisms (Guinot & Gavin, 2016). The Bathonian diversification is difficult to interpret, since most fossils are palaeogeographically constrained, mostly within England, France, Scotland, Poland and Germany (Underwood & Ward, 2004; Rees, 2012; Guinot & Gavin, 2016). Furthermore, stratigraphic study of neoselachian fossils showed a strong restriction to certain Palaeoenvironments (Underwood & Ward, 2004). This dependence on specific environments, suggests that neoselachians were ecologically specialized during that time (Guinot & Gavin, 2016).

2.2 Taxonomic richness vs morphological disparity

An actual consensus regarding the early Mesozoic radiation of the neoselachians has not been reached. So far, analyses regarding neoselachian diversification focus solely on a taxonomic perspective (Maisey et al., 2004; Kriwet et al., 2009; Guinot & Cavin, 2016), and only a single study applied rarefaction to minimize sampling bias (Kriwet et al, 2009). Taxonomic diversity patterns are known to be affected by many biases (Ciampaglio et al., 2001; Alroy et al., 2008). For instance, taxonomic richness correlates with the volume or surface area of available outcrop (Raup, 1976; Smith, 2001). The more available material there is, the more likely species are to be found. Furthermore, the age of

3 the rocks also plays an important role. Older rocks tend to have fewer and smaller outcrops, or have been subjected to metamorphic processes which obliterate fossils (Sepkoski, 1976; Smith, 2001) Disparity (the range of morphological variation) however, offers a different perspective for measuring evolutionary patterns that has the potential to be -free, and may ultimately provide a more ecologically-relevant context (Wainwright, 1996; Adams et al., 2004; Cappetta, 2012). The quantification of shape and the overall change in morphology is a valuable tool in studying radiation patterns, as well as extinction dynamics (Bazzi, 2016). Furthermore, morphology has been recognized to be closely related to ecology, as an ’s morphological features can be used to interpret its behavioral tactics and abilities (Wainwright, 1996; Whitenack & Motta, 2010).

2.3 Shark teeth

Several well-preserved skeletal remains of neoselachians have been recovered (Cappetta, 1987). However, this analysis focuses solely on shark teeth. Selachimorpha, or Selachii include all neoselachian and stem-neoselachian sharks but not Batomorphii (Figure 3) (Velez-Zuazo & Agnarsson, 2011; Adreev & Cuny, 2012). The systematic position of Batomorphii or Batoidea (rays) is still under study, with morphological analyses cataloguing them either as stem neoselachians, or derived selachians (Compagno, 1977; Thies, 1983; Maisey, 1984; Thies & Reif, 1985; Shirai, 1996), and molecular analyses placing batoids as a sister group to selachians (Maisey et al., 2004; Velez- Zuazo & Agnarsson, 2011), although these analyses might be affected by homoplastic characters between batoids and squalomorph sharks (Adreev & Cuny, 2012). Synechodontiforms are considered as either a stem group neoselachian, or stem group selachian (figure 3) with definite shark affinities (Klug et al., 2009; Ginter et al., 2010; Cappetta, 2012; Guinot & Cavin, 2016) and have been included in the dataset. Shark teeth are much more prevalent and offer a much better view of deep temporal dynamics, compared to batoids. Sharks produce a multitude of teeth during their lifetime and given their high preservation potential, teeth comprise the majority of the fossil record of sharks (Cuny & Benton, 1999). Furthermore, sharks inhabit all latitudes, all environments and all habitats, from near shore to very deep waters (>2000m), whereas batoids are very environmentally constrained (Cappetta, 2012). This makes selachians much more useful as indicators of palaeoenvironments. The study of shark tooth morphology can, therefore, potentially highlight the evolution of shark feeding habits across time (Whitenack & Motta, 2010) as well as disparity evolution, related to diversification events.

4

Figure 3. Phylogenetic relationships of major elasmobranch clades, combined with stratigraphical information. Red lines indicate selachian (or stem selachian) lineages (Data from Klug et al., 2009; Kriwet et al., 2009; Benton, 2012; Cappetta, 2012. Shapes from Guinot & Cavin, 2016; Orolotitan, 2010 [internet source]. Stratigraphic scale from Cohen et al., 2013).

5

3 Objectives & hypotheses

All previous studies regarding selachian diversification patterns in the Early Mesozoic have been solely based on a taxonomic perspective. However, in this project the analysis of selachian radiation in the Early Mesozoic will focus on a morphological perspective. The objective of this study is to quantify and analyse the morphological disparity of selachian teeth ranging from the Middle Triassic to the Late Jurassic. The results of the analysis should offer sufficient insight in the following hypothesis: The earliest major diversification of the selachians took place during the Rhaetian, as described by Cuny & Benton (1999), and not during the Early Jurassic. As a secondary objective, the results will be used to describe the evolution of selachian teeth during the Early-Middle Mesozoic, in order to track down the changes in dental morphology across time stage boundaries.

6

4 Methods

4.1 Data collection

The first step of the analysis was to assemble a collection of shark teeth that span the Middle Triassic to the end of the Jurassic. The analysis focused on two-dimensional shape data and, thus, published photographs or specimen drawings of teeth were sufficient (Duffin, 1988; Thies, 1989; Delsate & Duffin, 1993; Duffin, 1993; Duffin & Ward, 1993; Delsate & Godefroit, 1995; Delsate & Thies, 1995; Cuny et al., 1998; Duffin, 1998; Godefroit et al., 1998; Kriwet, 1998; Rees, 1998; Bottcher & Duffin, 2000; Rees, 2000; Cuny et al., 2001; Delsate, 2001; Arratia et al., 2002; Delsate, 2002; Underwood, 2002; Kriwet, 2003; Kriwet & Klein, 2004; Underwood, 2004; Underwood & Ward, 2004; Cuny & Risnes, 2005; Che et al., 2007; Klug, 2008; Kriwet, 2008; Botella et al., 2009; Delsate, 2009; Klug, 2009; Delsate & Weis, 2010; Klug & Kriwet, 2010; Rees, 2010; Kriwet & Klug, 2011; Thies & Leidner, 2011; Adreev & Cuny, 2012; Cappetta, 2012; Rees, 2012; Pla et al., 2013; Cuny & Tabouelle, 2014; Thies et al., 2014; Delsate & Felten, 2015; Korneisel et al., 2015; Lakin et al., 2016; Mears et al., 2016; Slater et al., 2016; Srdic et al., 2016; Whiteside et al., 2016). In total, the database contains 424 specimens assigned to 19 families, 50 genera, and 71 species that range from the Middle Triassic to the Late Jurassic (Table 1). Nearly all specimens (418 out of 424) hail from European localities, with Belgian, English and German specimens being the more prominent (51, 122 and 156 respectively).

Table 1. Classification of selachian lineages identified during collection (based on Klug et al., 2009; Long, 2011). Indet. indicates either unnamed specimens, or indeterminate lineages for named specimens. Clade Superorder Order Specimens Reference Carcharhiniformes 35 Long, 2011 Heterodontiformes 20 Long, 2011 Galeomorphii 12 Long, 2011 Orectolobiformes 97 Long, 2011 Selachii Indet. 16 22 Long, 2011

Squalomorphii 3 Long, 2011 Squatiniformes 29 Long, 2011 Indet. 30 Stem Klug et al., Synechodontiformes 160 (neo)selachian 2009;

7

4.2 Cataloguing & stratigraphy

In addition to tooth images, the database includes a worksheet containing important information about each tooth, including (but not limited to): order, family, species name, age, geological formation, geographic location where the specimen was discovered, specimen number specified by the publication, and a local name that connects the database with each individual picture (See: Appendix A). The selected age of teeth includes the Middle – Late Triassic and the Jurassic (Figure 4, Table 2). Unfortunately, due to the unavailability of relevant literature, there were no specimens of Carnian age.

Figure 4. Chronostratigraphic chart of the Middle – Late Triassic and Jurassic. Based on data from the International Commission on Stratigraphy (Cohen et al., 2013; updated).

8

Table 2. Number of specimens per bin. Series Stage Specimen number Middle Triassic Anisian 5 Middle Triassic Ladinian 12 Late Triassic Carnian 0 Late Triassic 3 Late Triassic Rhaetian 53 Early Jurassic Hettangian 9 Early Jurassic Sinemurian 26 Early Jurassic 13 Early Jurassic Toarcian 36 Middle Jurassic 16 Middle Jurassic 12 Middle Jurassic Bathonian 55 Middle Jurassic Callovian 30 Late Jurassic Oxfordian 7 Late Jurassic Kimmeridgian 84 Late Jurassic 63

4.3 Geometric morphometrics

The study of morphological characters has been a tool for taxonomy for a very long time (Adams et al., 2004). Geometric morphometrics revolutionized the study of morphology by using quantified shape as a means to measure morphology (Rohlf & Marcus, 1993; Bookstein, 1998; Adams et al., 2004). This study employed the use of landmark-based geometric morphometrics (Bookstein, 1991; Adams et al., 2013), where a number of landmarks are placed at specific points around an anatomical structure to be analyzed. Ideally, landmarks represent homologous structures, however, these are not always available or cannot adequately capture the shape of curves, like the multi-cusped teeth of hexanchiform sharks (figure 5). Bookstein (1997) proposed the semi-landmark method, by incorporating a number of semi-landmarks which slide along the curve of the structure in order to match the outline as best as possible. Thus, the use of semi-landmarks in addition to landmarks maximized the amount of shape information that could be captured from shark teeth.

4.4 Digitization & resampling

Digitization took place in TPS DIG2 (Version 2.26; Rohlf, 2016) using a semi-landmark-based geometric morphometric method. Prior to digitization, some of the teeth were mirror imaged, in order to standardize the position of the apex towards the right side of the image. Two curves (C1-C2) were traced for each tooth with the last point of the first curve (C1) always overlapping with the first point

9 of the second curve (C2, Figure 5A-B). The number of point for each specimen depended on the complexity of the tooth. More complex teeth required more points to trace each curve more efficiently. After digitization, the TPS file was imported in R (Version 3.3.2; R Core Team, 2016), in order to be analyzed. The packages used in the analysis were: ape (Version 4.0; Paradis et al., 2004; Paradis et al., 2016), geomorph (Version 3.0.3; Adams & Otarola-Castillo, 2013; Adams et al., 2016), moments (Version 0.14; Komsta & Novomestky, 2015), rgl (Version 0.96.0; Adler et al., 2016) and sp (Version 1.2-3; Pebesma et al., 2016). First, the points were resampled using custom code (provided by N. Campione), so that the first point (LM1) of the first curve (C1), the common point (LM2) in both curves and the last point (LM3) of the second curve (C2) indicate homologous landmarks, while the rest of the points are resampled to equidistant sliding semi-landmarks (Figure 5C-D; table 2). The landmark categories (as recognized by Bookstein, 1991) are defined in table 3.

Figure 5. Digitization scheme used in the analysis of selachian dental morphology. A) Original curves tracing the crown of an upper lateral tooth belonging to Crassonotidanus serratus (Hexanchiformes; Holotype, SMNS 3695/10; Kriwet & Klug, 2011) in labial view. B) Original curves (C1-C2) before resampling. First curve has 25 points and the second has 49 points. The last point of the first curve and the first point of the second curve overlap. C) Resampled curves tracing the same crown, with homologous landmarks (L1-L3). D) Resampled curves (C1-C2) where the 3 red points mark the homologous landmarks and the 131 green/blue points indicate sliding semi-landmarks. Scale bar = 5mm.

10

Table 3. Description of homologous landmarks, sliding semi-landmarks and traced curves for this analysis. Landmark Description Bookstein's Type LM1 Junction on left cusp edge Type 1 LM2 Cusp apex Type 2 LM3 Junction on right cusp edge Type 1 Curve Description Equidistant semi-landmarks C1 Mesial margin 58 C2 Distal margin 73

4.5 Analysis

Following the resampling, Procrustes Superimposition (Rohlf & Slice, 1990) was applied to the semi- landmarks, in order to eliminate confounding factors of isometric size, rotation, and translation. The GPA file was connected to the catalogue, so that the specimens can be labeled with any information necessary ( name, age, locality, etc…). The GPA-aligned specimens were then ordinated through a Principal Component Analysis (PCA), in order to explore the morphospace, and visualize the main aspects of variation. Morphospace along each axis of interest was depicted using histograms of morphological frequency (the number of specimens that appear to be similar to varying degrees of a specific shape) against time. Due to the large number of time bins presented here, each bin is plotted on the same principal component axis and on separate frequency axis, in order to facilitate result interpretation. The minimum and maximum Principal Component values as well as rough tooth morphology are represented by deformation grids at the two edges of each histogram. In order to identify the majority of the distribution of samples for each bin, the skewness of each distribution was calculated. Skewness is the measure of asymmetry within a probability distribution, which can be positive, negative or near-zero, indicating a roughly symmetric distribution (Bulmer, 1979; Doane & Seward, 2011). Positive skewness indicates that most specimens have a rough morphology that is closer to the negative morphology (PC min) of each Principal Component. Negative skewness indicates that most specimens resemble the positive morphology (PC max) of each Principal Component. Zero skewness indicates that there is no asymmetry and the specimens are distributed normally across the morphospace. Naturally, complete zero skewness is highly improbable for real data, thus, the degree of skewness can be inferred by approximations (Bulmer, 1979). If skewness is greater than 1, or less than -1, then distribution is highly skewed. If skewness is between 1 and 0.5 or between -1 and -0.5, then the distribution is moderately skewed. Lastly, if skewness is between 0.5 and -0.5, then the distribution is considered approximately even or symmetric. Significant shifts in morphospace between time bins were tested using a non-parametric Procrustes ANOVA test (Goodall, 1991; Collyer et al., 2015), which is the equivalent to distance-based ANOVA tests (Anderson, 2001), using 1000 permutations. Non-parametric ANOVA tests can be better suited

11 for analyses with a high number of variables (in this case: 3 landmarks & 131 semi-landmarks), as the increased number of variables results not only in better representation of phenotype (tooth shape), but also in increased statistical power, contrary to parametric ANOVA tests, where more variables can lead to decreased statistical power (Anderson, 2001; Collyer et al., 2015). The results are depicted in an ANOVA table for model comparison (table 8) and a table depicting pairwise comparisons of Procrustes values between time bins (table 9) (Collyer et al., 2015).

4.6 Morphological disparity

The morphological disparity across time was calculated as the Procrustes variance for each individual time bin, based on the GPA-aligned coordinates. Procrustes variance equals to the sum of the squared Euclidean distance between each point, divided by the number of observations in the group (Zelditch et al., 2012; Bazzi, 2016). A modified version of the morphol.disparity function (Zelditch et al., 2012; Adams & Otarola-Castillo, 2013) was used to calculate selachian tooth disparity. A bootstrapping method was also applied to calculate 95% confidence intervals by randomized resampling of each time bin. In order to test the significance of differences in morphological disparity among time bins, the pairwise absolute differences in Procrustes variances were calculated for all time bins.

4.7 Sample bias

Ideally, disparity analyses should be able to detect minor changes in morphospace, while being resilient to small sample size or missing data, however, no single disparity measure method can account for sampling biases (Ciampaglio et al., 2001). For that reason, rarefaction was applied to disparity calculation, in order to compensate for time bins with very few samples. Rarefaction is used to standardize the sample size of each time bin to a specific level (Sanders, 1968; Foote, 1992). In this case, the minimum sample size was set to 3 specimens, equal to the total number of specimens in the Norian time-bin. That way, the significance of sample size can be identified, and the validity of disparity values in small sampled bins can be questioned regarding the accuracy of their interpretation.

4.8 Clade-specific disparity analysis

Given the fact that there is a degree of discrepancy when it comes to specimen number per order present (see table 1), disparity was calculated for specific groups of specimens. Synechodontiforms are the highest specimen order of the sample with 160 specimens (~37.7% of total specimens) and could potentially affect the results of the analysis. In order to test for the effect of the synechodontiforms in the sample, two extra steps were taken during the analysis. The total sample was divided into two separate subgroups. The first subgroup (Synechodontiformes) includes all specimens that belong to the

12 synechodontiforms (as specified in the database worksheet; see Appendix I). The second subgroup (Non-Synechodontiformes) includes the rest of the specimens. Following the separation, each subgroup underwent through the exact same procedures as the total group (GPA, PCA, morphological disparity calculations, bootstrapping, absolute pairwise differences & rarefaction).

13

5 Results

5.1 Disparity patterns

Table 4 presents the disparity set as the Procrustes variance for each bin, while figure 6 depicts changes in disparity across time with two curves, one for raw data and one for rarefied data, including 95% intervals for both curves. Table 5 presents absolute pairwise differences between time bins. P- values below 0.05 indicate a significant change in disparity.

Table 4. Quantified morphological disparity, estimated as the Procrustes variance for each time bin. Procrustes Time Bin Variance Anisian 0.03266350 Ladinian 0.04184383 Norian 0.03109298 Rhaetian 0.08469630 Hettangian 0.06139141 Sinemurian 0.08437166 Pliensbachian 0.06645449 Toarcian 0.05887541 Aalenian 0.04403013 Bajocian 0.06339209 Bathonian 0.06120819 Callovian 0.10482108 Oxfordian 0.14946162 Kimmeridgian 0.11242082 Tithonian 0.07106950

14

Figure 6. Raw (black) and rarefied (red) morphological disparity of selachian shark teeth ranging from Middle Triassic to Late Jurassic. The lack of lines between Ladinian and Norian indicate the absence of specimens of Carnian age. Color scheme based on Cohen et al., 2013.

Table 5. Pairwise absolute differences between Procrustes variances for each time bin. Significant changes in disparity (P < 0.05) are highlighted in bold. P-Values Anisian Ladinian Norian Rhaetian Hettangian Sinemurian Pliensbachian Toarcian Anisian 0.999 0.763 0.976 0.069 0.383 0.094 0.330 0.466 Ladinian 0.763 0.999 0.829 0.037 0.471 0.064 0.332 0.423 Norian 0.976 0.829 0.999 0.217 0.475 0.217 0.449 0.605 Rhaetian 0.069 0.037 0.217 0.999 0.351 0.982 0.388 0.065 Hettangian 0.383 0.471 0.475 0.351 0.999 0.360 0.853 0.923 Sinemurian 0.094 0.064 0.217 0.982 0.360 0.999 0.414 0.123 Pliensbachian 0.330 0.332 0.449 0.388 0.853 0.414 0.999 0.731 Toarcian 0.466 0.423 0.605 0.065 0.923 0.123 0.731 0.999 Aalenian 0.755 0.906 0.800 0.029 0.496 0.045 0.349 0.435 Bajocian 0.370 0.369 0.492 0.341 0.962 0.336 0.878 0.833 Bathonian 0.416 0.364 0.602 0.074 0.997 0.145 0.815 0.877 Callovian 0.013 0.005 0.036 0.178 0.084 0.248 0.071 0.003 Oxfordian 0.005 0.000 0.009 0.012 0.011 0.018 0.008 0.002 Kimmeridgian 0.004 0.002 0.009 0.014 0.024 0.046 0.014 0.000 Tithonian 0.244 0.173 0.449 0.259 0.716 0.406 0.819 0.402

15

Table 5 (cont.). P-Values Aalenian Bajocian Bathonian Callovian Oxfordian Kimmeridgian Tithonian Anisian 0.755 0.370 0.416 0.013 0.005 0.004 0.244 Ladinian 0.906 0.369 0.364 0.005 0.000 0.002 0.173 Norian 0.800 0.492 0.602 0.036 0.009 0.009 0.449 Rhaetian 0.029 0.341 0.074 0.178 0.012 0.014 0.259 Hettangian 0.496 0.962 0.997 0.084 0.011 0.024 0.716 Sinemurian 0.045 0.336 0.145 0.248 0.018 0.046 0.406 Pliensbachian 0.349 0.878 0.815 0.071 0.008 0.014 0.819 Toarcian 0.435 0.833 0.877 0.003 0.002 0.000 0.402 Aalenian 0.999 0.419 0.359 0.002 0.001 0.000 0.150 Bajocian 0.419 0.999 0.926 0.059 0.006 0.014 0.726 Bathonian 0.359 0.926 0.999 0.007 0.003 0.000 0.436 Callovian 0.002 0.059 0.007 0.999 0.094 0.573 0.021 Oxfordian 0.001 0.006 0.003 0.094 0.999 0.169 0.004 Kimmeridgian 0.000 0.014 0.000 0.573 0.169 0.999 0.000 Tithonian 0.150 0.726 0.436 0.021 0.004 0.000 0.999

In general, it seems that disparity remained steadily low during the Middle Triassic and the early Late Triassic. During the Rhaetian, there is a significant increase in disparity (p = 0.037), when compared with Ladinian. Following the Rhaetian, there are several fluctuations of disparity, although they do not represent significant changes, up to the Toarcian, where disparity is somewhat significantly reduced (p = 0.065). During the Aalenian, disparity is as low as Toarcian, and significantly different than Rhaetian and Sinemurian (p = 0.029 and p = 0.045, respectively). The Bajocian is characterized by a non-significant increase in disparity (p = 0.419). Disparity during the Bathonian seems unchanged. A significant increase in disparity takes place during the Callovian (p = 0.007). Disparity continues to increase in the Oxfordian albeit not significantly (p = 0.094). Given that across the Callovian – Oxfordian – Kimmeridgian time span, disparity is quite high and, according to table 5 there are no significant shifts, it seems prudent to assume that disparity was significantly high during these time bins. Finally, disparity declines significantly during the Tithonian (p = 0.000).

5.2 Morphospace patterns

The results of the PCA are presented in table 6. The first two principal components represent the highest proportion of variance (PC1= 61.37% and PC2= 12.46%, for a total of 73.83% of the total variance). The first five principal components (61.37%, 12.46%, 9.019%, 5.235%, and 3.491%, respectively) represent 91.574%, and hence the vast majority of the total morphological variability in the data set, and are explored in more detail here.

16

Table 6. Important morphospace axes, representing ~ 97.7% of total variation. n N Standard PC (Proportion (Cumulative Deviation of Variance) Proportion) 1 61.370% 61.370% 0.2394 2 12.460% 73.830% 0.1079 3 9.019% 82.848% 0.09177 4 5.235% 88.083% 0.06991 5 3.491% 91.574% 0.05709 6 1.444% 93.017% 0.03672 7 1.045% 94.063% 0.03124 8 0.916% 94.978% 0.02924 9 0.800% 95.778% 0.02732 10 0.588% 96.366% 0.02344 11 0.522% 96.888% 0.02207 12 0.413% 97.301% 0.01963 13 0.370% 97.671% 0.01859

17

Figure 7. Morphospace plot of all 424 tooth specimens along the first two PC axes. Both PC axes amount to 73.83% of all variation. A) Specimens from all time stages. B – E) Selected specimens (red dots) from time stages of increased disparity and their relevant position within the entire sample. B) Rhaetian, C) Callovian, D) Oxfordian, E) Kimmeridgian.

5.2.1 Morphospace distributions through time

Morphospace occupation for the first five Principal Components over time is depicted in the frequency histograms of Figures 8 through 12. The results of the Procrustes ANOVA test and pairwise comparisons are presented on table 8 and 9, respectively. The measure of asymmetry (skewness) at each stage for every Principal Component is summarized in table 7.

18

Figure 8. Frequency histogram for the first Principal Component per time bin. Grid shapes represent approximate tooth morphology.

19

Figure 9. Frequency histogram for the second Principal Component per time bin.

20

Figure 10. Frequency histogram for the third Principal Component per time bin.

21

Figure 11. Frequency histogram for the fourth Principal Component per time bin.

22

Figure 12. Frequency histogram for the fifth Principal Component per time bin.

