The Effect of Urbanization and Agriculture on Predacious Arthropod Diversity in the Highveld Grasslands

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Urbanization and Agriculture on Predacious Arthropod Diversity in the Highveld Grasslands The effect of urbanization and agriculture on predacious arthropod diversity in the Highveld grasslands B M Greyvenstein 22303642 Dissertation submitted in fulfillment of the requirements for the degree Magister Scientiae in Environmental Science at the Potchefstroom Campus of the North-West University Supervisor: Prof S. J. Siebert Co-supervisor: Prof J. van den Berg November 2015 i Acknowledgements I would like to acknowledge all the people involved in this dissertation in all forms from research support, to helping with field work as well as moral support. In particular, I would like to thank my amazing supervisors for their continued help and support in this endeavour. The skills and experience that I have been taught would not have been at all as effective or enriching without their help. I would also like to thank the following incredible people who assisted me with my fieldwork: Dennis Komape, Arnold Frisby, Este Matthew, Ruhan Verster, Melissa Andriessen, Nanette van Staden, Helga van Coller, François Clapton, Anton Botha, Melanie Schoeman and my parents Michaela and Piet Greyvenstein. Lastly, but not at all the least, I give thanks to God, the creator of all that I was studying and in no small part for his continued strength and motivation that I could have only received from his amerce grace and direct divine hand in my life and thoughts. ii Abstract Biodiversity provides vital ecosystem services and more diverse ecosystems are known to be more stable and resilient in the face of disturbance. Predacious arthropods provide a valuable ecosystem service to control pest numbers. We hypothesised that anthropological activities, which result in land-use change and habitat fragmentation, deplete this species pool. However, current knowledge is lacking regarding the diversity and abundance of arthropod predators in crop fields within the agricultural and urban environments of South Africa. We studied the diversity, abundance and species assemblages of predaceous arthropods of the Chrysopidae, Mantodea, Araneae and Coccinellidiae at different intensity levels of disturbances within urban and agricultural sites in the grasslands of South Africa. Study sites included agricultural (maize field-field margin-untransformed grassland) and urban (ruderal-fragmented-untransformed grassland) gradients. The optimal sweep net sampling time was also determined within these agricultural ecosystems. Sweep nets were used to sample fields and field margins during the following daily times (07:00, 12:00, 15:00 and 17:00). Sampling was replicated four times. Shannon diversity index values did not differ between the different sweep net sampling times. Predacious arthropods were however more abundant within maize fields in the mornings (07:00) and adjacent fields around midday (12:00). The results indicated there were no statistical differences despite the higher abundance of predators at the previously mentioned times. The study done on the agro-ecosystem zones did however indicate that the field margins were the most diverse and abundant in terms of predacious arthropod diversity along a maize field-field margin-untransformed grassland gradient. Despite this our results indicated that urban areas had a similar species richness of arthropods as agro-ecosystems, but predator species were more abundant in urban areas. With an increase in distance away from disturbance, in both the agricultural and urban environments, an increase was noticed in diversity and abundance. The maize fields were the least diverse and abundant for these predacious arthropods. Surrounding agricultural landscapes could therefore play an important role in the maintenance of predacious arthropod diversity as well as future integrated pest management strategies. This study generated baseline data to monitor the effects of anthropological activities on predator diversity and abundance in urban- and agro- ecosystems. Keywords: Biodiversity; predacious arthropods; diversity; agriculture; urbanization; ruderal, fragmented grasslands; maize; field margin; untransformed grasslands. iii Table of Contents Acknowledgements .............................................................................................. ii Abstract ................................................................................................................ iii Chapter 1: Introduction ....................................................................................... 1 1.1 Importance of biodiversity ............................................................................. 1 1.1.2 Predators within the food web ....................................................................... 2 1.1.3 Resilience ...................................................................................................... 4 1.2 Threats to biodiversity ................................................................................... 4 1.3 Agriculture as a disturbance ......................................................................... 5 1.3.1 Pesticides ...................................................................................................... 6 1.3.2 Genetically modified crops ............................................................................. 7 1.3.3 Biological control ........................................................................................... 7 1.4 Urbanization as a disturbance ....................................................................... 8 1.4.1 Island biogeography theory ........................................................................... 