23

Table 7. Measure of asymmetry per time stage for every Principal Component. Positive skewness indicates that the specimens tend to look like the negative (left grid shape) value of each PC. Negative skewness indicates the positive (right grid shape) value of each PC. Near-zero (-0.5 < S < 0.5) skewness indicates normal distribution. PC Stage PC1 PC2 PC3 PC4 PC5 Skewness Skewness Skewness Skewness Skewness Anisian 1.385 0.139 0.051 0.348 0.392 Ladinian -0.416 -2.454 -1.904 -0.174 1.922 Norian -0.411 -0.707 -0.105 -0.268 -0.625 Rhaetian 0.477 1.098 -1.033 0.091 -1.734 Hettangian -0.638 -0.502 -0.865 -0.772 0.943 Sinemurian -0.218 1.014 -0.365 -0.352 0.445 Pliensbachian -0.487 -0.375 0.64 0.24 0.08 Toarcian 1.165 0.201 0.119 -0.058 -0.452 Aalenian 0.573 1.708 -0.027 -0.512 -0.279 Bajocian 0.183 0.58 -0.783 -0.658 0.285 Bathonian -0.432 0.321 -0.112 0.026 -0.798 Callovian 0.24 0.412 0.2 1.717 0.276 Oxfordian -0.222 0.221 0.196 0.301 0.175 Kimmeridgian 0.158 0.65 -1.521 0.378 -0.061 Tithonian 0.34 -0.228 -1.576 0.173 -0.16

Table 8. Results of the Procrustes ANOVA test. Df = degrees of freedom, SS = total sums of squares for each term, MS = mean sum of squares, R2 = coefficient determination for each model term, F = F values for each model term, Z = effect values, Pr = P value. Bold values indicate significant statistical shift (Pr < 0.05) Df SS MS R2 F Z Pr Time bins 409 33.920 0.0829 0.14242 4.8517 4.1996 0.001** Residuals 14 5.634 0.4024 0.85758 Total 423 39.554 1.00000

Table 9. Procrustes ANOVA (pairwise comparisons) of GPA-aligned coordinates with p-values, indicating statistical morphospace shifts between time bins. Significant differences (P < 0.05) are highlighted in bold. p-values Anisian Ladinian Norian Rhaetian Hettangian Sinemurian Pliensbachian Toarcian Anisian 1.000 0.002 0.104 0.293 0.173 0.287 0.050 0.442 Ladinian 0.002 1.000 0.431 0.001 0.019 0.001 0.009 0.001 Norian 0.104 0.431 1.000 0.374 0.780 0.417 0.805 0.133 Rhaetian 0.293 0.001 0.374 1.000 0.605 0.879 0.119 0.151 Hettangian 0.173 0.019 0.780 0.605 1.000 0.809 0.852 0.177 Sinemurian 0.287 0.001 0.417 0.879 0.809 1.000 0.326 0.173 Pliensbachian 0.050 0.009 0.805 0.119 0.852 0.326 1.000 0.026 Toarcian 0.442 0.001 0.133 0.151 0.177 0.173 0.026 1.000 Aalenian 0.003 0.039 0.307 0.001 0.053 0.002 0.023 0.002 Bajocian 0.037 0.081 0.910 0.054 0.555 0.095 0.432 0.015 Bathonian 0.006 0.041 0.870 0.001 0.102 0.001 0.039 0.001 Callovian 0.006 0.029 0.526 0.001 0.107 0.003 0.052 0.001 Oxfordian 0.001 0.093 0.289 0.002 0.012 0.001 0.018 0.001 Kimmeridgian 0.057 0.002 0.771 0.044 0.834 0.217 0.474 0.004 Tithonian 0.003 0.027 0.579 0.001 0.068 0.001 0.018 0.001

24

Table 9 (cont.). p-values Aalenian Bajocian Bathonian Callovian Oxfordian Kimmeridgian Tithonian Anisian 0.003 0.037 0.006 0.006 0.001 0.057 0.003 Ladinian 0.039 0.081 0.041 0.029 0.093 0.002 0.027 Norian 0.307 0.910 0.870 0.526 0.289 0.771 0.579 Rhaetian 0.001 0.054 0.001 0.001 0.002 0.044 0.001 Hettangian 0.053 0.555 0.102 0.107 0.012 0.834 0.068 Sinemurian 0.002 0.095 0.001 0.003 0.001 0.217 0.001 Pliensbachian 0.023 0.432 0.039 0.052 0.018 0.474 0.018 Toarcian 0.002 0.015 0.001 0.001 0.001 0.004 0.001 Aalenian 1.000 0.264 0.120 0.609 0.015 0.005 0.280 Bajocian 0.264 1.000 0.483 0.609 0.034 0.358 0.342 Bathonian 0.120 0.483 1.000 0.113 0.025 0.002 0.191 Callovian 0.609 0.609 0.113 1.000 0.024 0.009 0.160 Oxfordian 0.015 0.034 0.025 0.024 1.000 0.003 0.008 Kimmeridgian 0.005 0.358 0.002 0.009 0.003 1.000 0.001 Tithonian 0.280 0.342 0.191 0.160 0.008 0.001 1.000

As visualized by frequency distribution over the first 5 PC axes, time bins overlap to each other in varying degrees. In general, the Rhaetian, Sinemurian, Bathonian, Callovian, Kimmeridgian and Tithonian time bins present a broad distribution along all five axes. The results of the Procrustes ANOVA highlight the time bins where there are significant shifts in morphospace. The first shift occurs in the Ladinian (p = 0.002), followed by a significant shift during the Rhaetian (p = 0.001). There are no significant shifts during the Early Jurassic, except between the Pliensbachian and the Toarcian (p = 0.026), followed by another shift during the Aalenian (p = 0.002). No significant morphospace shifts occur during the Middle Jurassic. The next significant shift occurs during the Oxfordian (p = 0.024), followed by shifts during the Kimmeridgian (p = 0.003) and the Tithonian (p = 0.001). Along the first axis, the negative side corresponds to broad, short-cusped teeth, while the positive side morphospace corresponds to high cusped, narrow teeth (figure 8). Morphospace distribution changes within the Middle Triassic, from highly negative (Skewness = 1.385) during the Anisian to moderately positive across the Ladinian – Norian. Morphospace changes significantly again during the Rhaetian, presenting a broad distribution (Skewness = 0.477), although more specimens seem to occupy the negative side. Across the Early Jurassic, distribution fluctuates, however without any statistical significance. There is a significant shift between the Pliensbachian and the Toarcian, where the skewness becomes highly positive. During the Aalenian, morphospace changes significantly, with more teeth plotting in the positive side. The Middle Jurassic presents no significant shift in morphospace with roughly even distributions, which remain until the end of the Jurassic. During the Oxfordian, the distribution is seemingly symmetric (Skewness = -0.222) however, half of the specimens occupy the negative side and the rest are on the positive side. During the Kimmeridgian,

25 distribution is mostly even (Skewness = 0.158), albeit there are more samples on the negative side, while during the Tithonian, there are more samples on the positive side. Along PC2, the teeth are broad with cusps that range from a broad narrow, long, distally curved cusp, to a more flattened, triangular cusp (figure 9). During the Anisian, distribution is symmetric, and changes to highly negatively skewed during the Ladinian, with most samples on the positive side and very few on the negative extreme. During the Rhaetian, skewness becomes highly positive, although many teeth plot on the positive side. During the Pliensbachian, the distribution seems symmetric (Skewness = -0.375) however, all the samples are on the negative side. The Toarcian distribution is symmetric but during the Aalenian there is very high positive skewness, while the extreme majority of the samples are on the positive side. The distribution becomes roughly even during the Bajocian (Skewness = 0.58) and remains like that until the Kimmeridgian, where it shifts to moderately negative (Skewness = 0.65) during the Kimmeridgian and, then becomes symmetric again during the Tithonian (-0.228), although there are more samples on the positive side. The tooth morphology in PC3 ranges from narrow, long straight cone-shaped central cusp with lateral cusps about half the length of the central cusp, to very broad, nearly triangular cusp (figure 10). Distribution is symmetric during the Anisian, but also very near zero values and changes to highly positive (Skewness = -1.904) during the Ladinian, although most samples are on the positive side. During the Rhaetian, the distribution is less highly positive than the Ladinian (Skewness = -1.033), with more samples on the negative side. Across the Early Jurassic, tooth distribution remains similar to Rhaetian. During the Toarcian, the distribution significantly shifts from the Pliensbachian, to a more even distribution (Skewness = 0.119), remaining roughly even across the Middle Jurassic. During the Oxfordian, all the samples plot on the positive side. During the Kimmeridgian and the Tithonian, the distribution is highly positive (Skewness = -1.521 and -1.576 respectively). The morphology extremes for PC4 include the negative flattened triangular teeth and the positive narrow pointy-cusped teeth, with well-formed mesial shelf and the presence of a distal cusplet (figure 11). The distribution seems roughly symmetric with most samples on the negative side for all of the Triassic and the Early Jurassic, up to the Aalenian, where the distribution becomes very moderately positive (Skewness = -0.512). During the Bajocian, the distribution is still moderately positive (Skewness = -0.658), but the samples are very close to the center of the axis. The distribution becomes highly negative during the Callovian (Skewness = 1.717), but the majority of the teeth plot near the center, while a few specimens reach the positive extreme. During the Late Jurassic, the distribution is symmetric and centered. Tooth morphology in the PC5 ranges from roughly cone-shaped, distally curved central cusp with small lateral cusplets on the negative side, to a large triangular cusp and narrow mesial and distal shelves (figure 12). The distribution begins symmetrically during the Anisian (Skewness = 0.392) and changes to highly negative, although all the samples are on the positive side. During the Rhaetian, the distribution is highly positive (Skewness = -1.734), but changes to moderately negative during the

26

Hettangian (Skewness = 0.943). From the Sinemurian to the Bajocian, the distribution remains roughly symmetric and during the Bathonian, it becomes moderately positive, with the majority of samples on the negative side. For the last four time bins, the distribution remains symmetric, but the position of the majority of samples changes from the positive side in the Callovian to the negative in the Oxfordian, followed by a broad distribution in the Kimmeridgian and the Tithonian.

5.3 Clade-specific disparity patterns

The disparity patterns for synechodontiform sharks (Appendix B; figure B-1) seem quite similar to the disparity patterns for the entire sample. There are a few differences however: 1) The Ladinian, Norian & Aalenian time bins have yielded no results, since there are no confirmed synechodontiforms from those time bins. 2) The Oxfordian time bin is opposite to its total sample counterpart, with very low disparity. Other than that, the Rhaetian, Callovian & Kimmeridgian time bins have high disparity, whereas the Toarcian and Tithonian time bins have decreased disparity exactly as in the total sample. The statistical shifts noted here, however, are not significant according to the resulting p-values (Appendix B; table B-1). The Non-Synechodontiformes subgroup also exhibits similar patterns of disparity (Appendix C; figure C-1). Again, there are a few inconsistencies: 1) The Hettangian time bin is missing and 2) the Toarcian shows increased disparity compared to the Pliensbachian and Aalenian time bins. Other than that, p-values associated with pairwise differences are much more consistent with the total sample (Appendix C; table C-1), with significant shifts between the Ladinian and the Rhaetian (p-value = 0.044), then again between the Rhaetian and the Toarcian (p-value = 0.046), between the Aalenian and the Callovian (p-value = 0.013) and between the Callovian and the Tithonian (p-value = 0.019). The Callovian – Oxfordian – Kimmeridgian interval presents no significant shifts, just as in the total group analysis. Finally, contrary to the total group, there is no significant shift between the Kimmeridgian and the Tithonian time bins.

27

6 Discussion

6.1 Error factors

6.1.1 Analytical constraints

Landmark based geometric morphometrics offer a valid method to quantify shape data. However, there were some constraints presented during this analysis. While the tracing of the general morphology of each tooth was possible, some aspects remained uncaptured. Due to either bad image quality, or simply bad preservation of the tooth itself, it was impossible to completely quantify the presence of serrations in most teeth. Furthermore, several teeth were significantly damaged and, few of them were even discarded as unusable. Nonetheless, for the purposes of this study, the digitization of the general morphology of each tooth crown was sufficient for the study of overall variation, and the identification of dentition types.

6.1.2 Sample size

As mentioned above, no single disparity method is resilient to sampling bias and heterogeneity of sample size between time bins (Ciampaglio et al., 2001). A number of time bins analyzed for this study had a small number of specimens (N < 15), mostly due to the lack of published material from these particular time stages. There are only a handful of recorded shark fossils from the Middle Triassic, or even from the early Late Triassic and, while the Jurassic tooth collection is more extensive, there are many inconsistencies, with some time stages offering a poor selachian fossil record (Rees, 1998; Underwood, 2006; Rees, 2010). After applying rarefaction in order to compensate for the heterogeneity of time bins, it became apparent that the small-sampled bins cannot be interpreted individually when it comes to disparity. However, the overall pattern of rarefied disparity does match the pattern of raw disparity almost identically. Thus, even though interpretations about disparity for these time bins might be questionable, it seems that sample size does not significantly affect the overall pattern of disparity, further enhancing the usefulness of geometric morphometrics in disparity analyses.

6.2 Disparity and dental patterns across time

The results of the present study reveal that selachian dental disparity underwent at least two periods of significant increases. In between the two major events, several fluctuations can be observed.

28

6.2.1 Adaptive dental types

Although many researchers described shark dentitions in detail, only a few bothered to investigate the functional aspect of different shark dentitions, or their adaptive meaning (Cappetta, 2012). A few individuals tried to correlate between morphological aspects of shark dentitions and their feeding lifestyle (Bertolini, 1933; Moss, 1967; Cappetta, 1986). The most recent attempt to identify shark (and ray) dentitions, but also to correlate between these dentition types and the feeding habits of the that possess them was made by Cappetta (2012). Cappetta distinguished a fairly small number of dentition groups, which correspond to various feeding adaptations: a) The clutching-type: The teeth are small, and can have more or less numerous lateral cusplets, which make it easier to hold hard prey, like cephalopods. Sharks with clutching-type teeth usually reside near or on the bottom of the sea. b) The tearing-type: Tearing teeth have very narrow cusps, and sometimes possess one to several pairs of lateral cusplets, although in some genera the cusplets have disappeared. Sharks with this type usually prey on fast, free-swimming prey, like fish or squids, and can be found in various environments (close to the shore, deep waters, sea bottom, pelagic zone). c) The sensu stricto cutting-type: One of the two cutting subtypes recognized by Cappetta (2012), cutting-type teeth are characterized as being flattened labio-lingually. The teeth take a more or less triangular shape, although in some taxa, the cusp is bent towards the rear. The cutting-type is often implemented with serrations, and is correlated with sharks which prey on large animals, like seals or other sharks. d) The cutting – clutching-type: The second cutting subtype, it is characterized by strong dignatic heterodonty, meaning that upper jaw teeth are completely different to lower jaw teeth (Compagno, 1970; Duffin & Ward, 1993). The cutting – clutching subtype seems to be an improvement of the s. s. cutting-type, with clutching teeth of one jaw latching on to prey, while cutting teeth of the other jaw cut large pieces of flesh. e) The crushing-type: This type of dentition is associated with bottom dwelling rays (and some sharks), which prey on very hard animals, like shellfish, small fishes and cephalopods. The teeth are usually flattened and overlapping.

6.2.2 Selachian patterns across the Triassic – Jurassic boundary

Tooth disparity for selachians is considerably low during the Middle Triassic. It is possible that this reflects ecological constraint set by hybodont sharks and early that dominated marine environments during the Early and Middle Triassic, while selachians or stem-selachians were still few in number (Cuny et al, 2000; Thorn et al., 2011; Pla et al, 2013). Most teeth seem to resemble the cutting-type dentition. Ladinian disparity seems elevated compared to Anisian, but there is no

29 significant shift. There is significant shift in the morphology of the teeth however, probably the result of heterodonty in a single species, Pseudodalatias henarejensis (Botella et al., 2009). The teeth of P. henarejensis seem to belong to the cutting – clutching-type (Cappetta, 1987; Pla et al., 2013), and they are characterized by dignathic heterodonty, meaning that upper jaw teeth are different than lower jaw teeth (Applegate, 1965; Compagno, 1970; Cappetta, 2012). This type of dentition is also present in the extant family Dalatiidae, so that P. henarejensis may have had a similar feeding behavior of latching on to large prey, such as other sharks or marine reptiles, which were abundant at the time (Thorn et al., 2011) using its narrow upper teeth, and then slice with its lower teeth (Pla et al, 2013). Norian disparity is equivalent to that of the Middle Triassic. Tooth morphology remains similar with probable cutting-type dentitions present in both taxa (Grozonodon candaui, Reifia minuta). During the Rhaetian, disparity greatly increases, as indicated by the significant difference between the Ladinian and the Rhaetian, the two best sampled Triassic bins. Apart from the appearance of several new species (Cuny & Benton, 1999), tooth morphology varies a lot more than previous bins. Rhaetian age specimens hail from several localities in Central and Western Europe (S. England, E. France, Germany, Belgium, Luxembourg), areas associated with the Rhaetian transgression. During the latest stage of the Triassic, a large epicontinental sea rose in the area that later became Western Europe (Cuny & Benton, 1999; Korneisel et al., 2015; Mears et al., 2016). The appearance of this sea introduced new niches and brought forth a general change in Late Triassic faunas (Cuny, 1995), including the appearance of teleost fish and the explosive radiation of neopterygian fish (Patterson, 1993; Tintori, 1996; Cuny & Benton, 1999). Furthermore, Rhaetian faunas change in regards to other predatory animals. Hybodont sharks begin to decline slightly, while selachians and actinopterygians increase (Mears et al., 2016). Ichthyosaurs also show severe reduction in disparity and diversity during the Rhaetian, suggesting a progressive extinction pattern, shared by many other marine reptiles (Benson et al., 2012). It can be hypothesized that the combination of the appearance of new shallow- water environments, the diversification of neopterygian fishes, the appearance of teleost fishes, and the decline of competing predators resulted in the first radiation of the selachians (Cuny & Benton, 1999). Apart from elevated disparity compared to older time bins, the range of morphology also increases significantly at this time. During the Rhaetian, selachians exhibit a wide range of dentition morphologies for the first time, with nearly all known shark morphotypes (cutting-type, tearing-type, clutching-type, crushing-type) being present. The appearance of the crushing-type also has been noted in actinopterygian fishes of the Rhaetian (Cuny et al., 2000; Lakin et al., 2016; Mears et al., 2016). Based on the separate analysis of two subgroups (Synechodontiformes and Non- Synechodontiformes), both subgroup patterns of disparity are very similar to each other, and to the total group (all 424 specimens), apart from very few inconsistencies. It seems safe to assume that the Late Triassic radiation of sharks was not limited to synechodontiform sharks only. Disparity seems to decline across the Triassic – Jurassic boundary, however, there is no significant shift neither in tooth disparity nor tooth morphology. The obvious overlap of the rarefied disparity

30 with the broad confidence intervals of the Hettangian time bins, in combination with non-significant p- values, indicate that selachian disparity remained stable across the T-J boundary. Likewise, tooth morphology also remained the same, as exhibited by a lack of significant p-values in the Procrustes ANOVA pairwise comparisons.

6.2.3 Selachian patterns of the Jurassic

During the Early Jurassic, selachian disparity seems to be fluctuating for the first two time bins, and then, although not significant until the Aalenian, there appears to be a steady decline in disparity starting in the Pliensbachian and continuing into the Toarcian. Tooth morphology also remained relatively unchanged across the Rhaetian – Pliensbachian. There is a significant shift in tooth morphospace between the Pliensbachian and the Toarcian, which is accompanied by an almost significant shift in disparity (p = 0.065 compared to Rhaetian). The Early Toarcian Anoxic Event (Jenkyns, 1988; Gomez et al., 2008) caused the extinction of many invertebrate benthic faunas, with cephalopods and ammonites being affected the most (Dera et al., 2010). The Early Toarcian is characterized by a series of consecutive ammonite extinctions, probably connected to the multi-pulsed volcanic activity in the Karoo – Ferrar province (Palfy & Smith, 2000; Dera et al., 2010). During the Middle Toarcian, a transgressive event may have facilitated the fast recovery of bottom-dwelling cephalopods, which rapidly colonized new neritic and deep environments (Sandoval et al., 2001; Dera et al., 2010). Accordingly, Toarcian shark dentition types characterize bottom feeders, with many dentitions resembling the clutching-type, which is associated with sharks that live near the ocean floor and a diet that consists of hard prey, such as cephalopods (Cappetta, 2012), indicating that the cephalopod faunal shift might have affected the morphology of selachian teeth during the Toarcian. A significant crash in disparity occurred in the Middle Jurassic, reaching pre-Rhaetian levels, as evidenced by the highly non-significant values between the Ladinian and the Aalenian (p = 0.906). Tooth morphology also changed significantly, with clutching-type dentitions becoming scarce, while tearing- and cutting-type dentitions appear more often than before. The Bajocian – Bathonian time bins are characterized by a non-significant increase in disparity, while morphology remains stable and similar to Aalenian tooth morphology. Disparity increased significantly during the Callovian – Kimmeridgian time bins. The disparity increase from Bathonian to Callovian is significant (p = 0.007) however, tooth morphology has not shifted significantly. The same dentition types present in older time bins are also present in the Callovian, although the clutching-type dentition seems to appear a little more often during this time. The progressive rise of sea-level since the latest Aalenian (Dayczak-Calikowska, 1997), tied to the rifting of northern Pangaea (Zimmerman et al., 2015), led to the formation of the Central European Basin (CEB), which covered much of north-east Europe during the Bathonian (Grigelis & Norling,

31

1999; Rees, 2010). During the Callovian the CEB, further extended and connected with the Tethys ocean to the south and with Boreal waters of the Arctic ocean to the north (Rais et al., 2007; Fischer et al., 2012; Zimmerman et al., 2015). This connection caused many faunal migrations of ammonites and ostracodes, mostly from the Boreal provinces, to the CEB (Callomon, 2003; Poulsen & Riding, 2003). Sharks with clutching-type dentition, suited for a diet consisting of cephalopods (Cappetta, 2012) would appear more often during this time. During the Oxfordian, disparity continues to increase, reaching its zenith, higher than any time bin before. However, due to its low number of specimens, there is a lot of uncertainty about the Oxfordian. The Oxfordian time bin seems even more problematic when examined separately for each subgroup. Combined, Synechodontiformes and Non-Synechodontiformes exhibit high disparity during the Oxfordian, but when analyzed separately, both subgroups are very constrained. This is most likely a result of low sampling (4 synechodontiforms & 3 non-synechodontiforms) which also affects the total group disparity, as mentioned before. As such, the Oxfordian should be interpreted with caution. Nonetheless, it can be said that Oxfordian disparity is consistent with the disparity during the Callovian and the Kimmeridgian time bins, since it is significantly different than all other time bins, except the Callovian and the Kimmeridgian. Tooth morphology also changed significantly from the Callovian with the clutching-type dentition disappearing completely, and only tearing- and cutting- type dentitions being present. The high disparity and shift of tooth morphology coincide with two transgression events during the Early and Middle Oxfordian (Gygi, 1986) and a major diversification of actinopterygian fishes, the pycnodonts (Guinot & Cavin, 2016). Thus, Oxfordian selachians might had developed tearing- and cutting-type dentitions that are more suited to catch fast, free-swimming fish, or larger prey, in open waters (Bottcher & Duffin, 2000; Cappetta, 2012). During the Kimmeridgian, disparity remains at high values, without any significant shifts from the Callovian – Oxfordian. Tooth morphology does change significantly however. The clutching-type dentition has reappeared and is much more prominent now, indicating a diet of hard prey, near the bottom (Cappetta, 2012), while cutting- and tearing-types are still present. Disparity shifts significantly (p = 0.000) during the Tithonian, with a major decline that brings disparity to Middle Jurassic values. Tooth morphology changes significantly as well, with more teeth of the cutting-type dentition being present, while the clutching-type declines again, albeit still present. Both disparity and tooth morphospace are consistent with Middle Jurassic patterns, as evidence by non-significant values between the Tithonian and the Aalenian – Bathonian. It is possible that the combined effect of a marine regression during the Tithonian, related to tectonic activity in north-west Europe (Hallam, 2001), and an increase in competition affected the evolution of sharks during this time. Small hybodont sharks were abundant in nearshore environments and rhinobatids were cosmopolitan (Underwood, 2002), while the dominant predators of the Late Kimmeridgian – Early Tithonian of England and Germany were the large marine crocodylomorphs Metriorhynchidae, which had radiated at the time (Young et al., 2010).

32

7 Conclusions

Selachians radiated twice during the Early Mesozoic. The first radiation took place during the Rhaetian, contrary to many diversity or molecular analyses (Maisey et al., 2004; Kriwet et al., 2009; Guinot & Cavin, 2016). The Rhaetian Transgression resulted in the formation of a shallow epicontinental sea (Hallam, 1997) which covered a vast area and would have been a very suitable environment for selachians of that time, while the appearance of new fishes, might have presented new types of prey for selachians of the Rhaetian (Cuny & Benton, 1999). The second radiation occurred during the Callovian – Kimmeridgian interval. Disparity increased significantly during the Callovian and remained so until the Tithonian. The cause for this event could have been the expansion of the Central European Basin across the Early – Middle Jurassic that resulted in its connection with the Boreal Provinces in the north (Zimmerman et al., 2015). In the Oxfordian, sea level continued to rise, coinciding with appearance of the pycnodont fishes (Guinot & Cavin, 2016). The main drive of shark evolution patterns across the Early Mesozoic could have been the breakup of Pangaea. The transgressive/regressive cycles resulting from tectonic activity greatly affect disparity. Transgressive events coincide with increased disparity and, sometimes, with shifts in dental morphology. Transgressive/regressive events may have affected shark dental morphology across time, albeit indirectly, by influencing other faunas which are prey for selachians. The Rhaetian shark radiation is accompanied by the appearance of almost all known dentition types, as selachians occupied new environments and began feeding on new types of prey, ranging from bottom-dwelling shelled organisms to free-swimming teleosts. A transgression in the Middle Toarcian facilitated the fast recovery of cephalopods that had been affected by the Early Toarcian Anoxic Event (Sandoval et al., 2001; Dera et al., 2010). As a result, the clutching dentition, suited for feeding in cephalopods is the more prominent during the Toarcian. Tooth morphology across the Callovian – Oxfordian – Kimmeridgian interval changes constantly. During the Callovian, migration of cephalopod faunas from the north (Callomon, 2003; Poulsen & Riding, 2003) led to increase in the presence of clutching- type dentitions. Later, during the Oxfordian, the two-pulsed transgressions coincide with the appearance of the pycnodont fishes (Gygi, 1986; Guinot & Cavin, 2016). As a result, the clutching- type disappeared completely, and Oxfordian selachians have tearing- or cutting-type dentitions, associated with fast, free swimming prey in open water. The clutching dentition reappeared during the Kimmeridgian, and declined significantly during the Tithonian. The Tithonian decline in disparity might have resulted from the combination of a regressive event (Hallam, 2001), with the success of competing predators, like rhinobatids and metriorhynchids (Underwood, 2002; Young et al., 2010).

33

8 Acknowledgements

This work was carried out at the Department of Earth Sciences, Uppsala University, Sweden. I wish to thank my supervisor, Dr. Nicolàs E. Campione, for offering me the opportunity to pursue a thesis project, and also for providing me support and feedback throughout the course. I also wish to thank Mohammad Bazzi, for providing me with extra source material for building the database, and for assisting me during the analysis. I am very grateful to the feedback I received from colleagues Fredrik Söderblom and Chris Freer, in the Campione Lab meetings during the course of the project, and also to colleague Jasper Ponstein for offering constructive criticism as my thesis opponent. Finally I want to thank my colleagues, friends, and family who supported me during the course of this project.

34

9 References

9.1 Published material

Adams, D. C. & Otarola-Castillo, E. (2013). Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, vol. 4, pp. 393-399.

Adams, D.C., Rohlf, F.J. & Slice, D.E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool., vol. 71, pp. 5-16.

Adams, D. C., Rohlf, F. J. & Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix, vol. 24, pp. 7–14.

Adreev, P. S. & Cuny, G. (2012). New Triassic stem selachimorphs (Chondricthyes, Elasmobrachii) and their bearing on the evolution of dental enameloid in Neoselachii. Journal of Paleontology, vol. 32, issue 2, pp. 255-266.

Agassiz, L. (1843). Recherches Sur Les Poissons Fossiles, tome III (livr. 15-16). Imprimérie de Petitpierre, Neuchatel, pp. 157-390.

Alroy, J., Aberhan, M., Bottjer, D.J., Foote, M., Fursich, M.T., Harries, P.J., Hendy, A.J.W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A. & Visaggi, C. C. (2008). Phanerozoic trends in the diversity of marine invertebrates. Science, vol. 321, no. 5885, pp. 97-100.

Applegate, S. P. (1965). Tooth terminology and variation in sharks with special reference to the sand shark Carcharias Taurus RAFINESQUE. Contr. Sci., Los Angeles Co. Mus., vol. 86, pp. 1-18.

Arratia, G., Kriwet, J. & Heinrich, W.D. (2002). Selachians and actinopterygians from the Upper Jurassic of Tendaguru, Tanzania. Mitt. Mus. Nat.kd. Berl., Geowiss., vol. 5, pp.207-230.

Bazzi, M. (2016). Extinction dynamics in Selachimorpha: tracking dental morphology across the K– Pg boundary. M.S. Thesis, Uppsala Universitet, Uppsala, 138pp.

Benson, R. B. J., Evans, M. & Drunkenmiller, P. S. (2012). High diversity, low disparity and small body size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic-Jurassic boundary. PLoS ONE, vol. 7, issue 3, pp. 1-15.

Benton, M. J. (2012). Vertebrate Palaeontology. 4th Edition. Somerset: Wiley.

Bertolini, F. (1933). La dentature dei selaci in rapporto con la nutrizione. Rend. Accad. Lincei, vol. 6, pp. 234-237.

Blackburn, T.J., Olsen, P. E., Bowring, S. A., McLean, N. M., Kent, D. V., Puffer, J., McHone, G., Rasbury, E. T. & Et-Touhami, M. (2013). Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province. Science, vol. 340, issue 6135, pp. 941-945.

Bookstein, F. L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge University Press.

35

Bookstein, F. L. (1997). Landmark methods for forms without landmarks: localizing group differences in outline shape. Med. Image Anal., vol. 1, pp. 225-243.

Bookstein, F. L. (1998). A hundred years of morphometrics. Acta Zool. Acad. Sci. Hung., vol. 44, pp. 7-59.

Botella, H., Plasencia, P., Marquez-Aliaga, A., Cuny, G. & Dorka, M. (2009). Pseudodalatias henarejensis nov. sp. a New Pseudodalatiid () from the Middle Triassic of Spain. Journal of Vertebrate Paleontology, vol. 29, issue 4, pp. 1006-1012.

Bottcher, R, & Duffin, C. J. (2000). The neoselachian Sphenodus from the Late Kimmeridgian (Late Jurassic) of Nusplingen and Egesheim (Baden-Württemberg, Germany). Stuttgarter Beitr. Naturk., Ser. B, no. 283, pp. 1-31.

Bulmer, M. G. (1979). Principles of Statistics. New York: Dover Publications Inc.

Burrow, C. J., Hovestadt, D. C., Hovestadt-Euler, M., Turner, S. & Young, G. C. (2008). New information on the Devonian shark Mcurdodus, based on material from western Queensland, Australia. Acta Geologica Polonica, vol. 58, issue 2, pp. 155-163.

Callomon, J. H. (2003). The Middle Jurassic of western and northern Europe: its subdivisions, geochronology and correlations. In: Ineson, J. R. & Surlyk, F. (Eds.) The Jurassic of Denmark and Greenland Bulletin, vol. 1, pp. 61-73.

Cappetta, H. (1986). Types dentaires adaptatifs chez les selaciens actuels et post-paleozoiques. Palaeovertebrata, vol. 16, issue 2, pp. 57-76.

Cappetta, H. (1987). Mesozoic and Cenozoic elasmobranchii. Chondricthyes II. In: Schultze, H. P. (Ed.) Handbook of Paleoichthyology, 3B. Stuttgart: Gustav Fischer Verlag.

Cappetta, H. (2012). Chondricthyes (Mesozoic and Cenozoic Elasmobranchii: teeth). In: H.-P. Schultze (Ed.) Handbook of Paleoichthyology. Volume 3E. München: Verlag Dr. Friedrich Pfeil, pp. 1–512.

Cathles, L.M., & Hallam, A. (1991). Stress-induced changes in plate density, Vail sequences, epeirogeny and short-lived global sea-level fluctuations. Tectonics, vol 10, pp. 659-671.

Chen, L., Cuny, G. & Wang, X. (2007). The chondrichthyan fauna from the Middle-Late Triassic of Guanling (Guizhou province, SW China). Historical Biology, vol 19, issue 4, pp. 291-300. DOI: 10.1080/08912960701248234

Ciampaglio, C. N., Kemp, M. & McShea, D. W. (2001). Detecting changes in morphospace occupation patterns in the fossil record: Characterization and analysis of measures of disparity. Palaeobiology, vol 27, issue 4, pp. 695-715.

Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J. X. (2013; updated) The ICS International Chronostratigraphic Chart. Episodes, vol. 36, pp. 199-204.

Collyer, M.L., Sekora, D. J. & Adams, D. C. (2015). A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity, vol. 115, pp. 357-365.

Compagno, L. J. V. (1970). Systematics of the genus Hemitriakis (Selachii: Carcharhinidae), and related genera. Proc. California Acad. Sci., vol. 38, no. 4, pp. 63-97.

36

Compagno, L. J. V. (1977). Phyletic relationships of living sharks and rays. American Zoologist. Vol. 17, pp. 303-322.

Compagno, L. J. V. (2001). Sharks of the World. An annotated and illustrated catalogue of shark species known to date. Volume 2. Rome: Food and Agriculture organization of the United Nations.

Cuny, G. (1995). French vertebrate faunas and the Triassic – Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 119, pp. 343-358.

Cuny, G. (1998). Primitive neoselachian sharks: a survey. Oryctos, vol. 1, pp. 3-21.

Cuny, G. & Benton, M. J. (1999). Early radiation of the neoselachian sharks in Western Europe. GEOBIOS, vol. 32, issue 2, pp. 193-204.

Cuny, G., Hunt, A., Mazin, J. M. & Rauscher, R. (2000). Teeth of enigmatic neoselachian sharks and an ornithischian dinosaur from the uppermost Triassic of Lons-le-Saunier (Jura, France). Palaiontologische Zeitschrift, vol. 74, issue ½, pp.171-185.

Cuny, G., Martin, M., Rauscher, R. & Mazin, J. M. (1998). A new neoselachian shark from the Upper Triassic of Grozon (Jura, France). Geol. Mag., vol. 135, issue 5, pp. 657–668.

Cuny, G., Rieppel, O. & Sander, P. M. (2001). The shark fauna from the Middle Triassic (Anisian) of North-Western Nevada. Zoological Journal of the Linnean Society, vol. 133, pp. 285-301.

Cuny, G., & Risnes, S. (2005). The enameloid microstructure of the teeth of synechodontiform sharks (: Neoselachii). PalArch’s Journal of Vertebrate Palaeontology, vol. 3, issue 2, pp. 8- 19.

Cuny, G., & Tabouelle, J. (2014). First mention of the family Pseudonotidanidae (Chondrichthyes: Neoselachii) in the Jurassic of Normandy. Bulletin Sciences et Géologie Normandes, tome 7, pp. 21- 28.

Dayczak-Calikowska, K. (1997). Jura środkowa. Sedymentacja, paleogeografia i paleotektonika. In: Marek, S. & Pajchlowa, M. (Eds.) Epikontynentalny perm i mezozoik w Polsce. Prace Państwowego Instytutu Geologicznego, vol. 153, pp. 269–282.

Dayczak-Calikowska, K., & Moryc, W. (1988). Evolution of sedimentary basin and palaeotectonics of the Middle Jurassic in Poland. Kwartalnik Geologiczny, vol. 32, pp. 117-136. [In Polish with English summary]

Delsate, D. (2001). L’ ichthyofaune du Pliensbachien (Jurassique Inferieur) de Lorraine et des Ardennes (France): premiers resultats. Bulletin de l'Académie Lorraine des Sciences, vol. 40, pp. 47- 69.

Delsate, D. (2009). Microrestes de poissons du Lias et du Rhetien de Moselle et de Meurthe-et- Moselle (N-E France). Bulletin S.H.N.M., vol. 51, pp. 19-33.

Delsate, D. & Duffin, C. J. (1993). Chondrichthyens du Sinémurien de Belgique. Service geologique de Belgique, Professional Paper, vol. 264, pp. 103- 136.

Delsate, D., Duffin, C. J. & Weis, R. (2002). A new microvertebrate fauna from the Middle Hettangian (Early Jurassic) of Fontenoille (Province of Luxembourg, south Belgium). Memoirs of the Geological Survey of Belgium, vol. 48, pp. 3-84.

37

Delsate, D. & Felten, R. (2015). Chondrichthyens et Actinoptérygiens du Bajocien inférieur du Grand- Duché de Luxembourg et des régions frontalières. In: Weis R. & Thuy, B. (Eds.) Le Jurassique au Luxembourg (1) - Vertébrés, echinoderms et céphalopodes du Bajocien. Ferrantia, vol. 71, Luxembourg, Musée national d’histoire naturelle, pp. 9-38.

Delsate, D. & Godefroit, P. (1995). Chondrichthyens du Toarcien inférieur d’Aubange (Lorraine belge). Service géologique de Belgique, Professional Paper, vol. 278, pp. 23-44.

Delsate, D. & Thies, D. (1995). Teeth of the fossil shark Annea THIES 1983 (Elasmobranchii- Neoselachii) from the Toarcian of Belgium. Service géologique de Belgique, Professional Paper, vol. 278, pp. 45-64.

Delsate, D. & Weis, R. (2010). La Couche à Crassum (Toarcien moyen) au Luxembourg: stratigraphie et faunes de la coupe de Dudelange-Zoufftgen. Ferrantia, vol. 62, pp.35-62.

Dera, G., Neige, P., Demmergues, J. L., Fara, E., Laffont, R. & Pellenard, P. (2010). High-resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian – Toarcian ammonites (Cephalopoda). Journal of the Geological Society, London, vol. 167, pp. 21-33.

Doane, D. P. & Seward, L. E. (2011). Measuring skewness: a forgotten statistic? Journal of Statistics Education, vol. 19, no 2, pp. 1-18.

Duffin, C. J. (1982a). A palaeospinacid shark from the Upper Triassic of south-west England. Zoological Journal of the Linnean Society, vol. 74, pp. 1-7.

Duffin, C. J. (1982b). Teeth of a new selachian from the Upper Triassic of England. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, vol. 3, pp. 156-166.

Duffin, C. J. (1988). The Upper Jurassic selachian Palaeocarcharias de Beaumont (1960). Zoological Journal of the Linnean Society, vol. 94, pp. 271-286.

Duffin, C. J. (1993). Late Triassic shark teeth (Chondricthyes, Elasmobranchii) from Saint-Nicolas-de- Port (north-east France). Elasmobranches et stratigraphie, vol. 264, pp. 7-32.

Duffin, C.J. (1998a). New shark remains from the British Rhaetian (latest Triassic) 1. The earliest basking shark. Neues Jahrbuch für Geologie und Paläontologie Monatshefte vol. 3, pp. 157-181.

Duffin, C. J. (1998b). Ostenoselache stenosoma n. g. n. sp., a new neoselachian shark from the Sinemurian (Early Jurassic) of Osteno (Lombardy, Italy). Paleontologia Lombarda, vol. 9, pp. 1-27.

Duffin, C. J. & Ward, D. J. (1983). Teeth of a new neoselachian shark from the British Lower Jurassic. Palaeontology, vol. 26, issue 4, pp. 839-844.

Duffin, C. J. & Ward, D. J. (1993). The Early Jurassic Palaeospinacid sharks of Lyme Regis, southern England. Belgian Geological Survey, Professional Papers, Elasmobranches et Stratigraphie, vol. 264, pp. 53-102.

Fischer, J., Voigt, S., Franz, M., Schneider, J. W., Joachimski, M. M., Tichomirowa, M., Götze, J. & Furrer, H. (2012). Palaeoenvironments of the late Triassic Rhaetian Sea: implications from oxygen and strontium isotopes of hybodont shark teeth. Palaeogeography Palaeoclimatology Palaeoecology, vol. 353–355, pp. 60–72.

Fitzinger, L. J. F. J. (1843). Systema Reptilium. Wien: Braumüller et Seidel.

38

Foote, M. (1992). Rarefaction analysis of morphological and taxonomical diversity. Palaeobiology, vol. 18, no. 1, pp. 1-16.

Ginter, M., Hampe, O. & Duffin, C. J. (2010). Chondrichthyes, Paleozoic Elasmobranchii: Teeth. In: Schultze, H. P. (Ed.) Handbook of Paleoichthyology, vol. 3, part 4, Munchen: Lubrecht & Cramer Ltd, pp. 1-168.

Godefroit, P., Cuny, G., Delsate, D. & Roche, M. (1998). Late Triassic from Syren (Luxembourg). N. Jb. Geol. Paläont. Abh., vol. 210, issue 3, pp. 305-343.

Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society, series B, vol. 53, no. 2, pp. 285-339.

Grigelis, A. & Norling, E. (1999). Jurassic geology and foraminiferal faunas in the NW part of the East European platform. A Lithuanian-Swedish geotraverse study. Sveriges Geologiska Undersokning Ca, vol. 89, pp. 1–101.

Guinot, G. & Cavin, L. (2016). ‘Fish’ (Actinopterygii and Elasmobranchii) diversification patterns through deep time. Biological Reviews, vol. 91, pp. 950-981.

Guinot, G., Adnet, S. & Cappetta, (H. 2012). An Analytical Approach for Estimating Fossil Record and Diversification Events in Sharks, Skates and Rays. PLoS ONE, vol. 7, issue 9: L44632. https://doi.org/10.1371/journal.pone.0044632

Gomez, J. J., Goy, A. & Canales, M. L. (2008). Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in Central and Northern Spain. Comparison with other European sections. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 258, pp. 28-58.

Gygi, R.A. (1986). Eustatic sea level changes of the Oxfordian (Late Jurassic) and their effect documented in sediments and fossil assemblages of an epicontinental sea. Eclogae Geologicae Helvetiae, vol. 79, no. 2, pp. 455-492.

Hallam, A. (1997). Estimates of the amount and rate of sea-level change across the Rhaetian- Hettangian and Pliensbachian-Toarcian boundaries (latest Triassic to early Jurassic). Journal of the Geological Society, vol. 154, pp. 773-779.

Hallam, A. (2001). A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 167, pp. 23-37.

Hallam, A. & Wignall, P. B. (1999). Mass extinctions and sea level changes. Earth-Sci. Rev., vol. 48, pp. 217-250.

Jacquin, T., Dardeau, G., Durtlet, C., de Graciansky, P. C. & Hantzbergue, P. (1998). In: de Graciansky, P. C., Hardenbol, J., Jacquin, T. & Vail, P.R. (Eds.) The North Sea Cycle: An Overview of 2nd-order Transgressive/Regressive Facies Cycles in Western Europe. Tulsa: SEPM (Society for Sedimentary Geology) Special Publication, vol. 60, pp. 445-466.

Jenkyns, H.C. (1988). The Early Toarcian (Jurassic) Anoxic Event: stratigraphic, sedimentary and geochemical evidence. Am. J. Sci., vol. 288, pp. 101-151.

Klug, S. (2008). The Late Jurassic neoselachian Macrourogaleus FOWLER, 1947 is a palaeospinacid shark (Elasmobranchii; Synechodontiformes). Acta Geologica Polonica, vol. 58, no. 2, pp. 229-234.

39

Klug, S. (2009). A New Palaeospinacid Shark (Chondrichthyes, Neoselachii) from the Upper Jurassic of Southern Germany. Journal of Vertebrate Paleontology, vol. 29, no. 2, pp. 326-335.

Klug, S. & Kriwet, J. (2010). A new Late Jurassic species of the rare synechodontiform shark, Welcommia (Chondrichthyes, Neoselachii). Palaeontol Z., vol. 84, issue 3, pp. 413–419. DOI 10.1007/s12542-010-0058-9

Klug, S., Kriwet, J., Bottcher, R., Schweigert, G. & Dietl, G. (2009). Skeletal anatomy of the extinct shark jurensis (Chondrichthyes; Palaeospinacidae), with comments on synechodontiform and palaeospinacid monophyly. Zoological Journal, vol. 157, issue 1, pp. 107-134.

Korneisel, D., Gallois, R. W., Duffin, C. J. & Benton, M. J. (2015). Latest Triassic marine sharks and bony fishes from a bone bed preserved in a burrow system, from Devon, UK. Proceedings of the Geologists' Association, vol. 126, issue 1, pp. 130–142.

Kriwet, J. (1998). Late Jurassic Elasmobranch and Actinopterygian fishes from Portugal and Spain. Guadernos de Geologia Iberica, vol. 24, pp. 241-260.

Kriwet, J. (2003). Neoselachian remains (Chondrichthyes, Elasmobranchii) from the Middle Jurassic of SW Germany and NW Poland. Acta Palaeontologica Polonica, vol. 48, issue 4, pp. 583-594.

Kriwet, J. (2008). A new species of extinct bullhead sharks, Paracestracion viohli sp. nov. (Neoselachii, Heterodontiformes), from the Upper Jurassic of South Germany. Acta Geologica Polonica, vol. 58, issue 2, pp. 235-241.

Kriwet, J., Kiessling, W. & Klug, S. (2009). Diversification trajectories and evolutionary life-history traits in early sharks and batoids Proc. R. Soc. B, vol. 276, pp. 945–951. doi:10.1098/rspb.2008.1441

Kriwet, J. & Klug, S. (2004). Late Jurassic selachians (Chondrichthyes, Elasmobranchii) from southern Germany: Re-evaluation on taxonomy and diversity. Zitteliana, series A, vol. 44, pp. 67-95.

Kriwet, J. & Klug, S. (2011). A new Jurassic cow shark (Chondrichthyes, Hexanchiformes) with comments on Jurassic hexanchiform systematics. Swiss J Geosci, vol. 104 (Suppl 1), pp. 107-114. DOI 10.1007/s00015-011-0075-z

Lakin, R. J., Duffin, C. J., Hildebrandt, C. & Benton, M. J. (2016). The Rhaetian vertebrates of Chipping Sodbury, South Gloucestershire, UK, a comparative study. Proceedings of the Geologists’ Association, vol. 127, pp. 40–52.

Long, J. A. (2011). The Rise of Fishes: 500 Million Years of Evolution, 2nd edition. Baltimore: Johns Hopkins University Press.

Maisey, J. G. (1984). Chondrichthyan phylogeny: a look at the evidence. Journal of Vertebrate Palaeontology, vol. 4, pp. 359-371.

Maisey, J. G., Naylor, G. J. P. & Ward, D. J. (2004). Mesozoic elasmobranches, neoselachian phylogeny and the rise of modern elasmobranch diversity. In: Arratia, G. & Tintori, A. (Eds.) Mesozoic Fishes, vol. 3. München: Verlag Friedrich Pfeil, pp. 17-56.

Manspeizer, W. (1988). Triassic-Jurassic rifting and opening of the Atlantic: an overview. In: Manspeizer, W. (Ed.). Triassic-Jurassic Rifting: Continental Breakup and the Origin of the Atlantic Ocean and Passive Margins, Part A. Amsterdam: Elsevier, pp. 41-79.

Marzoli, A., Bertrand, H., Knight, K. B., Cirilli, S., Buratti, N., Vérati, C., Nomade, S., Renne, P. R., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L. & Bellieni, G. (2004).

40

Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology, vol. 32, no. 11, pp. 973–976.

Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G. & De Min, A. (1999). Extensive 200 million-year-old continental flood basalts of the central Atlantic magmatic province. Science, vol. 284, issue 5414, pp. 616–618.

Mears, E. M., Rossi, V., MacDonald, E., Coleman, G., Davies, T. G., Arias-Riesgo, C., Hildebrandt, C., Thiel, H., Duffin, C. J., Whiteside, D. I. & Benton, M. J. (2016). The Rhaetian (Late Triassic) vertebrates of Hampstead Farm Quarry, Gloucestershire, UK. Proceedings of the Geologists’ Association, vol. 127, pp. 478–505.

Moss, S. A. (1967). Tooth replacement in the lemon shark, Negaprion brevirostris. In: Gilbert, P. W., Mathewson, R. F. & Rall, D. P. (Eds) Sharks, skates and rays. Baltimore: John Hopkins Press, pp. 319-329.

Nelson, J. S. (1984). Fishes of the World. New York: John Wiley and Sons.

Palfy, J. & Smith, P. L. (2000). Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo – Ferrar flood basalt volcanism. Geology, vol. 28, pp. 747-750.

Paradis, E., Claude, J. & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, vol. 20, pp. 289-290.

Pieńkowski, G., Schudack, M. E., Bosák, P., Enay, R., Feldman-Olszewska, A., Golonka, J., Gutowski, J., Herngreen, G. F. W., Jordan, P., Krobicki, M., Lathuiliere, B., Leinfelder, R. R., Michalík, J., Mönnig, E., Noe-Nygaard, N., Pálfy, J., Pint, A., Rasser, M. W., Reisdorf, A. G., Schmid, D. U., Schweigert, G., Surlyk, F., Wetzel, A. & Wong, T. E. (2008). Jurassic. In: McCann, T. (Ed.) The Geology of Central Europe: Mesozoic and Cenozoic, vol. 2. London: The Geological Society, pp. 823–922.