9 1.5 Conservation ................................................................................................. 10 1.5.1 Conservation in agriculture .......................................................................... 10 1.5.2 Conservation in urban areas ........................................................................ 11 1.5.2.1 Corridors and linkages .............................................................................. 12 1.5.2.2 Sink and source theory ............................................................................. 13 1.6 Aim of the study .............................................................................................. 14 1.7 Selecting representative arthropod groups ............................................... 14 1.7.1 Lacewings (Insecta: Neuroptera: Chrysopidae) ........................................... 14 1.7.2 Praying mantids (Insecta: Mantodea) .......................................................... 15 1.7.3 Spiders (Arachnida: Araneae) ..................................................................... 16 1.7.4 Ladybirds (Insecta: Coleoptera: Coccinellidae) ........................................... 16 1.8 Reference ...................................................................................................... 18 Chapter 2: Optimal sweep net sampling time .................................................. 26 2.1 Abstract ........................................................................................................ 26 2.2 Introduction ................................................................................................... 26 2.2.1 Aim, objective and hypothesis ..................................................................... 29 2.3 Materials and Methods ................................................................................. 30 2.3.1 Study sites ................................................................................................. 30 2.3.2 Sweep net sampling .................................................................................... 33 2.3.3 Data analyses .............................................................................................. 34 2.4 Results ........................................................................................................... 35 2.4.1 Time of day and predator groups ............................................................. 35 2.4.1.1 Lacewings ................................................................................................. 37 2.4.1.2 Spiders .................................................................................................... 38 2.4.1.3 Coccinellids ............................................................................................. 39 2.4.1.4 Praying Mantids ....................................................................................... 39 2.4.6 Time of day with regards to zones ........................................................... 40 2.4.6.1 Maize field .............................................................................................. 40 iv 2.4.6.1.1 Spiders .................................................................................................. 41 2.4.6.1.2 Lacewings .............................................................................................. 42 2.4.6.1.3 Coccinellids ........................................................................................... 43 2.4.6.1.4 Praying mantids ..................................................................................... 44 2.4.6.2 Field Margin ........................................................................................... 45 2.4.6.2.1 Spiders .................................................................................................. 47 2.4.6.2.2 Lacewings .............................................................................................. 48 2.4.6.2.3 Coccinellids
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • KWIKSTAART SCOPING Deel 5.Pdf
    ANNEXURE: E Permit from Department Agriculture ANNEXURE F: Permit from Department Forestry ANNEXURE G WATER USE CERITIFICATES FOR ALLIED RIVERS FARMING ANNEXURE H SPECIALIST STUDIES ECOLOGICAL SURVEY ECOLOGICAL SURVEY OF THE FARM KWIKSTAART 431 KQ, PORTION 2, KOEDOESKOP, THABAZIMBI, LIMPOPO PROVINCE Compiled by: JONK BEGIN ENVIRONMENTAL SERVICES Email Address: [email protected] Postal Address: P.O. Box 70 Koedoeskop 0361 Fax: (014) 785-0611 EXECUTIVE SUMMARY The timing of the survey was during the rainy seasons of March & April. The study site was extensively browsed and grazed by game over the past few years, making it slightly difficult to determine the species composition and vegetation structure normally present on this proposed development area. The site is situated in Limpopo on the Farm Kwikstaart 431 KQ portion 2, Koedoeskop District. The area is a flat undulating plane. The altitude of the site is between 915-960 m above sea level. The mean annual rainfall measured at Koedoeskop Weather Station is 675mm. The rainy season is predominantly from October to April with driest months being June to August. The mean annual temperature measured at Koedoeskop Weather Station is 21◦ with extreme maximum and minimum temperature of -8.5◦ and 45◦ respectively. This year however, was an exceptionally good rainy season with the Crocodile River flooding its banks in low places. According to Mucina and Rutherford (2006) the study site occurs in the Dwaalboom Thornveld with intrusion of Sandy Bushveld. Acacia tortilis, A nilotica and A karroo dominate the Thornveld whereas Acacia nigrescens, A erubescens and Combretum species occurs on the sandy soils.
    [Show full text]
  • Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
    Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance.
    [Show full text]
  • OF RAJASTHAN with SPECIAL REFERENCE to RANTHAMBORE NATIONAL PARK, RAJASTHAN, INDIA Sumana Saha, D
    © Indian Society of Arachnology ISSN 2278-1587(Online) SPIDER FAUNA (ARANEAE: ARACHNIDA) OF RAJASTHAN WITH SPECIAL REFERENCE TO RANTHAMBORE NATIONAL PARK, RAJASTHAN, INDIA Sumana Saha, D. C. Dhali* and D. Raychaudhuri* Department of Zoology, Darjeeling Govt. College, Darjeeling, Govt. of West Bengal, India. email: [email protected] *Entomology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata- 700019, India. email: [email protected], [email protected] corresponding author: [email protected] ABSTRACT 12 species of 10 genera belonging to 9 families were recorded from Ranthambore National Park, during 2008. Thomisus italongus Barrion and Litsinger and Cyrtophora exanthematica (Doleschall), are recognized as new from the country and accordingly described and illustrated. Key words: Spiders, New records, Ranthambore National Park, Rajasthan, India. INTRODUCTION Protected areas are essential for biodiversity conservation. They act as benchmarks to understand human interaction with the natural world. Of the two mega diverse Indian states, Rajasthan with an area of about 342,239 sq. km. is the largest state of India. The state is symbolized by its arid and semi-arid tracts. Ecologically suitable forest areas of the state over time have been declared as National Parks, Wild Life Sanctuaries and Reserves. Wildlife wing of the State Forest Department (SFD) maintain these protected areas in a scientific manner, conducive for conservation of wild life in the area. Temporal population of any life form actively select a suitable site for sustainance. Its fitness is directly influenced by the ability to find a suitable habitat based on innate preference for food, shelter and absence of enemies.
    [Show full text]
  • The Spiders Diversity from Different Habitats Around Biosciences, Vallabh Vidyanagar
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 The Spiders Diversity from Different Habitats around Biosciences, Vallabh Vidyanagar B. M. Parmar Zoology Department, Sheth M.N. Science College, Patan, Gujarat-384 265 Abstract: A preliminary study of spiders was carried out in June 2012 to July 2013 from five sites around Biosciences, Vallabh Vidyanagar. As the results of collected spiders, total 90 species belonging to 66 genera spread over 24 families are recorded from five sites of Vallabhvidyanagar. The dominant family Araneidae had the highest number of species (18); followed by Salticidae (13), Thomisidae (10) and Tetragnathidae (7), Oxyopidae (5). Most of the other families had less than 5 species. This small region has detected more than 5% of Indian spiders. Keywords: Spiders, diversity, Anand, Gujarat 1. Introduction spiders with 12 species (13.33%) and irregular web builder 12 species (13.33%), Ambusher spiders with 11 (12.22%) Spiders of Gujarat from all regions have been studied earlier species each. The funnel web spiders with 7 species (7.77%) by several researchers; viz. Patel, B. H. [16], Patel, B. H. and and foliage hunter/ runner spiders with 3 species (3.33%). R.V.Vyas. [17], Manju Saliwal et. al., [6], Nikunj Bhatt, [10], Patel et. al., [18], Vachhani et. al., [26], Parmar Bharat Table 1: Sites Descriptions N. et. al., [15], Parmar, B.M. and K.B.Patel [12], Parmar, No. Site Geographic Habitat description B.M. et. al., [13], Parmar, B.M. and A.V.R.L.N.
    [Show full text]
  • Navots. Nos. Mus., Bloemfontein, Volume 10, Part 1 Latrodectus
    2 NavOTS. nos. Mus., Bloemfontein, Volume 10, Part 1 CONTENTS Introduction ................................................................................................................................. 2 Abbreviations .............................................................................................................................. 5 Materials and methods ............................................................................................................... 6 Acknowledgements ..................................................................................................................... 6 Taxonomy ..................................................................................................................................... 6 Lotrodectus Walckenaer .................................................................................................... 6 LATRODECTUS GEOMETRICUS-GROUP ............................................................ 10 Latrodectus geometricus C.L. Koch ....................................................................... 11 lAtrodectus modesiensis Mackay .......................................................................... 23 LATRODECTUS TREDECIMGUTTATUS-GROUP ............................................... 27 Latrodectus cinctus Blackwall ................................................................................ 28 Latrodectus indistinctus o.P.- Cambridge ............................................................ 33 Latrodectus karrooensis Smithers .........................................................................