Pla, C., Márquez-Aliaga, A. & Botella, H. (2013). The Chondrichthyan Fauna from the Middle Triassic (Ladinian) of the Iberian Range (Spain). Journal of Vertebrate Paleontology, vol. 33, issue 4, pp. 770-785.

Poulsen, N.E. & Riding, J. B. (2003). The Jurassic dinoflagellate cyst zonation of Subboreal Northwest Europe. In: Ineson, J. R. & Surlyk, F. (Eds.), The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin vol 1. Copenhagen: GEUS, pp. 115–147.

Rais, P., Louis-Schmid, B., Bernasconi, S. M. & Weissert, H. (2007). Palaeoceanographic and palaeoclimatic reorganization around the Middle–Late Jurassic transition. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 251, pp. 527–546.

Raup, D.M. (1976). Species diversity in the Phanerozoic: an interpretation. Palaeobiology, vol. 2, pp. 289-297.

Rees, J. (1998). Early Jurassic Selachians from the Hasle Formation on Bornholm, Denmark. Acta Palaeontol. Polonica, vol. 43, pp. 439-452.

Rees, J. (2000). A new Pliensbachian (Early Jurassic) neoselachian shark fauna from southern Sweden. Acta Palaeontologica Polonica, vol. 45, issue 4, pp. 407-424.

Rees, J. (2010). Neoselachian sharks from the Callovian – Oxfordian (Jurassic) of Ogrodzieniec, Zawiercie region, Southern Poland. Palaeontology, vol. 53, part 4, pp. 887-902. doi: 10.1111/j.1475- 4983.2010.00967.x

41

Rees, J. (2012). Palaeoecological implications of neoselachian shark teeth from the Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geologica Polonica, vol. 62, issue 3, pp. 397-402. Reif, W. E. (1973). Morphologie und Ultrastruktur des Hai-”Schwelzes”. Zoologica Scripta, vol. 2, pp. 231-250.

Reif, W. E. (1977). Tooth enameloid as a taxonomic criterion: 1: a new euselachian shark from the Rhaetic-Liassic boundary. Neues Jahrbuch Fur Geologie und Palaontologie, Monatshefte, 1977, pp. 565-576.

Rohlf, F. J. & Marcus, L. F. (1993). A revolution in morphometrics. Trends Ecol. Evol., vol. 8, pp. 129-132.

Rohlf, F. J. & Slice, D. (1990). Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Syst. Zool., vol. 39, pp. 40-59.

Sanders, H. L. (1968). Marine benthic diversity: a comparative study. American Naturalist, vol. 102, pp. 243-282.

Schaumberg, G. (1982). Hopleacanthus richelsdorfensis nov. gen., nov. sp., ein Euselachier aus dem permischen Kupferschiefer yon Hessen (W-Deutschland). Palaontologie Zeitschrift, vol. 56, part 3, pp. 235-257.

Scheck-Wenderoth, M., Krzywiec, P., Zühlke, R., Maystrenko, Y. & Froitzheim, N. (2008). to tectonics. In: McCann, T. (Ed.) The Geology of Central Europe, vol. 2. London: Geological Society of London, pp. 999–1031.

Shirai, S. (1996). Phylogenetic Interrelationships of Neoselachians (Chondrichthyes: Euselachii). In: Stiassny, M. L. J., Parenti, L. R. & Johnson, G. D. (Eds) Interrelationships of Fishes. San Diego: Academic Press, pp. 9-34.

Sellwood, B.W. & Jenkyns, H. G. (1975). Basins and swells and the evolution of an epeiric sea: (Pliensbachian–Bajocian of Great Britain). J. Geol. Soc., vol. 131, pp. 373–388.

Sepkoski, J.J. (1976). Species diversity in the Phanerozoic: species-area effects. Palaeobiology, vol. 2, pp. 298-303.

Slater, T.S., Duffin, C. J., Hilderbrandt, C., Davies, T. G. & Benton, M. J. (2016). Microvertebrates from multiple bone beds in the Rhaetian of the M4 – M5 motorway junction, South Gloucestershire, U.K. Proceedings of the Geologists’ Association, vol. 127, pp. 464–477.

Smith, A.B. (2001). Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Phil. Trans. R. Soc. Lond., tome B, vol. 356, pp. 351-367.

Srdic, A., Duffin, C. J. & Martill, D. M. (2016). First occurrence of the orectolobiform shark Akaimia in the Oxford Clay Formation (Jurassic, Callovian) of England. Proceedings of the Geologists’ Association, vol. 127, pp. 506–513.

Thies, D. (1983). Jurazeitliche Neoselachier aus Deutschland und S-England (Jurassic neoselachians from German and S-England). Courier Forschungsinstitut Senckenberg, vol. 58, pp. 1-116.

Thies, D. (1989). Some problematical shark teeth (Chondricthyes, Neoselachii) from the Early and Middle Jurassic of Germany. Paläont. Z, vol. 63, part 1, pp. 103-117.

42

Thies, D. & Leidner, A. (2011). Sharks and guitarfishes (Elasmobranchii) from the Late Jurassic of Europe. Palaeodiversity, vol. 4, pp. 63–184.

Thies, D. & Reif, W. E. (1985). Phylogeny and evolutionary ecology of Mesozoic Neoselachii. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, vol. 169, pp. 333–361.

Thies, D., Vespermann, J. & Solcher, J. (2014). Two new neoselachian sharks (Elasmobranchii, Neoselachii, Synechodontiformes) from the Rhaetian (Late Triassic) of Europe. Palaeontographica, Abt. A: Palaezoology – Stratigraphy, vol. 303, parts 4–6, pp. 137– 167.

Turner, S. & Young, G. C. (1987). Shark teeth from the Early-Middle Devonian Cravens Peak Beds, Georgina Basin, Queensland. Alcheringa, vol. 11, pp. 233-244.

Underwood, C.J. (2002). Sharks, rays and a chimaeroid from the Kimmeridgian (Late Jurassic) of Ringstead, Southern England. Palaeontology, vol. 45, part 2, pp. 297-325.

Underwood, C.J. (2004). Environmental controls on the distribution of neoselachian sharks and rays within the British Bathonian (Middle Jurassic). Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 203, issues 1-2, pp. 107-126.

Underwood, C. J. (2006). Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous. Paleobiology, vol. 32, issue 2, pp. 215-235.

Underwood, C. J. &Ward, D. J. (2004). Environmental distribution of Bathonian (Middle Jurassic) neoselachians in southern England. In: Tintori, A. & Arratia, G. (eds.) Mesozoic Fishes 3 - Systematics, Palaeoenvironments and Biodiversity. Mnchen: Verlag, pp. 111-122.

Velez-Zuazo, X. & Agnarsson, I. (2011). Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondricthyes). Molecular Phylogenetics and Evolution, vol. 58, pp. 207-217.

Wainwright, P. C. (1996). Ecological Explanation through Functional Morphology: The Feeding Biology of Sunfishes. Ecology, vol. 77, issue 5, pp. 1336-1343.

Whitenack, L. B. & Motta, P. J. (2010). Performance of shark teeth during puncture and draw: implications for the mechanics of cutting. Biological Journal of the Linnean Society, vol. 100, pp. 271–286.

Whiteside, D. I., Duffin, C. J., Gill, P. G., Marshall, J. E. A. & Benton, M. J. (2016). The Late Triassic and Early Jurassic fissure faunas from Bristol and South Wales: Stratigraphy and setting. Palaeontologia Polonica, vol. 67, pp. 257–287.

Young, M.T., Brusatte, S. L., Ruta, M. & DeAndrade, M. B. (2010). The evolution of Metriorhynchoidea (mesoeucrocodylia, thalattosuchia): an integrated approach using geometric morphometrics, analysis of disparity, and biomechanics. Zoological Journal of the Linnean Society, vol. 158, pp. 801-859.

Zelditch, M. L., Swiderski, D. L., Sheets, H. D. & Fink, W. L. (2012). Geometric morphometrics for biologists: a primer. 2nd edition. Amsterdam: Elsevier/Academic Press.

Zimmerman, J., Franz, M., Heunisch, C., Luppold, F. W., Mönnig, E. & Wolfgramm, M. (2015). Sequence stratigraphic framework of the Lower and Middle Jurassic in the North German Basin: Epicontinental sequences controlled by Boreal cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 440, pp. 395-416.

43

9.2 Software & internet material

Adams, D. C., Collyer, M., Kaliontzopoulou, A. & Sherratt, E. (2016). Geomorph package. Version 3.0.3 [Software]. Available from: http://geomorphr.github.io/geomorph/

Adler, D. & Murdoch, D. (2016). RGL package. Version 0.96.0 [Software]. Available from: https://r- forge.r-project.org/projects/rgl/

Komsta, L. & Novomestky, (f. 2015). Moments package. Version 0.14 [Software]. Available from: http://www.r-project.org

Orolotitan [internet name]. (2010). Jurassic Sharks. Available from: http://www.ammonit.ru/foto/6473.htm/ [27 May 2017]

Paradis, E., Blomberg, S., Bolker, B., Claude, J., Cuong, H. S., Desper, R., Didier, G., Durand, B., Dutheil, J., Gascuel, O., Heibl, C., Ives, A., Jones, B., Lawson, D., Lefort, V., Legendre, P., Lemon, J., McCloskey, R., Nylander, J., Opgen-Rhein, R., Popescu, A. A., Royer-Garenzi, M., Schliep, K., Strimmer, K. & de Vienne, D. (2016). Ape package. Version 4.0 [Software]. Available from: http://ape-package.ird.fr/

Pebesma, E., Bivand, R., Rowlingson, B., Gomez-Rubio, V., Hijmans, R., Sumner, M., MacQueen, D., Lemon, J. & O’Brien, J. (2016). SP package. Version 1.2-3 [Software]. Available from: https://github.com/edzer/sp/

R Core Team (2016). R. Version 3.3.2 [Software]. Available from: https://www.R-project.org/.

Rohlf F. J. (2016). TPS Utility. Version 1.70 [Software]. Available from: http://life.bio.sunysb.edu/morph/soft-utility.html

Rohlf F. J. (2016). TPS DIG2. Version 2.26 [Software]. Available from: http://life.bio.sunysb.edu/morph/soft-dataacq.html

44

Appendix A: Specimen Database

Table I-1. Identification for each specimen used in the analysis. FILE NAME indicates a localized name for each tooth image. The collection number for each tooth is included in the NOTES column. N ORDER FAMILY GENUS SPECIES DESCRIBED AGE LOCALITY 1 - Neoselachian? indet - - Ladinian Yogning, Gualing county, China 2 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos , Cuenca province, Spain 3 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 4 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 5 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 6 - - Duffinselache holwellensis Adreev & Cuny, 2012 Rhaetian M4-M5 Motorway junction, South Gloucestershire, UK 7 Pseudodalatiidae Pseudodalatias barstonensis Sykes, 1971 Rhaetian M4-M5 Motorway junction, South Gloucestershire, UK 8 Synechodontiformes - minor Cuny & Risnes, 2005 Rhaetian M4-M5 Motorway junction, South Gloucestershire, UK 9 Synechodontiformes - Rhomphaiodon minor Cuny & Risnes, 2005 Rhaetian M4-M5 Motorway junction, South Gloucestershire, UK 10 Synechodontiformes Palaeospinacidae Synechodus paludinensis Delsate, 2002 Hettangian Marnes de Jamoigne, Fontenoille, SE Belgium 11 Synechodontiformes Palaeospinacidae Synechodus paludinensis Delsate, 2002 Hettangian Marnes de Jamoigne, Fontenoille, SE Belgium 12 Synechodontiformes Palaeospinacidae Synechodus paludinensis Delsate, 2002 Hettangian Marnes de Jamoigne, Fontenoille, SE Belgium 13 Synechodontiformes Palaeospinacidae Synechodus sp. Woodward, 1888 Hettangian Tragny-Bechy, NE France 14 Synechodontiformes Palaeospinacidae Synechodus streitzi Delsate, 2002 Hettangian Marnes de Jamoigne, Fontenoille, SE Belgium 15 Synechodontiformes Palaeospinacidae Synechodus streitzi Delsate, 2002 Hettangian Marnes de Jamoigne, Fontenoille, SE Belgium 16 Synechodontiformes Palaeospinacidae Synechodus streitzi Delsate, 2002 Hettangian Marnes de Jamoigne, Fontenoille, SE Belgium 17 Synechodontiformes Palaeospinacidae Synechodus streitzi Delsate, 2002 Hettangian Marnes de Jamoigne, Fontenoille, SE Belgium 18 Synechodontiformes Palaeospinacidae Synechodus streitzi Delsate, 2002 Hettangian Marnes de Jamoigne, Fontenoille, SE Belgium 19 - Agaleidae Agaleus dorsetensis Duffin & Ward, 1983 Sinemurian Lyme Regis, Dorset, England 20 - Agaleidae Agaleus dorsetensis Duffin & Ward, 1983 Sinemurian Lyme Regis, Dorset, England 21 - Agaleidae Agaleus sp. Duffin & Ward, 1983 Sinemurian S Belgium 22 - Agaleidae Agaleus sp. Duffin & Ward, 1983 Sinemurian Huombois quarry, Belgium 23 - Agaleidae Agaleus sp. Duffin & Ward, 1983 Sinemurian Huombois quarry, Belgium 24 - Agaleidae Agaleus sp. Duffin & Ward, 1983 Sinemurian Huombois quarry, Belgium 25 - Agaleidae Agaleus sp. Duffin & Ward, 1983 Sinemurian Huombois quarry, Belgium 26 - Agaleidae Agaleus sp. Duffin & Ward, 1983 Sinemurian Huombois quarry, Belgium 27 - Ostenoselachidae Ostenoselache stenosoma Duffin, 1998 Sinemurian Osteno, Lombardy, Italy 28 Ostenoselachidae Ostenoselache stenosoma Duffin, 1998 Sinemurian Osteno, Lombardy, Italy 29 Synechodontiformes Palaeospinacidae Palidiplospinax enniskilleni Klug & Kriwet, 2008 Sinemurian Huombois quarry, Belgium 30 Synechodontiformes Palaeospinacidae Palidiplospinax enniskilleni Klug & Kriwet, 2008 Sinemurian Huombois quarry, Belgium 31 Synechodontiformes Palaeospinacidae Palidiplospinax enniskilleni Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 32 Synechodontiformes Palaeospinacidae Palidiplospinax enniskilleni Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 33 Synechodontiformes Palaeospinacidae Palidiplospinax enniskilleni Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 34 Synechodontiformes Palaeospinacidae Palidiplospinax occultidens Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 35 Synechodontiformes Palaeospinacidae Palidiplospinax occultidens Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 36 Synechodontiformes Palaeospinacidae Palidiplospinax occultidens Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 37 Synechodontiformes Palaeospinacidae Palidiplospinax occultidens Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 38 Synechodontiformes Palaeospinacidae Palidiplospinax occultidens Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 39 Synechodontiformes Palaeospinacidae Palidiplospinax priscus Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 40 Synechodontiformes Palaeospinacidae Palidiplospinax priscus Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 41 Synechodontiformes Palaeospinacidae Palidiplospinax priscus Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 42 Synechodontiformes Palaeospinacidae Palidiplospinax priscus Klug & Kriwet, 2008 Sinemurian Lyme Regis, Dorset, England 43 Synechodontiformes Palaeospinacidae Synechodus pinnai Duffin, 1987 Sinemurian Osteno, Lombardy, Italy 44 Synechodontiformes Palaeospinacidae Synechodus sp. Woodward, 1888 Sinemurian Louvigny b, NE France 45 - Agaleidae Agaleus dorsetensis Duffin & Ward, 1983 Pliensbachian Belle Vue, Sedan, Dept des Ardennes, France 46 - Agaleidae Agaleus dorsetensis Duffin & Ward, 1983 Pliensbachian Hasle formation, Bornholm, Denmark 47 - Agaleidae Agaleus dorsetensis Duffin & Ward, 1983 Pliensbachian Scania, S Sweden 48 Hexanchiformes Hexanchidae indet - Gray, 1851 Pliensbachian Belle Vue, Sedan, Dept des Ardennes, France 49 Hexanchiformes Hexanchidae indet - Gray, 1851 Pliensbachian Belle Vue, Sedan, Dept des Ardennes, France 50 Hexanchiformes Hexanchidae indet - Gray, 1851 Pliensbachian Belle Vue, Sedan, Dept des Ardennes, France 51 Synechodontiformes Palaeospinacidae Palidiplospinax occultidens Klug & Kriwet, 2008 Pliensbachian Hasle formation, Bornholm, Denmark 52 Synechodontiformes Palaeospinacidae Paraorthacodus arduennae Delsate, 2001 Pliensbachian Belle Vue, Sedan, Dept des Ardennes, France 53 Synechodontiformes Palaeospinacidae Paraorthacodus arduennae Delsate, 2001 Pliensbachian Belle Vue, Sedan, Dept des Ardennes, France 54 Synechodontiformes Palaeospinacidae Paraorthacodus sp. Glikman, 1957 Pliensbachian Hasle formation, Bornholm, Denmark 55 Synechodontiformes Orthacodontidae Sphenodus sp. Agassiz, 1843 Pliensbachian Scania, S Sweden 56 Synechodontiformes Orthacodontidae Sphenodus sp. Agassiz, 1843 Pliensbachian Scania, S Sweden 57 Synechodontiformes Palaeospinacidae Synechodus sp. Woodward, 1888 Pliensbachian Belle Vue, Sedan, Dept des Ardennes, France 58 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 59 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 60 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 61 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 62 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 63 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 64 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 65 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 66 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 67 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 68 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 69 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 70 Orectolobiformes - Annea maubeugei Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 71 Orectolobiformes - Annea sp. Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 72 Orectolobiformes - Annea sp. Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 73 Orectolobiformes - Annea sp. Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 74 Orectolobiformes - Annea sp. Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 75 Orectolobiformes - Annea sp. Delsate & Thies, 1995 Toarcian Halanzy (Aubange, Belgian Lorraine) 76 Heterodontiformes Heterodontidae Heterodontus duffini Thies, 1983 Toarcian Couche a Crassum, Grand-Duchy, Luxembourg 77 - - Jurobatos cappettai Thies, 1983 Toarcian Halanzy (Aubange, Belgian Lorraine) 78 - - Jurobatos cappettai Thies, 1983 Toarcian Halanzy (Aubange, Belgian Lorraine) 79 - - Jurobatos cappettai Thies, 1983 Toarcian Halanzy (Aubange, Belgian Lorraine) 80 - - Jurobatos cappettai Thies, 1983 Toarcian Halanzy (Aubange, Belgian Lorraine) 81 Orectolobiformes - indet - Applegate, 1972 Toarcian Couche a Crassum, Grand-Duchy, Luxembourg 82 Orectolobiformes - Ornatoscyllium sp. Underwood & Ward, 2004 Toarcian Couche a Crassum, Grand-Duchy, Luxembourg 83 Orectolobiformes - Palaeobrachaelurus alisonae Thies, 1983 Toarcian Couche a Crassum, Grand-Duchy, Luxembourg 84 Orectolobiformes - Palaeobrachaelurus aperizostus Thies, 1983 Toarcian Couche a Crassum, Grand-Duchy, Luxembourg