    [Show full text]
  • Abundance and Community Composition of Arboreal Spiders: the Relative Importance of Habitat Structure
    AN ABSTRACT OF THE THESIS OF Juraj Halaj for the degree of Doctor of Philosophy in Entomology presented on May 6, 1996. Title: Abundance and Community Composition of Arboreal Spiders: The Relative Importance of Habitat Structure. Prey Availability and Competition. Abstract approved: Redacted for Privacy _ John D. Lattin, Darrell W. Ross This work examined the importance of structural complexity of habitat, availability of prey, and competition with ants as factors influencing the abundance and community composition of arboreal spiders in western Oregon. In 1993, I compared the spider communities of several host-tree species which have different branch structure. I also assessed the importance of several habitat variables as predictors of spider abundance and diversity on and among individual tree species. The greatest abundance and species richness of spiders per 1-m-long branch tips were found on structurally more complex tree species, including Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco and noble fir, Abies procera Rehder. Spider densities, species richness and diversity positively correlated with the amount of foliage, branch twigs and prey densities on individual tree species. The amount of branch twigs alone explained almost 70% of the variation in the total spider abundance across five tree species. In 1994, I experimentally tested the importance of needle density and branching complexity of Douglas-fir branches on the abundance and community structure of spiders and their potential prey organisms. This was accomplished by either removing needles, by thinning branches or by tying branches. Tying branches resulted in a significant increase in the abundance of spiders and their prey. Densities of spiders and their prey were reduced by removal of needles and thinning.
    [Show full text]
  • Records of the Hawaii Biological Survey for 1996
    Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 49, 71 p. (1997) RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1996 Part 2: Notes1 This is the second of 2 parts to the Records of the Hawaii Biological Survey for 1996 and contains the notes on Hawaiian species of protists, fungi, plants, and animals includ- ing new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 48]. Foraminifera of Hawaii: Literature Survey THOMAS A. BURCH & BEATRICE L. BURCH (Research Associates in Zoology, Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA) The result of a compilation of a checklist of Foraminifera of the Hawaiian Islands is a list of 755 taxa reported in the literature below. The entire list is planned to be published as a Bishop Museum Technical Report. This list also includes other names that have been applied to Hawaiian foraminiferans. Loeblich & Tappan (1994) and Jones (1994) dis- agree about which names should be used; therefore, each is cross referenced to the other. Literature Cited Bagg, R.M., Jr. 1980. Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proc. U.S. Natl. Mus. 34(1603): 113–73. Barker, R.W. 1960. Taxonomic notes on the species figured by H. B. Brady in his report on the Foraminifera dredged by HMS Challenger during the years 1873–1876. Soc. Econ. Paleontol. Mineral. Spec. Publ. 9, 239 p. Belford, D.J.
    [Show full text]
  • The Multicoloured Asian Ladybird Beetle, Harmonia Axyridis
    Research in Action South African Journal of Science 103, March/April 2007 123 adults and larvae of an unfamiliar lady- Discovery of an alien invasive, bird beetle species were collected from wheat. These beetles attracted attention predatory insect in South Africa: the as both larvae and adults were numerous and were clearly efficient predators of all multicoloured Asian ladybird beetle, the aphid species on wheat at the time. The beetles were positively identified as Harmonia axyridis (Pallas) HA at the South African National Collec- (Coleoptera: Coccinellidae) tion of Insects (SANC), Pretoria. Voucher specimens have been deposited in the SANC, the Transvaal Museum (TMSA), Riaan Stalsa* and Goddy Prinsloob Pretoria, and the Iziko South African Museum (SAMC), Cape Town. This species was previously observed, HE ASIAN LADYBIRD BEETLE, HARMONIA because it preys voraciously on diverse but not collected, at Tygerhoek in Sep- axyridis (HA) (Insecta: Coleoptera: pestiferous aphids and other soft-bodied tember/October 2004, when fairly large TCoccinellidae), is a generalist predator long arthropod pests on various cultivated numbers of aphids were present on valued as a biocontrol agent of pestiferous crops.6–9 Recently, it began ‘changing’ its aphids and other invertebrates. However, HA wheat. They were not detected during has become highly invasive in North America spots to emerge as a potentially invasive 2005, when aphid infestations were very 6,7,9,10 and Europe. The beetle is eurytopic, broadly and harmful organism. low. In October 2006, adults, larvae and polyphagous, very dispersive and pheno- The main aim of this paper is to record eggs (field-collected and positively associ- typically highly plastic.