45

N AUTHOR FILE ORIGINAL JAW POSITION NOTES 1 Chen et al, 2007 2.NeoselachTC0368Lab Figure 4A - TC0368, labial, 500μm 2 Botella et al, 2009 2.Pseudodalathen18964Lab Figure 2C Lower Symphyseal Paratype MGUV-18964,labial,250μm 3 Botella et al, 2009 2.Pseudodalathen18966Lab Figure 2E Lower Lateral Paratype MGUV-18966, labial, 200μm 4 Botella et al, 2009 2.Pseudodalathen18967Lab Figure 2F Lower Lateral Paratype MGUV-18967, labial, 500μm 5 Botella et al, 2009 2.Pseudodalathen18968Lab Figure 2H Lower Lateral Paratype MGUV-18968, labial, 200μm 6 Slater et al, 2016 5.DuffinholBRSUG2937111701Lab Figure 4N - - BRSUG 29371-1-1701, labial, 0,5mm 7 Slater et al, 2016 5.PseudobarBRSUG2937111876Lin Figure 4T Upper Central BRSUG 29371-1-1876, lingual, 0,5mm 8 Slater et al, 2016 5.RhominorBRSUG293711201320Lin Figure 4K - Anterior BRSUG 29371-1-2013-20, lingual, 0,5mm 9 Slater et al, 2016 5.RhominorBRSUG293711301Lin Figure 4L - Anterior BRSUG 29371-1-301, lingual, 0,5mm 10 Delsate, 2002 6.SynepaluFO02HE236Lab Plate 8E - Lateral Paratype, FO02-HE236, labial, 0,1mm 11 Delsate, 2002 6.SynepaluP65490Lab Plate 8A - Anterior Holotype, P65490, 1mm 12 Delsate, 2002 6.SynepaluP6550Lab Plate 9, Fig 1b - Anterolateral Paratype, P6550, 0,5mm, possible juvenile 13 Delsate, 2009 6.SynespCP1Lab Plate 1CP1 - - CP1, labial 14 Delsate, 2002 6.SynestreiFO01HE220lab Plate 5A - - Holotype, FO01-HE220, labial, 0,03m 15 Delsate, 2002 6.SynestreiFO01HEXXXlab Plate 6b - - Paratype, FO01-HE???, labial 16 Delsate, 2002 6.SynestreiHE235FOC123Bas Plate 6E - Anterolateral Paratype, HE235-FOC123, basal 17 Delsate, 2002 6.SynestreiHEC235FOC122Lin Plate 6G - Anterolateral Paratype, HE235-FOC122, lingual 18 Delsate, 2002 6.SynestreiHEC235FOC125Lin Plate 6I - Posterolateral Paratype, HE235-FOC125, lingual? 19 Cappetta, 2012 7.AgadorBHMNP60788Lab Figure 317 A - Anterior Holotype, BHMN P60788, labial 20 Cappetta, 2012 7.AgadorGSM117084Lab Figure 317 F - Lateral GSM 117084, labial 21 Rees, 2000 7.AgaspHU0CRL30Lin Figure 4G - Lateral HU0-CRL-30, lingual 22 Delsate & Duffin, 1993 7.AgaspHUOCRL01Lin Plate 10, Figure 1b - Anterior HUO-CRL-01, lingual 23 Delsate & Duffin, 1993 7.AgaspHUOCRL02Lin Plate 10, Figure 2b - Anterior HUO-CRL-02, lingual 24 Delsate & Duffin, 1993 7.AgaspHUOCRL03Lin Plate 10, Figure 3b - Anterior HUO-CRL-03, lingual 25 Delsate & Duffin, 1993 7.AgaspHUOCRL04Lab Plate 8, Figure 2c - Anterior HUO-CRL-04, labial 26 Delsate & Duffin, 1993 7.AgaspHUOCRL30Lin Plate 10, Figure 4a - Lateral HUO-CRL-30, lingual 27 Duffin, 1998 7.OstesteV555Lab Figure 5c(iii) Upper Posterolateral Paratype, MCSNM-V555, 1mm, labial 28 Duffin, 1998 7.OstesteV657Lab Figure 5c(ii) Upper Anterolateral Paratype, MCSNM-V657, 1mm, labial 29 Delsate & Duffin, 1993 7.PalienniHUOCRL10Lab Plate 7, Figure 2a - - HUO-CRL-10, labial 30 Delsate & Duffin, 1993 7.PalienniHUOCRL50Lin Plate 7, Figure 1a - - HUO-CRL-50, lingual 31 Duffin & Ward, 1993 7.PalienniP3189aLab Text-Figure 4a Upper Parasymphyseal Holotype skeleton, BMNH-P3189, a, 1mm, labial 32 Duffin & Ward, 1993 7.PalienniP3189bLab Text-Figure 4b Lower Lateral Holotype skeleton, BMNH-P3189, b, 1mm, labial 33 Duffin & Ward, 1993 7.PalienniP3189cLab Text-Figure 4c Lower Posterolateral Holotype skeleton, BMNH-P3189, c, 1mm, labial 34 Duffin & Ward, 1993 7.PalioccuP3190aLab Text-Figure 10a Lower Anterior Holotype skull, P3190, a, 1mm, labial 35 Duffin & Ward, 1993 7.PalioccuP3190cLab Text-Figure 10c Upper - Holotype skull, P3190, c, 1mm, labial 36 Duffin & Ward, 1993 7.PalioccuP3190dLab Text-Figure 10d Upper - Holotype skull, P3190, d, 1mm, labial 37 Duffin & Ward, 1993 7.PalioccuP3190fLab Text-Figure 10f - Posterolateral Holotype skull, P3190, f, 1mm, labial 38 Duffin & Ward, 1993 7.PalioccuP3193Lab Text-Figure 10e - Lateral Paratype?, P3193, 1mm, labial 39 Cappetta, 2012 7.Palipri304BLab Figure 304 B - Anterior Unpecified, 1mm, labial 40 Cappetta, 2012 7.Palipri304ELab Figure 304 E - Lateral - 41 Cappetta, 2012 7.Palipri304FLab Figure 304 F - Lateral - 42 Cappetta, 2012 7.Palipri304GLab Figure 304 G - Lateral - 43 Duffin & Ward, 1993 7.SynepinnaiMCSNV6411Lab Text-Figure 14a - - Holotype, MCSN-V6411, labial? 44 Delsate, 2009 7.SynespCP4Lin Plate1 1CP4 - - CP4, lingual 45 Delsate, 2001 8.AgadorJ30693Lab Plate 1J - - 306.9.3., labial 46 Rees, 1998 8.AgadorLO7967tLab Figure 6A - - LO 7967t, labial 47 Rees, 2000 8.AgadorLO8253tLab Figure 6E - - LO 8253t, labial 48 Delsate, 2001 8.HexanMZN01 Plate 1O - Sympheseal MZN01, lingual 49 Delsate, 2001 8.HexanMZN02 Plate 1P - - MZN02, labial 50 Delsate, 2001 8.HexanMZN03 Plate 1R - Posterolateral MZN03, labial 51 Rees, 1998 8.PalioccuLO7964tLab Figure 5C - - LO 7964t, labial 52 Delsate, 2001 8.Parardu102D1 Plate 1C - - Paratype, 102D1, 2mm 53 Delsate, 2001 8.Parardu9.5D1 Plate 1A - - Paratopotype, 9.5D1 54 Rees, 1998 8.ParaspLO7966tLab Figure 5F - Posterior LO 7966t, labial 55 Rees, 2000 8.SphespLO8255tLab Figure 6C - Anterolateral LO8255t, labial 56 Rees, 2000 8.SphespLO8256tLab Figure 6H - Posterior LO8256t, labial 57 Delsate, 2001 8.Synesp Plate 1I - - Lingual 58 Delsate & Thies, 1995 9.AnneamauIRSNBP6238lab Plate 1a - Anterior/anterolateral Holotype, IRSNB-P6238, labial 59 Delsate & Thies, 1995 9.AnneamauIRSNBP6239lab Plate 2, Fig 1a - Anterior Paratype, IRSNB-P6239, labial 60 Delsate & Thies, 1995 9.AnneamauIRSNBP6240lab Plate 2, Fig 2a - Lateral Paratype, IRSNB-P6240, labial 61 Delsate & Thies, 1995 9.AnneamauIRSNBP6241lab Plate 3, Fig 1a - Lateral Paratype, IRSNB-P6241, labial 62 Delsate & Thies, 1995 9.AnneamauIRSNBP6242lab Plate 3, Fig 2a - Lateral/posterolateral Paratype, IRSNB-P6242, labial 63 Delsate & Thies, 1995 9.AnneamauIRSNBP6243lab Plate 4, Fig 1a - Posterolateral Paratype, IRSNB-P6243, labial 64 Delsate & Thies, 1995 9.AnneamauIRSNBP6244lab Plate 4, Fig 2a - Posterolateral Paratype, IRSNB-P6244, labial 65 Delsate & Thies, 1995 9.AnneamauIRSNBP6245lab Plate 5, Fig 1a - Anterolateral Paratype, IRSNB-P6245, labial 66 Delsate & Thies, 1995 9.AnneamauIRSNBP6246lab Plate 5, Fig 2a - Lateral Paratype, IRSNB-P6246, labial 67 Delsate & Thies, 1995 9.AnneamauIRSNBP6247lab Plate 6a - Anterior Paratype, IRSNB-P6247, labial 68 Delsate & Thies, 1995 9.AnneamauIRSNBP6248lab Plate 7a - Anterolateral/lateral Paratype, IRSNB-P6248, labial 69 Delsate & Thies, 1995 9.AnneamauIRSNBP6249lab Plate 8, Fig 1a - Posterolateral Paratype, IRSNB-P6249, labial 70 Delsate & Thies, 1995 9.AnneamauIRSNBP6250lab Plate 8, Fig 2a - - Paratype, IRSNB-P6250, labial, pathological 71 Cappetta, 2012 9.AnneaspUMHZY21Lab Figure 167C - Lateral UM HZY 21, 0,5mm, labial 72 Cappetta, 2012 9.AnneaspUMHZY22Lab Figure 167 E - Lateral UM HZY 22, 0,5mm, labial 73 Cappetta, 2012 9.AnneaspUMHZY23Lab Figure 167 G - Lateral UM HZY 23, 0,5mm, labial 74 Cappetta, 2012 9.AnneaspUMHZY24Lab Figure 167 I - Lateral UM HZY 24, 0,5mm, labial, very lateral 75 Cappetta, 2012 9.AnneaspUMHZY25Lin Figure 167 K - Lateral UM HZY 25, 0,5mm, lingual, very lateral 76 Delsate & Weis, 2010 9.HeteroduffMNHNLTM233 Plate 6, Figure 9 - - MNHNL TM233 77 Cappetta, 2012 9.JurocapUMHZY1Lin Figure 311 B - Anterior UM HZY1, 0,1mm, lingual 78 Cappetta, 2012 9.JurocapUMHZY2Lab Figure 311 D - Lateral UM HZY2, 0,1mm, labial 79 Cappetta, 2012 9.JurocapUMHZY3Lin Figure 311 E - Lateral UM HZY3, 0,1mm, lingual 80 Cappetta, 2012 9.JurocapUMHZY5Lab Figure 311 I - Lateral UM HZY5, 0,1mm, labial 81 Delsate & Weis, 2010 9.OrectolobMNHNLTM234 Plate 6, Figure 10 - - MNHNL TM234 82 Delsate & Weis, 2010 9.OrnatospMNHNLTM232 Plate 6, Figure 8 - - MNHNL TM232 83 Delsate & Weis, 2010 9.PalalisMNHNLTM230 Plate 6, Figure 6 - - MNHNL TM230 84 Delsate & Weis, 2010 9.PalaperMNHNLTM229 Plate 6, Figure 5 - - MNHNL TM229 46

N ORDER FAMILY GENUS SPECIES DESCRIBED AGE LOCALITY 85 Synechodontiformes Palaeospinacidae Palidiplospinax enniskilleni Klug & Kriwet, 2008 Toarcian Aubange, Belgian Lorraine) 86 Synechodontiformes Palaeospinacidae Palidiplospinax occultidens Klug & Kriwet, 2008 Toarcian Aubange, Belgian Lorraine) 87 Synechodontiformes Palaeospinacidae Palidiplospinax occultidens Klug & Kriwet, 2008 Toarcian Aubange, Belgian Lorraine) 88 - Protospinacidae Protospinax sp. Woodward, 1918 Toarcian Hannover, Germany 89 Synechodontiformes Palaeospinacidae Synechodus duffini Underwood & Ward, 2004 Toarcian Couche a Crassum, Grand-Duchy, Luxembourg 90 Synechodontiformes Palaeospinacidae Synechodus egertoni Woodward, 1889 Toarcian Ohmden, Holzmaden, S Germany 91 Hexanchiformes Pseudonotidanidae Welcommia terencei Delsate & Godefroit, 1995 Toarcian Aubange, Belgian Lorraine) 92 Hexanchiformes Pseudonotidanidae Welcommia terencei Delsate & Godefroit, 1995 Toarcian Aubange, Belgian Lorraine) 93 Hexanchiformes Pseudonotidanidae Welcommia terencei Delsate & Godefroit, 1995 Toarcian Aubange, Belgian Lorraine) 94 - - Duffinselache holwellensis Adreev & Cuni, 2012 Rhaetian Hampstead Farn quarry, Gloucestershire, UK 95 - - Duffinselache holwellensis Adreev & Cuni, 2012 Rhaetian , Microlestes quarry, Frome, England 96 - - Grozonodon candaui Cuny, 1998 Norian Quarry of Fretilles, Grozon, Jura, France 97 - - Grozonodon candaui Cuny, 1998 Norian Quarry of Fretilles, Grozon, Jura, France 98 - - Hueneicthys costatus Reif, 1977 Rhaetian Stuttgart Area, Germany 99 Synechodontiformes - Mucrovenator minimus Cuny et al, 2001 Anisian Favret Canyon, Pershing County, Nevada, USA 100 Synechodontiformes - Mucrovenator minimus Cuny et al, 2001 Anisian Favret Canyon, Pershing County, Nevada, USA 101 Synechodontiformes - Parascylloides turnerae Thies et al, 2014 Rhaetian Barnstone village, Nottinghamshire, England 102 Synechodontiformes - Parascylloides turnerae Thies et al, 2014 Rhaetian Barnstone village, Nottinghamshire, England 103 Synechodontiformes - Parascylloides turnerae Thies et al, 2014 Rhaetian Barnstone village, Nottinghamshire, England 104 Synechodontiformes - Parascylloides turnerae Thies et al, 2014 Rhaetian Barnstone village, Nottinghamshire, England 105 Synechodontiformes - Parascylloides turnerae Thies et al, 2014 Rhaetian Barnstone village, Nottinghamshire, England 106 Synechodontiformes - Parascylloides turnerae Thies et al, 2014 Rhaetian Barnstone village, Nottinghamshire, England 107 Synechodontiformes - Parascylloides turnerae Thies et al, 2014 Rhaetian Barnstone village, Nottinghamshire, England 108 Synechodontiformes - Parascylloides turnerae Thies et al, 2014 Rhaetian Barnstone village, Nottinghamshire, England 109 Lamniformes Cetorhinidae Pseudocetorhinus pickfordi Duffin, 1998 Rhaetian Syren, Luxembourg 110 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 111 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 112 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 113 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 114 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 115 - Pseudodalatiidae Pdeudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 116 - Pseudodalatiidae Pseudodalatias henarejensis Botella et al, 2009 Ladinian Henarejos section, Henarejos village, Cuenca province, Spain 117 Lamniformes Cetorhinidae Pseudocetorhinus pickfordi Duffin, 1998 Rhaetian Hampstead Farn quarry, Gloucestershire, UK 118 Lamniformes Cetorhinidae Pseudocetorhinus pickfordi Duffin, 1998 Rhaetian Hampstead Farn quarry, Gloucestershire, UK 119 Lamniformes Cetorhinidae Pseudocetorhinus pickfordi Duffin, 1998 Rhaetian Hampstead Farn quarry, Gloucestershire, UK 120 Lamniformes Cetorhinidae Pseudocetorhinus pickfordi Duffin, 1998 Rhaetian Habay-la-Vieille, Belgium 121 - - Reifia minuta Duffin, 1980 Norian Eisbach valley, Near Gaildorf, Germany 122 - - Rhomaleodus budurovi Adreev & Cuni, 2012 Anisian Babinos formation, , province, 123 - - Rhomaleodus budurovi Adreev & Cuni, 2012 Anisian Babinos formation, Belogradchik town, , Bulgaria 124 - - Rhomaleodus budurovi Adreev & Cuni, 2012 Anisian Babinos formation, Belogradchik town, Vidin province, Bulgaria 125 Synechodontiformes - Rhomphaiodon minor Cuny & Risnes, 2005 Rhaetian Barnhill quarry, Chipping Sodbury, S Gloucestershire, UK 126 Synechodontiformes - Rhomphaiodon minor Cuny & Risnes, 2005 Rhaetian Barnhill quarry, Chipping Sodbury, S Gloucestershire, UK 127 Synechodontiformes - Rhomphaiodon minor Cuny & Risnes, 2005 Rhaetian Blue Anchor formation, Charton bay, Devon, UK 128 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Saint-Nicolas-de-Port, eastern France 129 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Saint-Nicolas-de-Port, eastern France 130 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Saint-Nicolas-de-Port, eastern France 131 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Saint-Nicolas-de-Port, eastern France 132 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Saint-Nicolas-de-Port, eastern France 133 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Saint-Nicolas-de-Port, eastern France 134 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Habay-la-Vieille, Belgium 135 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Habay-la-Vieille, Belgium 136 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Habay-la-Vieille, Belgium 137 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Habay-la-Vieille, Belgium 138 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Habay-la-Vieille, Belgium 139 Synechodontiformes - Rhomphaiodon nicolensis Duffin, 1993 Rhaetian Habay-la-Vieille, Belgium 140 Synechodontiformes Palaeospinacidae Synechodus rhaeticus Duffin, 1982 Rhaetian Hampstead Farn quarry, Gloucestershire, UK 141 Synechodontiformes Palaeospinacidae Synechodus rhaeticus Duffin, 1982 Rhaetian Hampstead Farn quarry, Gloucestershire, UK 142 Synechodontiformes Palaeospinacidae Synechodus rhaeticus Duffin, 1982 Rhaetian Hampstead Farn quarry, Gloucestershire, UK 143 Synechodontiformes Palaeospinacidae Synechodus rhaeticus Duffin, 1982 Rhaetian Hampstead Farn quarry, Gloucestershire, UK 144 Synechodontiformes Palaeospinacidae Synechodus rhaeticus Duffin, 1982 Rhaetian Late Triassic Fissures of Bristol & South Wales, UK 145 Synechodontiformes Palaeospinacidae Synechodus rhaeticus Duffin, 1982 Rhaetian Hollwell quarry, Sommerset, UK 146 Synechodontiformes Palaeospinacidae Synechodus seinstedtensis Thies et al, 2014 Rhaetian Seinstedt village, Germany 147 Synechodontiformes Palaeospinacidae Synechodus seinstedtensis Thies et al, 2014 Rhaetian Seinstedt village, Germany 148 Synechodontiformes Palaeospinacidae Synechodus seinstedtensis Thies et al, 2014 Rhaetian Seinstedt village, Germany 149 Synechodontiformes Palaeospinacidae Synechodus seinstedtensis Thies et al, 2014 Rhaetian Seinstedt village, Germany 150 Synechodontiformes Palaeospinacidae Synechodus seinstedtensis Thies et al, 2014 Rhaetian Seinstedt village, Germany 151 Synechodontiformes Palaeospinacidae Synechodus seinstedtensis Thies et al, 2014 Rhaetian Seinstedt village, Germany 152 Synechodontiformes Palaeospinacidae Synechodus seinstedtensis Thies et al, 2014 Rhaetian Seinstedt village, Germany 153 Synechodontiformes Palaeospinacidae Synechodus seinstedtensis Thies et al, 2014 Rhaetian Seinstedt village, Germany 154 - - Vallisia coppi Duffin, 1982 Rhaetian Vallis vale, Somerset, England 155 - - Vallisia coppi Duffin, 1982 Rhaetian Vallis vale, Somerset, England 156 - - Vallisia coppi Duffin, 1982 Rhaetian Vallis vale, Somerset, England 157 - - Vallisia coppi Duffin, 1982 Rhaetian Hampstead Farn quarry, Gloucestershire, UK 158 Orectolobiformes - Akaimia altucuspis Rees, 2010 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 159 Orectolobiformes - Akaimia altucuspis Rees, 2010 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 160 Orectolobiformes - Akaimia altucuspis Rees, 2010 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 161 Orectolobiformes - Akaimia altucuspis Rees, 2010 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 162 Orectolobiformes - Akaimia altucuspis Rees, 2010 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 163 Orectolobiformes - Akaimia altucuspis Rees, 2010 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 164 Orectolobiformes - Akaimia altucuspis Rees, 2010 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 165 Orectolobiformes - Akaimia altucuspis Rees, 2010 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 166 Orectolobiformes - Akaimia myriacuspis Srdic et al, 2016 Callovian Whittlesey, Cambridgeshire, Eastern England 167 Orectolobiformes - Akaimia myriacuspis Srdic et al, 2016 Callovian Whittlesey, Cambridgeshire, Eastern England 168 Orectolobiformes - Akaimia myriacuspis Srdic et al, 2016 Callovian Whittlesey, Cambridgeshire, Eastern England

47

N AUTHOR FILE ORIGINAL JAW POSITION NOTES 85 Delsate & Godefroit, 1995 9.PalienniIRSNBP6322Lin Plate 2, Fire 1a - - IRSNB P6322, lingual 86 Delsate & Godefroit, 1995 9.PalioccuIRSNBP6325Lab Plate 3, Figure 2a - - IRSNB P6325, labial 87 Delsate & Godefroit, 1995 9.PalioccuOTT30Lin Plate 7, Figure 5d(a) - - OTT-30, lingual 88 Thies, 1989 9.ProtospIGPH88II1Lin Figure 1b - Posterior IGPH-88-II-1, lingual 89 Delsate & Weis, 2010 9.SyneduffMNHNLTM226 Plate 6, Figure 2 - - MNHNL TM226 90 Duffin & Ward, 1993 9.SynegerP1132Lab Text-Figure 3a - - P1132, 1mm, labial 91 Delsate & Godefroit, 1995 9.WelterIRSNBP6326Lab Plate 4, Figue 1a - - IRSNB P6326, labial 92 Delsate & Godefroit, 1995 9.WelterIRSNBP6328Lab Plate 5, Figure 1a - Lateral Holotype, IRSNB P6328, labial 93 Delsate & Godefroit, 1995 9.WelterIRSNBP6331Lin Plate 7, Figure 2 - Lateral IRSNB P6331, lingual 94 Mears et al, 2016 DuffinselaholBRSUG29371117195aLab Figure 5a - Anterior BRSUG 29371-1-1719 5a, labial, 1mm 95 Adreev & Cuni, 2012 DuffinselaholM0067Lab Figure 5A - - BRLSI M0067, labial, 200μm 96 Cuny et al, 1998 Grozonodoncan26316Lab Figure 3a - Anterior Holotype BRSUG 26316, anterior labial, scale 1mm 97 Cuny et al, 1998 Grozonodoncan26317Lab Figure 3f - Posterior Paratype BRSUG 26317, posterior labial, scale 1mm 98 Cappetta, 2012 HueneicosGPIT1510Lab Figure 313A - - Holotype, GPIT 1510, labial, drawing 99 Cuny et al, 2001 MucrovenminFMNHPF15020Lab Figure 6E - Anterolateral Holotype, FMNH PF 15020, labial, 0,5mm 100 Cuny et al, 2001 MucrovenminFMNHPF15024Lin Figure 6G - Posterolateral Paratype, FMNH PF 15024, lingual, 0,5mm 101 Thies et al, 2014 ParaturnNKP3972Lab Plate 2; Figure 4a - Anterolateral or lateral Holotype, NKP 3972, labial, 0,5mm 102 Thies et al, 2014 ParaturnNKP3974Lab Plate 3; Figure 1a - Anterolateral or lateral Paratype, NKP 3974, labial, 0,5mm 103 Thies et al, 2014 ParaturnNKP3975Lab Plate 3; Figure 2a - Posterior Paratype, NKP 3975, labial, 0,5mm 104 Thies et al, 2014 ParaturnNKP3977Lab Plate 3; Figure 4a - Anterolateral or lateral Paratype, NKP 3977, labial, 0,5mm 105 Thies et al, 2014 ParaturnNKP3978Lab Plate 3; Figure 5a - Anterolateral or lateral Paratype, NKP 3978, labial, 0,5mm 106 Thies et al, 2014 ParaturnNKP3979Lab Plate 3; Figure 6a - Parasymphyseal Paratype, NKP 3979, labial, 0,5mm 107 Thies et al, 2014 ParaturnNKP3980Lab Plate 3; Figure 7a - Parasymphyseal Paratype, NKP 3980, labial, 0,5mm 108 Thies et al, 2014 ParaturnNKP3981Lab Plate 3; Figure 8a - Symphyseal Paratype, NKP 3981, labial, 0,5mm 109 Godefroit et al, 1998 PseudocetpickMNHNLko180Lab Figure 4-4A - - MNHNL ko 180, labial, X16 110 Botella et al, 2009 Pseudodalathen18963Lab Figure 2A Lower Symphyseal Paratype MGUV-18963,labial,250μm 111 Botella et al, 2009 Pseudodalathen18969Lab Figure 2I Lower Lateral Paratype MGUV-18969, labial, 500μm 112 Botella et al, 2009 Pseudodalathen18970Lab Figure 2K Lower Lateral Holotype MGUV-18970, labial, 500μm 113 Botella et al, 2009 Pseudodalathen18971Lab Figur 2M Lower Lateral Paratype MGUV-18971, labial, 250μm 114 Botella et al, 2009 Pseudodalathen18976Lab Figure 3E Upper - Paratype MGUV-18976, labial, 250μm 115 Botella et al, 2009 Pseudodalathen18977Lab Figure F Upper - Paratype MGUV-18977, labial, 200μm 116 Pla et al, 2013 PseudodalHenMGUV25868Lab Figure 3S - - MGUV 25868, labial, 200μm 117 Mears et al, 2016 PseudopickBRSUG29317115812aLin Figure 5g - Distal BRSUG 29371-1-1581 2a, lingual, 1mm 118 Mears et al, 2016 PseudopickBRSUG2931712801cLin Figure 5i - Medial BRSUG 29371-1-280 1c, lingual, 1mm 119 Mears et al, 2016 PseudopickBRSUG293171302Lin Figure 5k - Anterior BRSUG 29371-1-302, lingual, 1mm 120 Cappetta, 2012 PseudopickUMHYV12Lab Figure 320K - Lateral UM HYV 12, labial, 1mm, very lateral 121 Cappetta, 2012 ReiminSMNS50-204Lab Figure 315A - Lateral Paratype, SMNS 50-204, labial, drawing 122 Adreev & Cuni, 2012 Rhomaleodusbud5239Lab Figure 4E - Anterolateral? Paratype, BU5239, labial, 200μm 123 Adreev & Cuni, 2012 Rhomaleodusbud5240Lab Figure 4I - Lateral? Holotype, BU5240, labial, 200μm 124 Adreev & Cuni, 2012 Rhomaleodusbud5242Lab Figure 4A - Anterior? Paratype, BU5242, labial, 200μm 125 Lakin et al, 2016 RhomphaiominBRSMGCc6321Lab Figure 7A - - BRSMG Cc6321, labial, 1mm 126 Lakin et al, 2016 RhomphaiominBRSMGCc6322Lab Figure 7C - - BRSMG Cc6322, labial, 1mm 127 Korneisel et al, 2015 RhomphaiominBRSUG293711532B1Lin Figure 5A - - BRSUG 29371-1-532 B1, lingual, 1mm (phosphatized?) 128 Duffin, 1993 RhomphaionicSNP1000Lab Plate 1; Figure 1 - - Holotype, SNP 1000, labial, X13,8 129 Duffin, 1993 RhomphaionicSNP1001Lab Plate 1; Figure 4 - - Paratype, SNP 1001, labial, X31 130 Duffin, 1993 RhomphaionicSNP1002Lab Plate 1; Figure 7 - - Paratype, SNP 1002, labial, X35 131 Duffin, 1993 RhomphaionicSNP1003Lab Plate 1; Figure 10 - - Paratype, SNP 1003, labial, X55 132 Duffin, 1993 RhomphaionicSNP1004Lab Plate 2; Figure 5 - - Paratype, SNP 1004, labial, X29 133 Duffin, 1993 RhomphaionicSNP1005Lab Plate 2; Figure 1 - - Paratype, SNP 1005, labial, X25 134 Cappetta, 2012 RhomphaionicUMHYV1Lab Figure 309A - Parasymphyseal UM HYV 1, labial, 1mm 135 Cappetta, 2012 RhomphaionicUMHYV2Lab Figure 309C - Anterior UM HYV 2, labial, 1mm 136 Cappetta, 2012 RhomphaionicUMHYV3Lab Figure 309E - Anterolateral UM HYV 3, labial, 1mm 137 Cappetta, 2012 RhomphaionicUMHYV5Lab Figure 309I - Lateral UM HYV 5, labial, 1mm 138 Cappetta, 2012 RhomphaionicUMHYV6Lab Figure 309K - Posterior UM HYV 6, labial, 1mm 139 Cappetta, 2012 RhomphaionicUMHYV7Lin Figure 309L - Posterior UM HYV 7, lingual, 1mm 140 Mears et al, 2016 SynechorhaeBRSMGCc6329Lab Figure 6h - Lateral BRSMG Cc6329, labial, 2mm 141 Mears et al, 2016 SynechorhaeBRSMGCc6336Lab Figure 6d - Anterolateral BRSMG Cc6336, labial, 2mm 142 Mears et al, 2016 SynechorhaeBRSMGCc6337Lab Figure 6f - Posterolateral BRSMG Cc6337, labial, 1mm 143 Mears et al, 2016 SynechorhaeBRSUG2937111611Lab Figure 6b - Anterior BRSUG 29371-1-1611, labial, 2mm 144 Whiteside et al, 2016 SynechorhaeM183Lin Figure 2C - Lateral M183, lingual, 1mm 145 Cuny & Risnes, 2005 SynechorhaeSRB5Lab Figure 3B - Anterior SRB5, labial, 0,5mm 146 Thies et al, 2014 SynechoseinNKP3964Lab Plate 1; Figure 1a - Anterolateral Holotype, NKP 3964, labial, 0,5mm 147 Thies et al, 2014 SynechoseinNKP3965Lab Plate 1; Figure 2a - Anterior Paratype, NKP 3965, labial, 0,5mm 148 Thies et al, 2014 SynechoseinNKP3966Lab Plate 1; Figure 3a - Anterolateral Paratype, NKP 3966, labial, 0,5mm 149 Thies et al, 2014 SynechoseinNKP3967Lab Plate 1; Figure 4a - Anterolateral Paratype, NKP 3967, labial, 0,5mm 150 Thies et al, 2014 SynechoseinNKP3968Lab Plate 1; Figure 5a - Posterolateral Paratype, NKP 3968, labial, 0,5mm 151 Thies et al, 2014 SynechoseinNKP3969Lab Plate 2; Figure 1a - Posterolateral Paratype, NKP 3969, labial, 0,5mm 152 Thies et al, 2014 SynechoseinNKP3970Lab Plate 2; Figure 2a - Posterolateral Paratype, NKP 3970, labial, 0,5mm 153 Thies et al, 2014 SynechoseinNKP3971Lab Plate 2; Figure 3a - Posterior Paratype, NKP 3971, labial, 0,5mm 154 Cappetta, 2012 VallisiacopBRSMGCc400Lab Figure 316H - Lateral Holotype, BRSMG Cc400, labial, drwing 155 Cappetta, 2012 VallisiacopBRSMGCc401Lab Figure 316E - Anterolateral BRSMG Cc401, labial, drawing 156 Cappetta, 2012 VallisiacopBRSMGCc404Lab Figure 316A - Anterior BRSMG Cc404, labial, drawing 157 Mears et al, 2016 VallisiacopBRSUG2937111575Lab Figure 6k - - BRSUG 29371-1-1575, labial, 1mm, virtually complete 158 Rees, 2010 AkaimaltuZPALP121Lab Plate 1, Figure 1 - Anterior Holotype ZPAL P 12/1, labial 159 Rees, 2010 AkaimaltuZPALP122Lab Plate 1, Figure 6 - Anterior ZPAL P 12/2, labial 160 Rees, 2010 AkaimaltuZPALP123Lab Plate 1, Figure 4 - Anterior ZPAL P 12/3, labial 161 Rees, 2010 AkaimaltuZPALP124Lab Plate 1, Figure 9 - Anterior ZPAL P 12/4, labial 162 Rees, 2010 AkaimaltuZPALP125Lab Plate 1, Figure 12 - Lateral ZPAL P 12/5, labial 163 Rees, 2010 AkaimaltuZPALP126Lab Plate 1, Figure 16 - Lateral ZPAL P 12/6, labial 164 Rees, 2010 AkaimaltuZPALP127Lab Plate 1, Figure 17 - Lateral ZPAL P 12/7, labial, JUVENILE 165 Rees, 2010 AkaimaltuZPALP128Lab Plate 1, Figure 20 - Lateral ZPAL P 12/8, labial 166 Srdic et al, 2016 AkaimyrNHMUKPVP73690Lab Figure 5b - - Holotype, NHMUK PV P73690, labial, 1mm 167 Srdic et al, 2016 AkaimyrNHMUKPVP73691Lab Figure 5f - - Paratype, NHMUK PV P73691, labial, 1mm 168 Srdic et al, 2016 AkaimyrNHMUKPVP73692Lab Figure 5i - - Paratype, NHMUK PV P73692, labial, 1mm

48

N ORDER FAMILY GENUS SPECIES DESCRIBED AGE LOCALITY 169 Orectolobiformes - Akaimia myriacuspis Srdic et al, 2016 Callovian Whittlesey, Cambridgeshire, Eastern England 170 Orectolobiformes - Annea carinata Thies, 1983 Aalenian Goslar, Lower Saxony, Germany 171 Orectolobiformes - Annea carinata Thies, 1983 Aalenian Moorberg, Sarstedt, Hannover, Germany 172 Orectolobiformes - Annea sp. Thies, 1983 Aalenian Moorberg, Sarstedt, Hannover, Germany 173 Orectolobiformes - Annea sp. Thies, 1983 Aalenian Moorberg, Sarstedt, Hannover, Germany 174 Orectolobiformes - Annea sp. Thies, 1983 Aalenian Moorberg, Sarstedt, Hannover, Germany 175 Carchariniformes Scyliorhinidae Bavariscyllium sp. Thies, 2005 Kimmeridgian Hannover-Muhlenberg, Germany 176 Carchariniformes Scyliorhinidae Bavariscyllium sp. Thies, 2005 Kimmeridgian Hannover-Muhlenberg, Germany 177 Carchariniformes Scyliorhinidae Bavariscyllium tischlingeri Thies, 2005 Tithonian Eichstatt, Bavaria, Germany 178 Carchariniformes Scyliorhinidae Bavariscyllium tischlingeri Thies, 2005 Tithonian Eichstatt, Bavaria, Germany 179 Carchariniformes Scyliorhinidae Bavariscyllium tischlingeri Thies, 2005 Tithonian Eichstatt, Bavaria, Germany 180 Carchariniformes Scyliorhinidae Bavariscyllium tischlingeri Thies, 2005 Tithonian Eichstatt, Bavaria, Germany 181 Carchariniformes Carcharhinidae indet. - Jordan & Evermann, 1896 Bathonian Watton Cliff, Dorset, England 182 Hexanchiformes Crassonotidae Crassodontidanus serratus O. Fraas, 1855 Kimmeridgian Nusplingen, Westerberg, Germany 183 Hexanchiformes Crassonotidae Crassodontidanus serratus O. Fraas, 1855 Kimmeridgian Nusplingen, Westerberg, Germany 184 Hexanchiformes Crassonotidae Crassodontidanus serratus O. Fraas, 1855 Kimmeridgian Nusplingen, Westerberg, Germany 185 Hexanchiformes Crassonotidae Crassodontidanus serratus O. Fraas, 1855 Kimmeridgian Nusplingen, Westerberg, Germany 186 Hexanchiformes Crassonotidae Crassodontidanus serratus O. Fraas, 1855 Kimmeridgian Nusplingen, Westerberg, Germany 187 Hexanchiformes Crassonotidae Crassodontidanus serratus O. Fraas, 1855 Oxfordian Stuifen, SW Germany 188 Orectolobiformes Crossorhindae Crossorhinus jurassicus Woodward, 1918 Tithonian Eichstatt, Bavaria, Germany 189 Orectolobiformes - Dorsetoscyllium terreafullonicum Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 190 Hexanchiformes Crassonotidae Crassodontidanus serratus O. Fraas, 1855 Tithonian Solhnofen, Bavaria, Germany 191 Carchariniformes Scyliorhinidae Eypea leesi Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 192 Orectolobiformes Hemiscyllidae Folipistrix digitulus Kriwet, 2003 Aalenian Weilen unter den Rinnen, SW Germany 193 Orectolobiformes Hemiscyllidae Folipistrix digitulus Kriwet, 2003 Aalenian Weilen unter den Rinnen, SW Germany 194 Heterodontiformes Heterodontidae Heterodontus cf. semirugosus Plieninger, 1847 Kimmeridgian Ringstead, Dorset, England 195 Heterodontiformes Heterodontidae Heterodontus sp. deBlainville, 1816 Bathonian Southern England 196 Heterodontiformes Heterodontidae Heterodontus sp. deBlainville, 1816 Bathonian Southern England 197 Orectolobiformes - Heterophorcynus microdon Underwood & Ward, 2004 Bathonian Woodeaton Quarry, England 198 Hexanchiformes Hexanchidae indet. - Gray, 1851 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 199 Synechodontiformes Palaeospinacidae Macrourogaleus hassei Woodward, 1889 Tithonian Bayern, Germany 200 Orectolobiformes - Mesiteia sp. Kramberger, 1885 Bajocian Hannover-Muhlenberg, Germany 201 Neoselachii indet - - Compagno, 1977 Callovian Kleby, NW Poland 202 Hexanchiformes Hexanchidae(?) Notidanoides muensteri Agassiz, 1843 Kimmeridgian Daiting, Bavaria, Germany 203 Hexanchiformes Hexanchidae(?) Notidanoides sp. Maisey, 1986 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 204 Orectolobiformes indet - - Applegate, 1972 Callovian Hansa iron mine, Harlingerode, Germany 205 Orectolobiformes indet - - Applegate, 1972 Kimmeridgian Moscardon, NE Spain 206 Orectolobiformes indet - - Applegate, 1972 Aalenian Weilen unter den Rinnen, SW Germany 207 Orectolobiformes indet - - Applegate, 1972 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 208 Orectolobiformes Orectolobidae Orectoloboides sp. Cappetta, 1977 Bathonian Watton Cliff, Dorset, England 209 Orectolobiformes Orectolobidae Ornatoscyllium freemani Underwood & Ward, 2004 Bathonian Southern England 210 Orectolobiformes - Heterophorcynus microdon Underwood & Ward, 2004 Bathonian Southern England 211 Orectolobiformes Orectolobidae Heterophorcynus microdon Underwood & Ward, 2004 Bathonian Southern England 212 Orectolobiformes Orectolobidae Dorsetoscyllium terreafullonicum Underwood & Ward, 2004 Bathonian Southern England 213 Carchariniformes Scyliorhinidae Ornatoscyllium freemani Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 214 Orectolobiformes - Ornatoscyllium sp. Underwood & Ward, 2004 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 215 Orectolobiformes Brachaeluridae Palaeobrachaelurus sp. Thies, 1983 Aalenian Moorberg, Sarstedt, Hannover, Germany 216 Orectolobiformes Brachaeluridae Palaeobrachaelurus sp. Thies, 1983 Aalenian Moorberg, Sarstedt, Hannover, Germany 217 Orectolobiformes Brachaeluridae Palaeobrachaelurus musseti Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 218 Orectolobiformes Brachaeluridae Palaeobrachaelurus musseti Underwood & Ward, 2004 Bajocian Ottange-Rumelange quarry , France 219 Orectolobiformes Brachaeluridae Palaeobrachaelurus sp. Thies, 1983 Callovian Kleby, NW Poland 220 Orectolobiformes Brachaeluridae Palaeobrachaelurus sp. Thies, 1983 Bathonian Southern England 221 Orectolobiformes Brachaeluridae Palaeobrachaelurus sp. Thies, 1983 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 222 Lamniformes - Palaeocarcharias sp. deBeaumont, 1960 Bathonian Watton Cliff, Dorset, England 223 Lamniformes indet Palaeocarcharias stromeri deBeaumont, 1960 Tithonian Blumenberg / Eichstätt, Bavaria, Germany 224 Lamniformes - Palaeocarcharias stromeri deBeaumont, 1960 Tithonian Blumenberg, Eichstatt, Germany 225 Lamniformes - Palaeocarcharias stromeri deBeaumont, 1960 Tithonian Blumenberg, Eichstatt, Germany 226 Lamniformes - Palaeocarcharias stromeri deBeaumont, 1960 Tithonian Blumenberg, Eichstatt, Germany 227 Lamniformes - Palaeocarcharias stromeri deBeaumont, 1960 Tithonian Blumenberg, Eichstatt, Germany 228 Lamniformes indet Palaeocarcharias stromeri deBeaumont, 1960 Kimmeridgian Wegscheid near Eichstatt, Bavaria, southern Germany 229 Orectolobiformes Rhincodontidae Palaeorhincodon sp. Herman, 1974 Aalenian Moorberg, Sarstedt, Hannover, Germany 230 Carchariniformes Scyliorhinidae Palaeoscyllium formosum Wagner, 1857 Tithonian Solhnofen, Bavaria, Germany 231 Carchariniformes Scyliorhinidae Palaeoscyllium formosum Wagner, 1857 Tithonian Solhnofen, Bavaria, Germany 232 Carchariniformes Scyliorhinidae Palaeoscyllium formosum Wagner, 1857 Tithonian Solhnofen, Bavaria, Germany 233 Carchariniformes Scyliorhinidae Palaeoscyllium formosum Wagner, 1857 Tithonian Solhnofen, Bavaria, Germany 234 Carchariniformes Scyliorhinidae Palaeoscyllium formosum Wagner, 1857 Tithonian Solhnofen, Bavaria, Germany 235 Carchariniformes Scyliorhinidae Palaeoscyllium formosum Wagner, 1857 Tithonian Solhnofen, Bavaria, Germany 236 Carchariniformes Scyliorhinidae Palaeoscyllium formosum Wagner, 1857 Kimmeridgian Ringstead, Dorset, England 237 Carchariniformes Scyliorhinidae Palaeoscyllium formosum Wagner, 1857 Kimmeridgian Ringstead, Dorset, England 238 Carchariniformes Scyliorhinidae Palaeoscyllium sp. Wagner, 1857 Bathonian Southern England 239 Carchariniformes Scyliorhinidae Palaeoscyllium tenuidens Underwood & Ward, 2004 Bathonian Hampen Cutting, England 240 Heterodontiformes Heterodontidae Paracestracion belis Underwood & Ward, 2004 Bathonian Woodeaton Quarry, England 241 Heterodontiformes Heterodontidae Paracestracion falcifer Wagner, 1857 Kimmeridgian Ringstead, Dorset, England 242 Heterodontiformes Heterodontidae Paracestracion falcifer Wagner, 1857 Kimmeridgian Ringstead, Dorset, England 243 Heterodontiformes Heterodontidae Paracestracion sp. Koken & Zittel, 1911 Bajocian Ottange-Rumelange quarry , France 244 Heterodontiformes Heterodontidae Paracestracion sp. Koken & Zittel, 1911 Bajocian Ottange-Rumelange quarry , France 245 Heterodontiformes Heterodontidae Paracestracion sp. Koken & Zittel, 1911 Bathonian Southern England 246 Heterodontiformes Heterodontidae Paracestracion viohli Kriwet, 2008 Kimmeridgian Schamhaupten, Bavaria, Germany 247 Orectolobiformes Brachaeluridae Paraginglymostoma sp. Herman, 1982 Aalenian Moorberg, Sarstedt, Hannover, Germany 248 Synechodontiformes Palaeospinacidae Paraorthacodus sp. Glikman, 1957 Bajocian Ottange-Rumelange quarry , France 249 Synechodontiformes Palaeospinacidae Paraorthacodus sp. Glikman, 1957 Bajocian Ottange-Rumelange quarry , France 250 Synechodontiformes Orthacodontidae Paraorthacodus sp. Glikman, 1957 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 251 Synechodontiformes Orthacodontidae Paraorthacodus sp. Glikman, 1957 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 252 Orectolobiformes indet Phorcynis catulina Thiolliere, 1854 Tithonian Solhnofen, Bavaria, Germany

49

N AUTHOR FILE ORIGINAL JAW POSITION NOTES 169 Srdic et al, 2016 AkaimyrNHMUKPVP73693Lab Figure 5l - Lateral Paratype, NHMUK PV P73693, labial, 1mm 170 Thies, 1989 AnnecariBGR14063Lab Figure 6a - Anterior BGR 14063, labial, 0,5mm 171 Thies, 1989 AnnecariIGPH88II6Lab Figure 7a - Anterior IGPH 88-II-6, labial, 0,5mm 172 Thies, 1989 AnnecariIGPH88II7Lab Figure 8 - Anterior IGPH 88-II-7, labial, 0,5mm 173 Thies, 1989 AnnespIGPH88II8Lab Figure 9a - Lateral IGPH 88-II-8, labial, 0,5mm 174 Thies, 1989 AnnespIGPH88II9Lab Figure 10a - Lateral IGPH 88-II-9, labial, 0,5mm 175 Thies, 2005 BavarispGPH2004II1Lab Figure 3 1a - Lateral GPH 2004-II-1, labial, 0,5mm 176 Thies, 2005 BavarispGPH2004II2Lab Figure 3 2a - Anterolateral GPH 2004-II-2, labial, 0,5mm 177 Thies & Leidner, 2011 BavaritischSOS4124ALab Plate 45, Figure A1 - Anterolateral Holotype, SOS 4124A, labial, 0,4mm 178 Thies & Leidner, 2011 BavaritischSOS4124BLab Plate 45, Figure B1 - Lateral Holotype, SOS 4124B, labial, 0,4mm 179 Thies & Leidner, 2011 BavaritischSOS4124CLab Plate 45, Figure C1 - Distal Holotype, SOS 4124C, labial, 0,4mm 180 Thies & Leidner, 2011 BavaritischSOS4124DLab Plate 45, Figure D1 - Anterior Holotype, SOS 4124D, labial, 0,4mm 181 Underwood, 2004 CarcharhiniBMNHP66044Lab Figure 4A - - BMNHP 66044, labial 182 Kriwet & Klug, 2011 CrassoserraGPIT815121Lin Figure 3c - - GPIT 81512/1, lingual 183 Kriwet & Klug, 2011 CrassoserraGPIT815122Lin Figure 3d - - GPIT 81512/2, lingual 184 Kriwet & Klug, 2011 CrassoserraGPIT815123Lin Figure 3e - - GPIT 81512/3, lingual 185 Kriwet & Klug, 2011 CrassoserraGPIT815126Lin Figure 3h - - GPIT 81512/6, lingual 186 Kriwet & Klug, 2011 CrassoserraSMNS3695-10Lab Figure 2a Upper Lateral Holotype, SMNS 3695/10, labial, 5mm 187 Kriwet & Klug, 2011 CrassoserraSMNS52097Lab Figure 2c Upper Anterolateral SMNS 52097, labial, 5mm 188 Thies & Leidner, 2011 CrossojuraNHMLP11211Lab Plate 34, Figure A1 - - Holotype NHML, P11211, labial, 0,2mm 189 Underwood & Ward, 2004 DorseterrBMNHP66090Lab Figure 4J - Lateral Holotype, BMNHP 66090, labial, 0,5mm 190 Kriwet & Klein, 2004 EonotiserrBSPASI1159Lin Figure 4c - - BSP ASI1159, lingual, 1cm 191 Underwood & Ward, 2004 EypeleeBMNHP66058Lab Figure 5C - Anterior Holotype, BMNHP 66058, labial, 0,5mm 192 Kriwet, 2003 FolidigiSMNS87861Lab Figure 2D1 - - Holotype, SMNS 87861, labial 193 Kriwet, 2003 FolidigiSMNS87862Lab Figure 3A - - Paratype, SMNS 87862, labial 194 Underwood, 2002 HeterodosemiP65712Lab Figure 4A - Anterior P. 65712, labial, 1mm 195 Underwood & Ward, 2004 HeterodospU&W4RLin Figure 4R - Anterior Lingual, 0,5mm 196 Underwood & Ward, 2004 HeterodospU&W4TLab Figure 4T - Lateral Labial, 0,5mm 197 Underwood & Ward, 2004 HeterophomicBMNHP66083Lab Figure 4I - Anterolateral Holotype, BMNHP 66083, labial, 0,5mm 198 Rees, 2010 HexanchidaePALP1214Lab Plate 2, Figure 12 Upper - ZPAL P 12/14, labial 199 Klug, 2008 MacrourogaAMNH7498Lin Figure 1-8c - - AMNH 7498, lingual, 0,5mm 200 Thies, 1989 MesiteiaspBGR14064Lab Figure 11a - Anterior BGR 14064, labial, 0,5mm 201 Kriwet, 2003 NeoselachiiBGRX12512Lab Figure 3M - - BGR X12512, labial 202 Kriwet & Klein, 2004 NotidamuenBSP1989XI2Lab Figure 4b - - BSP 1989XI2, labial, 1cm 203 Rees, 2010 NotidaspZPALP1213Lab Plate 2, Figure 10 Lower - ZPAL P 12/13, labial 204 Thies, 1989 OrectolobiBGR14065Lab Figure 12a - Anterior BGR 14065, labial, 0,5mm 205 Kriwet, 1998 OrectolobiLab Plate 4, Figure 3 - - Labial 206 Kriwet, 2003 OrectolobiSMNS87863Lab Figure 3B - - SMNS 87863, labial 207 Rees, 2010 OrectolobiZPALP1212Lab Plate 2, Figure 1 - Anterior ZPAL P 12/12, labial 208 Underwood & Ward, 2004 OrectolobospBMNHP66088Lab Figure 4M - - BMNHP 66088, labial, 0,5mm 209 Underwood & Ward, 2004 OrectolobospU&W4ELab Figure 4E - Anterior Labial, 0,5mm 210 Underwood & Ward, 2004 OrectolobospU&W4GLab Figure 4G - Anterior Labial, 0,5mm 211 Underwood & Ward, 2004 OrectolobospU&W4HLab Figure 4H - Lateral Labial, 0,5mm 212 Underwood & Ward, 2004 OrectolobospU&W4LLab Figure 4L - Anterior Labial, 0,5mm 213 Underwood, 2004 OrnatofreeBMNHP66081Lab Figure 4K - - Holotype, BMNHP 66097, labial 214 Rees, 2010 OrnatospZPALP129Lab Plate 1, Figure 23 - - ZPAL P 12/9, labial 215 Thies, 1989 PalaeobrachIGPH88II2Lab Figure 2a - Anterior IGPH 88-II-2, labial, 0,5mm 216 Thies, 1989 PalaeobrachIGPH88II3Lab Figure 3a - Anterolateral IGPH 88-II-3, labial, 0,5mm 217 Underwood, 2004 PalaeobramusBMNHP66081Lab Figure 4I - - Holotype, BMNHP 66081, labial 218 Delsate & Felten, 2015 PalaeobramusMNHNLBM393RUMA06Lab Figure 7H1 - - MnhnL BM393-RUMA06, labial, 0,5mm 219 Kriwet, 2003 PalaeobraspBGRX12502Lab Figure 2C1 - - BGR X12502, labial 220 Underwood & Ward, 2004 PalaeobraspU&W4DLab Figure 4D - - Labial, 0,5mm 221 Rees, 2010 PalaeobraspZPALP1210Lab Plate 2, Figure 4 - - ZPAL P 12/10, labial 222 Underwood & Ward, 2004 PalaeocarchaspBMNHP66066Lab Figure 4U - - BMNHP 66066, labial, 0,5mm 223 Kriwet & Klein, 2004 PalaeocastromJMSOS2216Lab Figure 17c - Anterior JM-SOS 2216, labial, 0,1cm 224 Thies & Leidner, 2011 PalaeocastromSOS2216aBLab Plate 43, Figure B1 - Anterior SOS 2216aB1, labial, 5mm 225 Thies & Leidner, 2011 PalaeocastromSOS2216aCLab Plate 43, Figure C1 - Anterior SOS 2216aC1, labial, 5mm 226 Thies & Leidner, 2011 PalaeocastromSOS2216aDLab Plate 43, Figure D1 - Anterior SOS 2216aD1, labial, 5mm 227 Thies & Leidner, 2011 PalaeocastromSOS2216aELab Plate 43, Figure E1 - Anterior SOS 2216aE1, labial, 5mm 228 Duffin, 1988 PalaeocastromSOS2294Lab Figure 3C - Symphyseal Holotype, SOS 2294, labial 229 Thies, 1989 PalaeorhispIGPH88II5Lab Figure 5a - Anterior IGPH 88-II-5, labial, 0,5mm 230 Kriwet & Klein, 2004 PalaeoscyfoBSBASI589aLab Figure 15c - Anterior BSB AS I 589a, labial, 4mm 231 Thies & Leidner, 2011 PalaeoscyfoBSPHGASI589a51ALab Plate 51, Figure A1 - Anterolateral BSPHG AS-I-589a51A1, labial, 0,5mm 232 Thies & Leidner, 2011 PalaeoscyfoBSPHGASI589a51BLab Plate 51, Figure B1 - Lateral BSPHG AS-I-589a51B1, labial, 0,5mm 233 Thies & Leidner, 2011 PalaeoscyfoBSPHGASI589a51CLab Plate 51, Figure C1 - Lateral BSPHG AS-I-589a51C1, labial, 0,5mm 234 Thies & Leidner, 2011 PalaeoscyfoBSPHGASI589aALab Plate 50, Figure A1 - Anterior BSPHG AS-I-589aA1, labial, 0,5mm 235 Thies & Leidner, 2011 PalaeoscyfoBSPHGASI589aCLab Plate 50, Figure C1 - Anterolateral BSPHG AS-I-589aC1, labial, 0,5mm 236 Underwood, 2002 PalaeoscyformoP65675Lab Plate 1, Figure 5 - Anterior P. 65675, labial 237 Underwood, 2002 PalaeoscyformoP65676Lab Plate 1, Figure 8 - Lateral P. 65676, labial 238 Underwood & Ward, 2004 PalaeoscyspU&W5BLab Figure 5B - Anterior Labial, 0,5mm 239 Underwood & Ward, 2004 PalaeoscyteBMNHP66045Lab Figure 5A - Lateral Holotype, BMNHP 66045, Labial, 0,5mm 240 Underwood & Ward, 2004 ParacestrabelBMNHP66076Lab Figure 4N - Anterolateral Holotype, BMNHP 66076, labial, 0,5mm 241 Underwood, 2002 ParacestrafalP65682Lab Plate 2, Figure 5 - Anterolateral P. 65682, labial, juvenile 242 Underwood, 2002 ParacestrafalP65684Lab Plate 2, Figure 8 - Lateral P. 65684, labial, juvenile 243 Delsate & Felten, 2015 ParacestraspMNHNLBM691Lab Figure 7A - - Mnhnl BM691, labial, 0,5mm 244 Delsate & Felten, 2015 ParacestraspMNHNLBM692Lab Figure 7B - - Mnhnl BM692, labial, 0,5mm 245 Underwood & Ward, 2004 ParacestraspU&W4PLab Figure 4P - Posterolateral Labial, 0,5mm 246 Kriwet, 2008 ParacestravioJMScha728Lin Figure 2-4 - Lateral Holotype, JM Scha 728, lingual 247 Thies, 1989 ParagispIGPH88II4Lab Figure 4a - Anterior IGPH 88-II-4, labial, 0,5mm 248 Delsate & Felten, 2015 ParaorthaspMNHNLBM684Lab Figure 5G1 - - Mnhnl BM684, labial, 2mm 249 Delsate & Felten, 2015 ParaorthaspMNHNLBM685Lab Figure 6A1 - - Mnhnl BM685, labial, 1mm 250 Rees, 2010 ParaorthaspZPALP1215Lab Plate 2, Figure 13 - Lateral ZPAL P 12/15, labial 251 Rees, 2010 ParaorthaspZPALP1216Lab Plate 2, Figure 18 - Anterior ZPAL P 12/16, labial 252 Kriwet & Klein, 2004 PhorcatBSBASI1364Lab Figure 13d - Anterolateral BSP AS I 1364, labial, 0,2mm