    [Show full text]
  • SANSA News 16 Final.PUB
    Newsletter • Newsletter • Newsletter • Newsletter • Newsletter JAN-MAY 2012 SANSA - Newsletter South African National No 16 Survey of Arachnida This publication is available from: Ansie Dippenaar-Schoeman [email protected] or at www.arc.agric.za/home.asp?pid=3732 This is the newsletter of the South African National Survey Editors: of Arachnida (SANSA). SANSA is an umbrella project Ansie Dippenaar-Schoeman & Charles Haddad dedicated to unifying and strengthening biodiversity re- search on Arachnida in South Africa, and to make an in- Editorial committee: ventory of our arachnofauna. It runs on a national basis in Petro Marais collaboration with other researchers and institutions with Elsa van Niekerk an interest in the fauna of South Africa. Robin Lyle CONGRATULATIONS To Charles Haddad for obtaining his PhD from the Univer- sity of the Free State. The title of his study was “Advances in the systematics and ecology of the African Corinnidae spiders (Arachnida: Araneae), with emphasis on the Casti- aneirinae”. This is a very comprehensive study and deals with two aspects of the Castianeirinae, namely their ecol- ogy as well as their systematics, and it is a very important contribution towards our knowledge of this family of spi- ders, especially in the Afrotropical Region. An illustrated key to all the genera is provided as well as a phylogenetic analysis of the relationships of the Afrotropical Castianeiri- nae. Charles revised the eight genera of the subfamily Castianeirinae known from the Afrotropical Region and described two genera as new to science. He studied 62 species, of which 37 are new species and 20 redescribed for the first time.
    [Show full text]
  • Beitr. Araneol., 7 (2012: 272–331)
    BEITR. ARANEOL., 7 (2012: 272–331) A REVIEW ON THE SPIDER GENUS ARGIOPE AUDOUIN 1826 WITH SPECIAL ­emphasis ON BROKEN EMBOLI IN FEMALE EPIGYNES (ARANEAE: ARANEI- DAE: ARGIOPINAE). PETER JÄGER, Arachnology, Senckenberg Research Institute, Senckenberganla- ge 25, 60325 Frankfurt am Main, Germany; [email protected] „While a published monograph may appear to provide definite solutions, and readers infer that the author is certain of his findings, more likely the work only identifies and illuminates tantalizing problems. Especially to those with no experience with taxonomic problems, a published monograph has an unfortunate aura of authority.“ Herbert Levi (1983: 256) Abstract: Argiope species are revised with special emphasis on broken male emboli in female epigynes. Broken emboli proved suitable for matching conspecifics and rec- ognising cryptic species in species swarms with similar females. Material of 47 species from 63 countries was included in this study: 92 males, 834 females and 316 broken emboli were examined. Broken emboli are documented for 32 species, those of 27 spe- cies are illustrated for the first time, those of 8 species have been known and illustrated before. 19 species are illustrated by means of in situ emboli, 9 of them are not recorded as broken emboli. In total, emboli of 41 species are illustrated. The male of A. luzona could be confirmed by means of broken emboli stuck in the epigyne. One new species is described: Argiope hinderlichi spec. nov. (female; Laos, Lak Sao, Nong Khiao). The male of Argiope jinghongensis Yin, Peng & Wang 1994 is redescribed and the female is described for the first time.Argiope doleschalli Thorell 1873 and Argi- ope bivittigera Strand 1911 are removed from the synonymy of A.
    [Show full text]
  • The Abundance and Species Richness (Araneae: Arachnida) Associated with a Riverine Thicket, Rocky Outcrop and Aloe Marlothii
    THE ABUNDANCE AND SPECIES RICHNESS OF THE SPIDERS (ARANEAE: ARACHNIDA) ASSOCIATED WITH A RIVERINE AND SWEET THORN THICKET, ROCKY OUTCROP AND ALOE MARLOTHII THICKET IN THE POLOKWANE NATURE RESERVE, LIMPOPO PROVINCE by THEMBILE TRACY KHOZA Submitted in fulfillment of the requirements for the degree of Master of Science in Zoology, in the School of Molecular and Life Sciences in the Faculty of Science and Agriculture, University of Limpopo, South Africa. 2008 SUPERVISOR: Prof S.M. DIPPENAAR CO-SUPERVISOR: Prof A.S. DIPPENAAR-SCHOEMAN Declaration I declare that the dissertation hereby submitted to the University of Limpopo for the degree of Master of Science in Zoology has not previously been submitted by me for a degree at this or any other university, that it is my own work in design and in execution, and that all material contained therein has been duly acknowledged. T.T. Khoza i Abstract Spiders are abundant and they play a major role in ecosystems. Few studies have been conducted throughout South Africa to determine the diversity and distribution of spiders. The current study was initiated to determine the species richness and diversity and to compile a checklist of spiders found at the Polokwane Nature Reserve. This survey was the first collection of spiders in the reserve and provides valuable data for the management of the reserve as well as to the limited existing information on the Savanna Biome. It will also improve our knowledge of spiders of the Limpopo Province and contribute to the South African National Survey of Arachnida database. The study was conducted from the beginning of March 2005 to the end of February 2006.
    [Show full text]