50

N ORDER FAMILY GENUS SPECIES DESCRIBED AGE LOCALITY 253 Orectolobiformes - Phorcynis catulina Thiolliere, 1854 Tithonian Eichstatt, Bavaria, Germany 254 Orectolobiformes - Phorcynis catulina Thiolliere, 1854 Tithonian Eichstatt, Bavaria, Germany 255 Orectolobiformes - Phorcynis catulina Thiolliere, 1854 Tithonian Eichstatt, Bavaria, Germany 256 Orectolobiformes - Phorcynis catulina Thiolliere, 1854 Tithonian Eichstatt, Bavaria, Germany 257 Orectolobiformes - Phorcynis catulina Thiolliere, 1854 Tithonian Eichstatt, Bavaria, Germany 258 Orectolobiformes - Phorcynis catulina Thiolliere, 1854 Tithonian Eichstatt, Bavaria, Germany 259 Orectolobiformes - Phorcynis catulina Thiolliere, 1854 Tithonian Eichstatt, Bavaria, Germany 260 Orectolobiformes - Phorcynis sp. Thiolliere, 1854 Tithonian Zandt, near Denkendorf, Germany 261 Orectolobiformes - Phorcynis sp. Thiolliere, 1854 Tithonian Zandt, near Denkendorf, Germany 262 Orectolobiformes - Phorcynis sp. Thiolliere, 1854 Tithonian Zandt, near Denkendorf, Germany 263 Orectolobiformes - Phorcynis sp. Thiolliere, 1854 Tithonian Zandt, near Denkendorf, Germany 264 Orectolobiformes - Phorcynis sp. Thiolliere, 1854 Tithonian Zandt, near Denkendorf, Germany 265 Orectolobiformes - Phorcynis sp. Thiolliere, 1854 Tithonian Zandt, near Denkendorf, Germany 266 Orectolobiformes - Phorcynis sp. Thiolliere, 1854 Tithonian Zandt, near Denkendorf, Germany 267 Orectolobiformes - Phorcynis sp. Thiolliere, 1854 Tithonian Zandt, near Denkendorf, Germany 268 Carchariniformes Scyliorhinidae Praeposcyllium oxoniensis Underwood & Ward, 2004 Bathonian Woodeaton Quarry, England 269 Heterodontiformes Heterodontidae Proheterodontus sylvestris Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 270 Hexanchiformes Pseudonotidanidae Pseudonotidanus sp. Underwood & Ward, 2004 Bathonian Arromanches, Normandy, France 271 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Eichstatt, Bavaria, Germany 272 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Eichstatt, Bavaria, Germany 273 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Eichstatt, Bavaria, Germany 274 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Eichstatt, Bavaria, Germany 275 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Eichstatt, Bavaria, Germany 276 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Eichstatt, Bavaria, Germany 277 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Eichstatt, Bavaria, Germany 278 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Langenaltheim, Germany 279 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Langenaltheim, Germany 280 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Langenaltheim, Germany 281 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Langenaltheim, Germany 282 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Langenaltheim, Germany 283 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Langenaltheim, Germany 284 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Wintershof-Ost, Eichstatt, Germany 285 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Wintershof-Ost, Eichstatt, Germany 286 Squatiniformes Pseudorhinidae Pseudorhina alifera Munster, 1842 Tithonian Wintershof-Ost, Eichstatt, Germany 287 Squatiniformes Pseudorhinidae Pseudorhina sp. Jaekel, 1898 Tithonian Eichstatt, Bavaria, Germany 288 Squatiniformes Pseudorhinidae Pseudorhina sp. Jaekel, 1898 Tithonian Eichstatt, Bavaria, Germany 289 Squatiniformes Pseudorhinidae Pseudorhina sp. Jaekel, 1898 Tithonian Eichstatt, Bavaria, Germany 290 Squatiniformes Pseudorhinidae Pseudorhina sp. Jaekel, 1898 Tithonian Eichstatt, Bavaria, Germany 291 Squatiniformes Pseudorhinidae Pseudorhina sp. Jaekel, 1898 Tithonian Eichstatt, Bavaria, Germany 292 Hexanchiformes Pseudonotidanidae Pseudonotidanus semirugosus Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 293 Orectolobiformes Hemiscyllidae Pseudospinax sp. Diedrich, 1991 Kimmeridgian Ringstead, Dorset, England 294 Carchariniformes Scyliorhinidae indet. - Gill, 1862 Kimmeridgian Moscardon, NE Spain 295 Carchariniformes Scyliorhinidae indet. - Gill, 1862 Kimmeridgian Guimarota coal mine, Portugal 296 Carchariniformes Scyliorhinidae indet. - Gill, 1862 Bathonian Southern England 297 Carchariniformes Scyliorhinidae indet. - Gill, 1862 Bathonian Southern England 298 Carchariniformes Scyliorhinidae indet. - Gill, 1862 Bathonian Southern England 299 Carchariniformes Scyliorhinidae indet. - Gill, 1862 Bathonian Herbury Point, England 300 Synechodontiformes Orthacodontidae Sphenodus cf. longidens Agassiz, 1843 Oxfordian Baden-Württemberg, southern Germany 301 Synechodontiformes Orthacodontidae Sphenodus nitidus Wagner, 1862 Kimmeridgian Nusplingen, Westerberg, Germany 302 Synechodontiformes Orthacodontidae Sphenodus nitidus Wagner, 1862 Kimmeridgian Nusplingen, Westerberg, Germany 303 Synechodontiformes Orthacodontidae Sphenodus nitidus Wagner, 1862 Kimmeridgian Nusplingen, Westerberg, Germany 304 Synechodontiformes Orthacodontidae Sphenodus nitidus Wagner, 1862 Kimmeridgian Nusplingen, Westerberg, Germany 305 Synechodontiformes Orthacodontidae Sphenodus nitidus Wagner, 1862 Kimmeridgian Nusplingen, Westerberg, Germany 306 Synechodontiformes Orthacodontidae Sphenodus nitidus Wagner, 1862 Kimmeridgian Nusplingen, Westerberg, Germany 307 Synechodontiformes Orthacodontidae Sphenodus longidens Agassiz, 1843 Oxfordian Eningen, Baden-Württemberg, southern Germany 308 Synechodontiformes Orthacodontidae Sphenodus cf. longidens Agassiz, 1843 Bajocian Ottange-Rumelange quarry , France 309 Synechodontiformes Orthacodontidae Sphenodus longidens Agassiz, 1843 Oxfordian Braunenberg, near Aalen, Germany 310 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 311 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Oxfordian Tieringen, Baden-Württemberg, southern Germany 312 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 313 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 314 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 315 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 316 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 317 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 318 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 319 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 320 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 321 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 322 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 323 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 324 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 325 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 326 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 327 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 328 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 329 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 330 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 331 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 332 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 333 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 334 Synechodontiformes Orthacodontidae Sphenodus macer Quenstedt, 1851 Kimmeridgian Egesheim, Westerberg, Germany 335 Synechodontiformes Orthacodontidae Sphenodus sp. Agassiz, 1843 Tithonian Lindi, Tanzania 336 Synechodontiformes Orthacodontidae Sphenodus longidens Agassiz, 1843 Callovian Ogrodzieniec, Zawiercie region, Southern Poland

51

N AUTHOR FILE ORIGINAL JAW POSITION NOTES 253 Thies & Leidner, 2011 PhorcatBSPHGASI1364BLab Plate 32, Figure B1 - - BSPHG AS-I-1364B, labial, 0,2mm 254 Thies & Leidner, 2011 PhorcatBSPHGASI1364CLab Plate 32, Figure C1 - - BSPHG AS-I-1364C, labial, 0,2mm 255 Thies & Leidner, 2011 PhorcatBSPHGASI1364DLab Plate 32, Figure D1 - - BSPHG AS-I-1364D, labial, 0,2mm 256 Thies & Leidner, 2011 PhorcatBSPHGASI1364ELab Plate 32, Figure E1 - - BSPHG AS-I-1364E, labial, 0,2mm 257 Thies & Leidner, 2011 PhorcatBSPHGASI1364FLab Plate 32, Figure F1 - - BSPHG AS-I-1364F, labial, 0,2mm 258 Thies & Leidner, 2011 PhorcatBSPHGASI1364GLab Plate 32, Figure G1 - - BSPHG AS-I-1364G, labial, 0,2mm 259 Thies & Leidner, 2011 PhorcatBSPHGASI1364HLab Plate 32, Figure H1 - - BSPHG AS-I-1364H, labial, 0,2mm 260 Thies & Leidner, 2011 PhorspBSPHG1960XVIII5539ALab Plate 39, Figure A1 - Anterior BSPHG 1960-XVIII-55A, labial, 0,5mm 261 Thies & Leidner, 2011 PhorspBSPHG1960XVIII5539BLab Plate 39, Figure B1 - Anterior BSPHG 1960-XVIII-55B, labial, 0,5mm 262 Thies & Leidner, 2011 PhorspBSPHG1960XVIII5539CLab Plate 39, Figure C1 - Anterior BSPHG 1960-XVIII-55C, labial, 0,5mm 263 Thies & Leidner, 2011 PhorspBSPHG1960XVIII5539DLab Plate 39, Figure D1 - Anterior BSPHG 1960-XVIII-55D, labial, 0,5mm 264 Thies & Leidner, 2011 PhorspBSPHG1960XVIII5540ALab Plate 40, Figure A1 - Anterior BSPHG 1960-XVIII-5540A, labial, 0,5mm 265 Thies & Leidner, 2011 PhorspBSPHG1960XVIII5540BLab Plate 40, Figure B1 - Lateral BSPHG 1960-XVIII-5540B, labial, 0,5mm 266 Thies & Leidner, 2011 PhorspBSPHG1960XVIII5540CLab Plate 40, Figure C1 - Posterior BSPHG 1960-XVIII-5540C, labial, 0,5mm 267 Thies & Leidner, 2011 PhorspBSPHG1960XVIII5540DLab Plate 40, Figure D1 - Posterior BSPHG 1960-XVIII-5540D, labial, 0,5mm 268 Underwood, 2004 PraepoxonBMNHP66052 Figure 4D - - Holotype, BMNHP 66052, labial 269 Underwood, 2004 ProhetesylvesBMNHP66068Lab Figure 4G - - Holotype, BMNHP 66068, labial 270 Cuny & Tabouelle, 2014 Pseudonotisp201351MELin Figure 4C - - 2013.5.1 ME, lingual, 5mm 271 Thies & Leidner, 2011 PseudorhaliBSPHGASI1368ALab Plate 13, Figure A - Anterior BSPHG AS-I-1368A, labial, 0,2mm 272 Thies & Leidner, 2011 PseudorhaliBSPHGASI1368BLab Plate 13, Figure B - Anterior BSPHG AS-I-1368B, labial, 0,2mm 273 Thies & Leidner, 2011 PseudorhaliBSPHGASI1368CLab Plate 13, Figure C - Anterior BSPHG AS-I-1368C, labial, 0,2mm 274 Thies & Leidner, 2011 PseudorhaliBSPHGASI1368DLab Plate 13, Figure D - Lateral BSPHG AS-I-1368D, labial, 0,2mm 275 Thies & Leidner, 2011 PseudorhaliBSPHGASI1368ELab Plate 13, Figure E - Lateral BSPHG AS-I-1368E, labial, 0,2mm 276 Thies & Leidner, 2011 PseudorhaliBSPHGASI1368GLab Plate 13, Figure G1 - Lateral BSPHG AS-I-1368G, labial, 0,2mm 277 Thies & Leidner, 2011 PseudorhaliBSPHGASI1368HLab Plate 13, Figure H1 - Posterior BSPHG AS-I-1368H, labial, 0,2mm 278 Thies & Leidner, 2011 PseudorhaliSOS2210ALab Plate 11, Figure A1 - - SOS 2210A, labial, 0,4mm 279 Thies & Leidner, 2011 PseudorhaliSOS2210BLab Plate 11, Figure B1 - - SOS 2210B, labial, 0,4mm 280 Thies & Leidner, 2011 PseudorhaliSOS2210CLab Plate 11, Figure C1 - - SOS 2210C, labial, 0,4mm 281 Thies & Leidner, 2011 PseudorhaliSOS2210DLab Plate 11, Figure D1 - - SOS 2210D, labial, 0,4mm 282 Thies & Leidner, 2011 PseudorhaliSOS2210ELab Plate 11, Figure E1 - - SOS 2210E, labial, 0,4mm 283 Thies & Leidner, 2011 PseudorhaliSOS2210Lab Plate 10, Figure I1 - - SOS 2210, labial, 0,4mm 284 Thies & Leidner, 2011 PseudorhaliSOS4380ALab Plate 8, Figure A1 - - SOS 438A, labial, 1mm 285 Thies & Leidner, 2011 PseudorhaliSOS4380BLab Plate 8, Figure B1 - - SOS 438B, labial, 1mm 286 Thies & Leidner, 2011 PseudorhaliSOS4380CLab Plate 8, Figure C1 - - SOS 438C, labial, 1mm 287 Thies & Leidner, 2011 PseudorhispPIMUZAI3050A Plate 23, Figure A1 - Anterior PIMUZ A/I 3050A, labial, 1mm 288 Thies & Leidner, 2011 PseudorhispPIMUZAI3050B Plate 23, Figure B1 - Anterior PIMUZ A/I 3050B, labial, 1mm 289 Thies & Leidner, 2011 PseudorhispPIMUZAI3050C Plate 23, Figure C1 - Anterior PIMUZ A/I 3050C, labial, 1mm 290 Thies & Leidner, 2011 PseudorhispPIMUZAI3050D Plate 23, Figure D1 - Lateral PIMUZ A/I 3050D, labial, 1mm 291 Thies & Leidner, 2011 PseudorhispPIMUZAI3050E Plate 23, Figure E1 - Lateral PIMUZ A/I 3050E, labial, 1mm 292 Underwood & Ward, 2004 PseudosemiBMNHP66106Lab Figure 3B - - Holotype, BMNHP 66106, labial, 6mm 293 Underwood, 2002 PseuspispP65678Lab Plate 1, Figure 9 - - P. 65678, labial 294 Kriwet, 1998 Scyliorhi4-4Lab Plate 4, Figure 4 - - Labial 295 Kriwet, 1998 ScyliorhiLab Plate 2, Figure 1 - - ???, labial 296 Underwood & Ward, 2004 ScyliorhinidU&W5ELab Figure 5E - Lateral Labial, 0,5mm 297 Underwood & Ward, 2004 ScyliorhinidU&W5FLab Figure 5F - Anterior Labial, 0,5mm 298 Underwood & Ward, 2004 ScyliorhinidU&W5GLab Figure 5G - Lateral Labial, 0,5mm 299 Underwood, 2004 ScylliorhiBMNHP66050Lab Figure 4C - - BMNHP 66050, labial 300 Klug & Kriwet, 2010 SphelongiSMNS95937Lab Figure 2g - Anterolateral SMNS 95397, labial, 2mm 301 Bottcher & Duffin, 2000 Spheniti1SMNS8014410 Figure 18B - - SMNS 80144/10, 5mm 302 Bottcher & Duffin, 2000 Spheniti2SMNS8014411Lab Plate 2, Fig 2a - - SMNS 80144/11, labial 303 Bottcher & Duffin, 2000 Spheniti3SMNS8014419Lab Plate 2, Fig 1a - - SMNS 80144/19, labial 304 Bottcher & Duffin, 2000 SphenitiSMNS801446Lab Plate 2, Fig 3a - - SMNS 80144/6, labial 305 Bottcher & Duffin, 2000 SphenitiSMNS801449 Figure 16A - - SMNS 80144/9, 5mm 306 Bottcher & Duffin, 2000 SphenitiSMNS8043136Lab Plate 2, Fig 4a - - SMNS 80431/36, labial 307 Bottcher & Duffin, 2000 SphenolongiGPIT05311 Figure 16B - - GPIT 0531/1, 5mm 308 Delsate & Felten, 2015 SphenolongiMNHNLBM683Lab Figure 5F2 - - Mnhnl BM683, labial, 2mm 309 Bottcher & Duffin, 2000 SphenolongiSMNS86219 Figure 18A - Symphyseal SMNS 86219, 5mm 310 Bottcher & Duffin, 2000 SphenomaGPIT120515Lin Figure 11a - - Lectotype, GPIT1205/15, lingual, 5mm 311 Bottcher & Duffin, 2000 SphenomaSMNS54711 Figure 18C - Anterior SMNS 54711, 5mm 312 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR1 Lower Symphyseal SMNS 80142/44, labial, 1cm LoR1 313 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR10 Lower Posterolateral SMNS 80142/44, labial, 1cm LoR10 314 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR11 Lower Posterolateral SMNS 80142/44, labial, 1cm LoR11 315 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR2 Lower Symphyseal SMNS 80142/44, labial, 1cm LoR2 316 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR3 Lower Symphyseal SMNS 80142/44, labial, 1cm LoR3 317 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR4 Lower Anterolateral SMNS 80142/44, labial, 1cm LoR4 318 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR5 Lower Anterolateral SMNS 80142/44, labial, 1cm LoR5 319 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR6 Lower Lateral SMNS 80142/44, labial, 1cm LoR6 320 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR7 Lower Lateral SMNS 80142/44, labial, 1cm LoR7 321 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR8 Lower Lateral SMNS 80142/44, labial, 1cm LoR8 322 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabLR9 Lower Posterolateral SMNS 80142/44, labial, 1cm LoR9 323 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR1 Figure 9 Upper Symphyseal SMNS 80142/44, labial, 1cm UpR1 324 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR10 Upper Posterolateral SMNS 80142/44, labial, 1cm UpR10 325 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR11 Upper Posterolateral SMNS 80142/44, labial, 1cm UpR11 326 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR12 Upper Posterolateral SMNS 80142/44, labial, 1cm UpR12 327 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR2 Upper Symphyseal SMNS 80142/44, labial, 1cm UpR2 328 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR3 Upper Symphyseal SMNS 80142/44, labial, 1cm UpR3 329 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR4 Upper Anterolateral SMNS 80142/44, labial, 1cm UpR4 330 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR5 Upper Anterolateral SMNS 80142/44, labial, 1cm UpR5 331 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR6 Upper Lateral SMNS 80142/44, labial, 1cm UpR6 332 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR7 Upper Lateral SMNS 80142/44, labial, 1cm UpR7 333 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR8 Upper Lateral SMNS 80142/44, labial, 1cm UpR8 334 Bottcher & Duffin, 2000 SphenomaSMNS80142-44LabUR9 Upper Posterolateral SMNS 80142/44, labial, 1cm UpR9 335 Arratia et al, 2002 SphenospMBF7729Lab Figure 5A - - MB. F.7729, labial, 0,5cm 336 Rees, 2010 SphenospZPALP1219Lab Figure 2C - - ZPAL P 12/19, labial

52

N ORDER FAMILY GENUS SPECIES DESCRIBED AGE LOCALITY 337 Synechodontiformes Orthacodontidae Sphenodus sp. Agassiz, 1843 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 338 Synechodontiformes Orthacodontidae Sphenodus sp. Agassiz, 1843 Bathonian Cnaszyn, Krakow-Silesia homocline, Poland 339 Squatiniformes Squatinidae Pseudorhina alifera Munster, 1842 Tithonian Eichstatt, Bavaria, Germany 340 Squaliformes - Squalogaleus sp. Maisey, 1976 Kimmeridgian Moscardon, NE Spain 341 Squaliformes - Squalogaleus woodwardi Maisey, 1976 Tithonian Solhnofen, Bavaria, Germany 342 Squaliformes - Squalogaleus woodwardi Maisey, 1976 Tithonian Solhnofen, Bavaria, Germany 343 Squatiniformes Squatinidae Squatina alifera Munster, 1842 Kimmeridgian Ringstead, Dorset, England 344 Squatiniformes Squatinidae Squatina frequens Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 345 Squatiniformes Squatinidae Squatina frequens Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 346 Squatiniformes Squatinidae Squatina frequens Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 347 Squatiniformes Squatinidae Squatina frequens Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 348 Squatiniformes Squatinidae Squatina frequens Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 349 Squatiniformes Squatinidae Squatina sp. Dumeril, 1906 Kimmeridgian Moscardon, NE Spain 350 Synechodontiformes indet - - Duffin & Ward, 1993 Bajocian Ottange-Rumelange quarry , France 351 Synechodontiformes indet - - Duffin & Ward, 1993 Bajocian Ottange-Rumelange quarry , France 352 Synechodontiformes Palaeospinacidae Synechodus sp. Woodward, 1888 Tithonian Birkhof, Schernfeld, Germany 353 Synechodontiformes Palaeospinacidae Synechodus sp. Woodward, 1888 Tithonian Birkhof, Schernfeld, Germany 354 Synechodontiformes Palaeospinacidae Synechodus sp. Woodward, 1888 Tithonian Birkhof, Schernfeld, Germany 355 Synechodontiformes Palaeospinacidae Synechodus sp. Woodward, 1888 Tithonian Birkhof, Schernfeld, Germany 356 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Egesheim, Westerberg, Germany 357 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Egesheim, Westerberg, Germany 358 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Egesheim, Westerberg, Germany 359 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Egesheim, Westerberg, Germany 360 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Egesheim, Westerberg, Germany 361 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Egesheim, Westerberg, Germany 362 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Egesheim, Westerberg, Germany 363 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Egesheim, Westerberg, Germany 364 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Mahlstetten, southern Germany 365 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Mahlstetten, southern Germany 366 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Mahlstetten, southern Germany 367 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Mahlstetten, southern Germany 368 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Mahlstetten, southern Germany 369 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Mahlstetten, southern Germany 370 Synechodontiformes Palaeospinacidae Synechodus ungeri Klug, 2009 Kimmeridgian Mahlstetten, southern Germany 371 Synechodontiformes Palaeospinacidae Synechodus duffini Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 372 Synechodontiformes Palaeospinacidae Synechodus levis Woodward, 1889 Bathonian Stonesfield, England 373 Synechodontiformes Palaeospinacidae Synechodus levis Woodward, 1889 Bajocian Ottange-Rumelange quarry , France 374 Synechodontiformes Palaeospinacidae Synechodus levis Woodward, 1889 Bajocian Ottange-Rumelange quarry , France 375 Synechodontiformes Palaeospinacidae Synechodus levis Woodward, 1889 Bajocian Ottange-Rumelange quarry , France 376 Synechodontiformes Palaeospinacidae Synechodus levis Woodward, 1889 Bathonian Southern England 377 Synechodontiformes Palaeospinacidae Synechodus plicatus Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 378 Synechodontiformes Palaeospinacidae Synechodus plicatus Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 379 Synechodontiformes Palaeospinacidae Synechodus plicatus Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 380 Synechodontiformes Palaeospinacidae Synechodus plicatus Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 381 Synechodontiformes Palaeospinacidae Synechodus plicatus Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 382 Synechodontiformes Palaeospinacidae Synechodus plicatus Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 383 Synechodontiformes Palaeospinacidae Synechodus plicatus Underwood, 2002 Kimmeridgian Ringstead, Dorset, England 384 Synechodontiformes Palaeospinacidae Synechodus prorogatus Kriwet, 2003 Callovian Kleby, NW Poland 385 Synechodontiformes Palaeospinacidae Synechodus prorogatus Kriwet, 2003 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 386 Synechodontiformes Palaeospinacidae Synechodus sp. Woodward, 1888 Bathonian Southern England 387 Synechodontiformes Palaeospinacidae Synechodus sp. Woodward, 1888 Callovian Ogrodzieniec, Zawiercie region, Southern Poland 388 Hexanchiformes Pseudonotidanidae Welcommia cappettai Klug & Kriwet, 2010 Oxfordian Baden-Württemberg, southern Germany 389 Orectolobiformes - Annea carinata Thies, 1983 Aalenian Moorberg, near Hannover, Germany 390 Carcharhiniformes - Corysodon cirinensis Saint-Seine, 1949 Kimmeridgian Rohstoffbetriebe Oker, Germany 391 Carcharhiniformes - Corysodon cirinensis Saint-Seine, 1949 Kimmeridgian Rohstoffbetriebe Oker, Germany 392 Carcharhiniformes - Corysodon cirinensis Saint-Seine, 1949 Kimmeridgian Octeville, France 393 Carcharhiniformes - Corysodon cirinensis Saint-Seine, 1949 Kimmeridgian Rohstoffbetriebe Oker, Germany 394 Orectolobiformes - Dorsetoscyllium terraefullonicum Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 395 Orectolobiformes - Dorsetoscyllium terraefullonicum Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 396 Orectolobiformes - Dorsetoscyllium terraefullonicum Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 397 Orectolobiformes - Dorsetoscyllium terraefullonicum Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 398 Carcharhiniformes Scyliorhinidae Eypea leesi Underwood & Ward, 2004 Bathonian El Mers, Middle Atlas, Morocco, Africa 399 Carcharhiniformes Scyliorhinidae Eypea leesi Underwood & Ward, 2004 Bathonian El Mers, Middle Atlas, Morocco, Africa 400 Orectolobiformes - Heterophorcynus microdon Underwood & Ward, 2004 Bathonian Woodeaton Quarry, England 401 Orectolobiformes - Heterophorcynus microdon Underwood & Ward, 2004 Bathonian Woodeaton Quarry, England 402 Hexanchiformes Hexanchidae Notidanoides muensteri Agassiz, 1843 Oxfordian Les Pins, Montpellier region, France 403 Orectolobiformes - Ornatoscyllium freemani Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 404 Orectolobiformes - Ornatoscyllium freemani Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 405 Orectolobiformes - Ornatoscyllium freemani Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 406 Orectolobiformes Brachaeluridae Palaeobrachaelurus bedfordensis Thies, 1983 Callovian Rookery pit, England 407 Orectolobiformes Brachaeluridae Palaeobrachaelurus bedfordensis Thies, 1983 Callovian Rookery pit, England 408 Orectolobiformes Brachaeluridae Palaeobrachaelurus bedfordensis Thies, 1983 Callovian Rookery pit, England 409 Orectolobiformes Brachaeluridae Palaeobrachaelurus aperizostus Thies, 1983 Aalenian Moorberg, near Hannover, Germany 410 Orectolobiformes Brachaeluridae Palaeobrachaelurus aperizostus Thies, 1983 Aalenian Moorberg, near Hannover, Germany 411 Orectolobiformes Brachaeluridae Palaeobrachaelurus aperizostus Thies, 1983 Aalenian Moorberg, near Hannover, Germany 412 Heterodontiformes Heterodontidae Paracestracion bellis Underwood & Ward, 2004 Bathonian Woodeaton Quarry, England 413 Heterodontiformes Heterodontidae Paracestracion bellis Underwood & Ward, 2004 Bathonian Woodeaton Quarry, England 414 Heterodontiformes Heterodontidae Paracestracion bellis Underwood & Ward, 2004 Bathonian Woodeaton Quarry, England 415 Heterodontiformes Heterodontidae Paracestracion falcifer Wagner, 1857 Kimmeridgian Ringstead, England 416 Carcharhiniformes Scyliorhinidae Praeposcyllium oxoniensis Underwood & Ward, 2004 Bathonian Oodeaton Quarry, England 417 Carcharhiniformes Scyliorhinidae Praeposcyllium oxoniensis Underwood & Ward, 2004 Bathonian Oodeaton Quarry, England 418 Carcharhiniformes Scyliorhinidae Praeposcyllium oxoniensis Underwood & Ward, 2004 Bathonian Oodeaton Quarry, England 419 Heterodontiformes Heterodontidae Proheterodontus sylvestris Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 420 Heterodontiformes Heterodontidae Proheterodontus sylvestris Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 421 Heterodontiformes Heterodontidae Proheterodontus sylvestris Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 422 Heterodontiformes Heterodontidae Proheterodontus sylvestris Underwood & Ward, 2004 Bathonian Watton Cliff, Dorset, England 423 Hexanchiformes Hexanchidae Pseudonotidanus semirugosus Underwood & Ward, 2004 Bathonian Peterborough, England 424 Hexanchiformes Hexanchidae Pseudonotidanus semirugosus Underwood & Ward, 2004 Bathonian Peterborough, England

53

N AUTHOR FILE ORIGINAL JAW POSITION NOTES 337 Rees, 2010 SphenospZPALP1220Lab Plate 2, Figure 15 - Anterior ZPAL P 12/20, labial 338 Rees, 2012 SphenospZPALP153Lab Figure 4E - - ZPAL P.15.3, labial 339 Kriwet & Klein, 2004 SqualifPIMUZASII3050Lab Figure 10c - Anterolateral PIMUZ AS II 3050, labial, 0,1cm 340 Kriwet, 1998 Squaloga4-1Lab Plate 4, Figure 1 - - Labial 341 Thies & Leidner, 2011 SqualowoodNHMLP37014CLab Plate 5, Figure 5C1 - - Holotype, NHML P37014(C), labial 342 Thies & Leidner, 2011 SqualowoodNHMLP37014Lab Plate 5, Figure A1 - - Holotype, NHML P37014, labial 343 Underwood, 2002 SquataliP65697Lab Plate 4, Figure 1 - Lateral P. 65697, labial 344 Underwood, 2002 SquatifreP65698Lab Plate 4, Figure 3 - - Holotype, P. 65698, labial 345 Underwood, 2002 SquatifreP65699Lab Plate 4, Figure 6 - - P. 65699, labial 346 Underwood, 2002 SquatifreP65701Lab Plate 4, Figure 11 - Commisural? P. 65701, labial 347 Underwood, 2002 SquatifreP65703BLab Plate 4, Figure 12 - Lateral P. 65703b, labial, juvenile 348 Underwood, 2002 SquatifreP65703Lab Plate 4, Figure 9 - - P. 65703, labial, juvenile 349 Kriwet, 1998 Squatina4-6Lab Plate 4, Figure 6 - - Labial 350 Delsate & Felten, 2015 SynechoMNHNLBM662Lab Figure 8E - - Mnhnl BM662, labial, 2,5mm 351 Delsate & Felten, 2015 SynechoMNHNLBM663Lab Figure 8F1 - - Mnhnl BM663, labial, 2,5mm 352 Thies & Leidner, 2011 SynechospSOS3152aALab Plate 64, Figure A1 - Anterior SOS 3152aA, labial, 0,5mm 353 Thies & Leidner, 2011 SynechospSOS3152aBLab Plate 64, Figure B1 - Anterolateral SOS 3152aB, labial, 0,5mm 354 Thies & Leidner, 2011 SynechospSOS3152aCLab Plate 64, Figure C1 - Posterolateral SOS 3152aC, labial, 0,5mm 355 Thies & Leidner, 2011 SynechospSOS3152aDLab Plate 64, Figure D1 - Posterior SOS 3152aD, labial, 0,5mm 356 Klug, 2009 SynechungeSMNS859751BLab Figure 3B - Anterior Holotype, SMNS 85975/1(B), labial, 0,5mm 357 Klug, 2009 SynechungeSMNS859751JLab Figure 3J - Lateral Holotype, SMNS 85975/1(J), labial, 0,5mm 358 Klug, 2009 SynechungeSMNS859751Lab Figure 4A - - Holotype, SMNS 85975/1, labial, 0,5mm 359 Klug, 2009 SynechungeSMNS859751LLab Figure 3L - Lateral Holotype, SMNS 85975/1(L), labial, 0,5mm 360 Klug, 2009 SynechungeSMNS859751MLab Figure 3M - Lateral Holotype, SMNS 85975/1(M), labial, 0,5mm 361 Klug, 2009 SynechungeSMNS859751NLab Figure 3N - Lateral Holotype, SMNS 85975/1(N), labial, 0,5mm 362 Klug, 2009 SynechungeSMNS859751OLab Figure 3O - Lateral Holotype, SMNS 85975/1(O), labial, 0,5mm 363 Klug, 2009 SynechungeSMNS859751QLab Figure 3Q - Lateral Holotype, SMNS 85975/1(Q), labial, 0,5mm 364 Klug, 2009 SynechungeSMNS8960210Lab Figure 6AL - Lateral Paratype, SMNS 89602/10, labial, 0,5mm 365 Klug, 2009 SynechungeSMNS8960211Lab Figure 6AP - Lateral Paratype, SMNS 89602/11, labial, 0,5mm 366 Klug, 2009 SynechungeSMNS896021Lab Figure 6A - Anterior Paratype, SMNS 89602/1, labial, 0,5mm 367 Klug, 2009 SynechungeSMNS896022Lab Figure 6E - Anterior Paratype, SMNS 89602/2, labial, 0,5mm 368 Klug, 2009 SynechungeSMNS896026Lab Figure 6V - Lateral Paratype, SMNS 89602/6, labial, 0,5mm 369 Klug, 2009 SynechungeSMNS896027Lab Figure 6Z - Lateral Paratype, SMNS 89602/7, labial, 0,5mm 370 Klug, 2009 SynechungeSMNS896028Lab Figure 6AD - Lateral Paratype, SMNS 89602/8, labial, 0,5mm 371 Underwood & Ward, 2004 SyneduffBMNHP66110Lab Figure 4B - Anterolateral Holotype, BMNHP66110, labial, 0,5mm 372 Underwood, 2004 SyneleviBMNHP3347Lab Figure 4P - - BMNHP 33474, labial 373 Delsate & Felten, 2015 SynelevisMNHNLBM285Lab Figure 7I - - Mnhnl BM285, labial, 5mm 374 Delsate & Felten, 2015 SynelevisMNHNLBM659Lab Figure 8A1 - - Mnhnl BM659, labial, 2,5mm 375 Delsate & Felten, 2015 SynelevisMNHNLBM660Lab Figure 8B1 - - Mnhnl BM660, labial, 2,5mm 376 Underwood & Ward, 2004 SynelevisU&W3ALab Figure 3A - - Labial, 6mm 377 Underwood, 2002 SyneplicaP65686Lab Plate 2, Figure 13 - Lateral Holotype, P. 65686, labial 378 Underwood, 2002 SyneplicaP65687Lab Plate 2, Figure 11 - Symphyseal P. 65687, labial 379 Underwood, 2002 SyneplicaP65689Lab Plate 3, Figure 5 - Posterior P. 65689, oblique labial 380 Underwood, 2002 SyneplicaP65690Lab Plate 3, Figure 2 - Lateral P. 65690, labial 381 Underwood, 2002 SyneplicaP65691Lab Plate 2, Figure 10 - Anterior P. 65691, labial 382 Underwood, 2002 SyneplicaP65692Lab Plate 3, Figure 3 - Anterolateral P. 65692, labial 383 Underwood, 2002 SyneplicaP65693Lab Plate 3, Figure 1 - Anterolateral P. 65693, labial 384 Kriwet, 2003 SyneproBGRX12503Lab Figure 3D1 - - Holotype, BGR X12503, labial 385 Rees, 2010 SyneproZPALP1217Lab Plate 2, Figure 21 - Anterior ZPAL P 12/17, labial 386 Underwood & Ward, 2004 SynespU&W4ALab Figure 4A - Posterolateral Labial, 0,5mm 387 Rees, 2010 SynespZPALP1218Lab Plate 2, Figure 22 - Posterior ZPAL P 12/18, labial 388 Klug & Kriwet, 2010 WelcappetSMNS85950Lab Figure 2a - Latero-anterior SMNS 85950, labial, 2mm 389 Cappetta, 2012 AnneacariSMF7144Lab Figure 166A - Anterolateral SMF 7144, labial 390 Cappetta, 2012 CorysociriIGPG1995I1Lab Figure 302E - Anterolateral IGPG 1995 I1, labial, 0,5mm 391 Cappetta, 2012 CorysociriIGPG1995I2Lab Figure 302H - Lateral IGPG 1995 I2, labial, 0,5mm 392 Cappetta, 2012 CorysociriMNHN8865Lab Figure 302J - Lateral MNHN 8865, labial, 0,5mm 393 Cappetta, 2012 CorysociriTUCLPVB224Lab Figure 302A - Anterior TUCLP VB224, labial, 0,5mm 394 Cappetta, 2012 DosetoterraBMNHP66090Lab Figure 168E - Anterior BMNH P66090, labial, 1mm 395 Cappetta, 2012 DosetoterraBMNHP66093Lab Figure 168M - Lateral BMNH P66093, labial, 1mm 396 Cappetta, 2012 DosetoterraBMNHP66094Lab Figure 168H - Posterolateral BMNH P66094, labial, 1mm 397 Cappetta, 2012 DosetoterraBMNHP66095Lab Figure 168L - Anterolateral BMNH P66095, labial, 1mm 398 Cappetta, 2012 EypealeeUMELM1Lab Figure 257A - Anterior UM ELM 1, labial, 0,5mm 399 Cappetta, 2012 EypealeeUMELM2Lab Figure 257D - Lateral UM ELM 2, labial, 0,5mm 400 Cappetta, 2012 HeterophomicBMNHP66086Lab Figure 170G - Anterior BMNH P66086, labial, 0,5mm 401 Cappetta, 2012 HeterophomicBMNHP66087Lab Figure 170H - Lateral BMNH P66087, labial, 0,5mm 402 Cappetta, 2012 NotimuePNS2Lab Figure 84A Lower Anterolateral PNS 2, labial 403 Cappetta, 2012 OrnatoscyfreeBMNHP66098Lab Figure 171F - Anterolateral BMNH P661098, labial, 0,5mm 404 Cappetta, 2012 OrnatoscyfreeBMNHP66100Lab Figure 171A - Anterior BMNH P66100, labial, 0,5mm 405 Cappetta, 2012 OrnatoscyfreeBMNHP66102Lab Figure 171H - Lateral BMNH P66102, labial, 0,5mm 406 Cappetta, 2012 PalaeobrabedSMF7133Lab Figure 154H - Lateral SMF 7133, labial, 1mm 407 Cappetta, 2012 PalaeobrabedSMF7136Lab Figure 154J - Lateral SMF 7136, labial, 1mm 408 Cappetta, 2012 PalaeobrabedSMF7137Lab Figure 154L - Lateral SMF 7137, labial, 1mm 409 Cappetta, 2012 PalaeobrachaperiSMF7130Lab Figure 154E - Lateral SMF 7130, labial, 1mm 410 Cappetta, 2012 PalaeobrachaperiSMF7131Lab Figure 154D - Lateral SMF 7131, labial, 1mm 411 Cappetta, 2012 PalaeobrachaperiSMF7132Lab Figure 154A - Lateral SMF 7132, labial, 1mm 412 Cappetta, 2012 ParacebellBMNHP66078 Figure 138M - Anterior BMNH P66078, labial, 0,5mm 413 Cappetta, 2012 ParacebellBMNHP66079 Figure 138P - Posterior BMNH P66079, labial, 0,5mm 414 Cappetta, 2012 ParacebellBMNHP66080 Figure 138N - Lateral BMNH P66080, labial, 0,5mm 415 Cappetta, 2012 ParacefalciBMNHP65681Lab Figure 138I - Lateral BMNH P65681, lingual, 0,5mm 416 Cappetta, 2012 PraeposcyoxonBMNHP66053Lab Figure 267F - Anterolateral BMNH P66053, labial, 0,5mm 417 Cappetta, 2012 PraeposcyoxonBMNHP66054Lab Figure 267A - Anterior BMNH P66054, labial, 0,5mm 418 Cappetta, 2012 PraeposcyoxonBMNHP66056Lab Figure 267D - Anterolateral BMNH P66056, labial, 0,5mm 419 Cappetta, 2012 ProhetesylBMNHP66069Lab Figure 139A - Parasymphyseal BMNH P66069, labial, 1mm 420 Cappetta, 2012 ProhetesylBMNHP66070Lab Figure 139E - Anterior BMNH P66070, labial, 1mm 421 Cappetta, 2012 ProhetesylBMNHP66071Lab Figure 139K - Lateral BMNH P66071, labial, 1mm 422 Cappetta, 2012 ProhetesylBMNHP66074Lab Figure 139G - Anterolateral BMNH P66074, labial, 1mm 423 Cappetta, 2012 PseudosemiBMNHP12524aLab Figure 91C - Anterolateral BMNH P12524a, labial, 1cm 424 Cappetta, 2012 PseudosemiBMNHP12524bLab Figure 91A - Anterior BMNH P12524b, labial, 1cm

54

Appendix B: Synechodontiformes disparity

Figure II-1. Raw (black) and rarefied (red) morphological disparity for subgroup Synechodontiformes. The lack of lines in the Ladinian, Carnian, Norian & Aalenian time bins indicate absence of specimens for those time bins.

Table II-1. Pairwise absolute differences between Procrustes distances for each time bin in subgroup Synechodontiformes. Significant shifts in disparity (P-value < 0.05) are highlighted in bold. P-values Anisian Rhaetian Hettangian Sinemurian Pliensbachian Toarcian Anisian 1.000 0.667 0.911 0.594 0.643 0.946 Rhaetian 0.667 1.000 0.560 0.857 0.941 0.628 Hettangian 0.911 0.560 1.000 0.530 0.629 0.958 Sinemurian 0.594 0.857 0.530 1.000 0.945 0.529 Pliensbachian 0.643 0.941 0.629 0.945 1.000 0.637 Toarcian 0.946 0.628 0.958 0.529 0.637 1.000 Bajocian 0.812 0.694 0.870 0.632 0.758 0.853 Bathonian 0.770 0.838 0.841 0.773 0.813 0.823 Callovian 0.253 0.239 0.193 0.337 0.417 0.231 Oxfordian 0.003 0.001 0.001 0.001 0.001 0.001 Kimmeridgian 0.216 0.036 0.066 0.175 0.304 0.131 Tithonian 0.724 0.872 0.781 0.773 0.852 0.753

Table II-1 (cont.). P-values Bajocian Bathonian Callovian Oxfordian Kimmeridgian Tithonian Anisian 0.812 0.770 0.253 0.003 0.216 0.724 Rhaetian 0.694 0.838 0.239 0.001 0.036 0.872 Hettangian 0.870 0.841 0.193 0.001 0.066 0.781 Sinemurian 0.632 0.773 0.337 0.001 0.175 0.773 Pliensbachian 0.758 0.813 0.417 0.001 0.304 0.852 Toarcian 0.853 0.823 0.231 0.001 0.131 0.753 Bajocian 1.000 0.931 0.240 0.001 0.111 0.886 Bathonian 0.931 1.000 0.316 0.001 0.215 0.956 Callovian 0.240 0.316 1.000 0.001 0.959 0.313 Oxfordian 0.001 0.001 0.001 1.000 0.001 0.001 Kimmeridgian 0.111 0.215 0.959 0.001 1.000 0.194 Tithonian 0.886 0.956 0.313 0.001 0.194 1.000

55

Appendix C: Non-Synechodontiformes disparity

Figure III-1. Raw (black) and rarefied (red) morphological disparity for subgroup Non-Synechodontiformes. The lack of lines in the Hettangian time bin indicate absence of specimens for that time bin.

Table III-1. Pairwise absolute differences between Procrustes distances for each time bin in subgroup Non- Synechodontiformes. Significant shifts in disparity (P-value < 0.05) are highlighted in bold. P-values Anisian Ladinian Norian Rhaetian Sinemurian Pliensbachian Toarcian Anisian 1.000 0.332 0.154 0.810 0.548 0.272 0.466 Ladinian 0.332 1.000 0.355 0.044 0.608 0.760 0.652 Norian 0.154 0.355 1.000 0.041 0.203 0.536 0.216 Rhaetian 0.810 0.044 0.041 1.000 0.181 0.055 0.046 Sinemurian 0.548 0.608 0.203 0.181 1.000 0.465 0.866 Pliensbachian 0.272 0.760 0.536 0.055 0.465 1.000 0.519 Toarcian 0.466 0.652 0.216 0.046 0.866 0.519 1.000 Aalenian 0.090 0.291 0.798 0.001 0.112 0.575 0.076 Bajocian 0.229 0.539 0.750 0.038 0.348 0.752 0.358 Bathonian 0.112 0.317 0.651 0.001 0.136 0.760 0.036 Callovian 0.781 0.230 0.090 0.286 0.581 0.195 0.317 Oxfordian 0.388 0.900 0.531 0.160 0.643 0.927 0.714 Kimmeridgian 0.468 0.672 0.229 0.048 0.824 0.522 0.973 Tithonian 0.204 0.692 0.422 0.004 0.346 0.958 0.200

Table III-1 (cont.). P-values Aalenian Bajocian Bathonian Callovian Oxfordian Kimmeridgian Tithonian Anisian 0.090 0.229 0.112 0.781 0.388 0.468 0.204 Ladinian 0.291 0.539 0.317 0.230 0.900 0.672 0.692 Norian 0.798 0.750 0.651 0.090 0.531 0.229 0.422 Rhaetian 0.001 0.038 0.001 0.286 0.160 0.048 0.004 Sinemurian 0.112 0.348 0.136 0.581 0.643 0.824 0.346 Pliensbachian 0.575 0.752 0.760 0.195 0.927 0.522 0.958 Toarcian 0.076 0.358 0.036 0.317 0.714 0.973 0.200 Aalenian 1.000 0.907 0.735 0.013 0.605 0.096 0.330 Bajocian 0.907 1.000 0.954 0.144 0.736 0.357 0.673 Bathonian 0.735 0.954 1.000 0.007 0.732 0.050 0.378 Callovian 0.013 0.144 0.007 1.000 0.405 0.294 0.019 Oxfordian 0.605 0.736 0.732 0.405 1.000 0.710 0.944 Kimmeridgian 0.096 0.357 0.050 0.294 0.710 1.000 0.223 Tithonian 0.330 0.673 0.378 0.019 0.944 0.223 1.000

56

Examensarbete vid Institutionen för geovetenskaper ISSN 1650-6553