The Characters of Palaeozoic Jawed Vertebrates

Total Page:16

File Type:pdf, Size:1020Kb

The Characters of Palaeozoic Jawed Vertebrates bs_bs_banner Zoological Journal of the Linnean Society, 2014, 170, 779–821. With 13 figures The characters of Palaeozoic jawed vertebrates MARTIN D. BRAZEAU1* and MATT FRIEDMAN2 1Naturalis Biodiversity Center, P.O. Box 9514, 2300 RA Leiden, The Netherlands 2Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK Received 14 June 2013; revised 27 October 2013; accepted for publication 30 October 2013 Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw-bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem-group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems. © 2014 The Authors. Zoological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 779–821. doi: 10.1111/zoj.12111 ADDITIONAL KEYWORDS: Acanthodii – Chondrichthyes – Gnathostomata – morphology – Osteichthyes – palaeontology – Placodermi – plesiomorphy – synapomorphy. [T]he evidence from all useful characters must be weighed of living taxa. Instead, the problems surround the impartially, and unbiased comparisons must be made with all placement of fossil taxa with respect to the modern potentially related groups. groups. Gnathostomes are divided into two extant R. Denison (1979: 19). lineages: the Chondrichthyes (sharks, rays and skates, and chimaeras) and much more diverse INTRODUCTION Osteichthyes (bony fishes and tetrapods). That these are sister groups and reciprocally monophyletic is The phylogenetic relationships of early fossil not greatly disputed, and is well supported by both gnathostomes (jawed vertebrates) remains one of the molecular and morphological studies (Nelson, 1969; most significant but under-researched problems in Wiley, 1979; Maisey, 1986; Takezaki et al., 2003; Blair vertebrate palaeontology. Unlike many other areas of & Hedges, 2005; Chen et al., 2012). Debate currently vertebrate systematics, the debates do not concern concerns the phylogenetic placement and monophyly how fossils might illuminate the inter-relationships of two exclusively fossil assemblages: the placoderms, armoured fishes with simple jaws and dental struc- tures that are hotly debated homologues of teeth, and *Corresponding author. Current address: Department of Life the acanthodians, shark-like fishes with numerous Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. bony spines preceding their fins. When gnathostome E-mail: [email protected] fossils cannot be placed in either of the extant groups © 2014 The Authors. Zoological Journal of the Linnean Society published by John Wiley & Sons Ltd 779 on behalf of The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 779–821 This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. 780 M. D. BRAZEAU AND M. FRIEDMAN they have typically been assigned to either of these These include the relative order of appearance of extinct categories. From a phylogenetic perspective, features such as an epicercal tail, paired pectoral that leaves few fossil branches that can be used to appendages, and perichondral bone (Forey & Janvier, infer sequences of character acquisition in important 1993; Janvier, 1996a; Donoghue et al., 2000; Janvier, parts of the gnathostome tree, such as those that 2001; Gai et al., 2011). document the origin of jaws and the unique anatomi- By comparison, the application of cladistic methods cal attributes of chondrichthyans and osteichthyans. to the early gnathostome problem is in a state of Although fossils of Devonian and Silurian fishes infancy. This relative lack of progress is paradoxical: that challenge old perceptions are frequently coming early gnathostome fossils are similarly diverse as their to light (Zhu, Yu & Janvier, 1999; Maisey, 2001; jawless counterparts and almost certainly richer in Maisey & Anderson, 2001; Miller, Cloutier & Turner, characters. Only a few numerical cladistic analyses 2003; Hanke & Wilson, 2004, 2006, 2010; Brazeau, have had the taxonomic scope to test such fundamental 2009; Maisey, Miller & Turner, 2009; Zhu et al., 2009, phylogenetic questions as the monophyly of placo- 2012a, 2013), comparatively little effort has been derms and acanthodians, and evaluate competing spent to investigate their phylogenetic relationships. placements for stem members of Osteichthyes, Chon- In addition to this, the record of even the earliest drichthyes, and Gnathostomata (Friedman, 2007a; jawed vertebrates is characterized by considerable Brazeau, 2009; Davis et al., 2012; Zhu et al., 2013). In anatomical disparity (Anderson et al., 2011; Davis, this paper, we elaborate on the body of character Finarelli & Coates, 2012). Currently, placoderms information emerging from these recent analyses. We are the only group of widely accepted stem-group explore conflicting data, and frame the relevant sys- gnathostomes that are known to exhibit jaws (Young, tematic questions, as we see them, with greater explic- 1986). Acanthodians have been placed in this position itness, and set clear avenues for future research. To do at one time or another (Watson, 1937; Rosen et al., this, we address three fundamental problems: 1981; Brazeau, 2009; Davis et al., 2012), but this has 1. How might previous palaeontological collection, rarely been consistent and the character support is research, and analysis have failed to populate unclear. Meanwhile, fossils that branch between the naked stem-group branches of the chondrich- placoderms and their nearest jawless relatives have thyan, osteichthyan, and crownward parts of the yet to be discovered or identified. Consequently no gnathostome stem (Fig. 1)? anatomical intermediates are known to punctuate 2. What are the principal characters describing the this conspicuous gap. The number of stem osteich- hierarchy of these three gnathostome branches thyans and stem chondrichthyans identified with incident to the gnathostome crown node? any confidence is similarly limited, with candidates 3. What are the implications of the resulting scheme usually sourced from the acanthodians. Nevertheless, for interpreting problematic or unusual taxa? the fossils of early gnathostomes are sometimes used as background for hypotheses of character and devel- To address these questions, we need to re-evaluate opmental evolution, even though these relationships the phylogenetic status of the two main extinct groups, and character transformations remain unclear (e.g. placoderms and acanthodians, through a critical Beverdam et al., 2002; Koentges & Matsuoka, 2002; examination of their characters. As in our previous Gillis et al., 2011). work on osteichthyans (Friedman & Brazeau, 2010), Over the past three decades, pioneering cladistic we can assess whether our current systematic tradi- work has made it clear that Palaeozoic armoured tions may be causing us to misidentify or misinterpret jawless fishes, sometimes called ‘ostracoderms’, are a fossils. We feel the best approach to the problem is paraphyletic array of stem gnathostomes (Janvier, captured by Denison’s (1979) quote in the epigraph. 1981a, 1984; Forey & Janvier, 1993). This brought Denison invites us to make comparisons not just an end to decades of work that considered the within the groups that we have inherited by the ‘ostracoderms’ almost exclusively in light of them- traditions of our discipline, but to compare each selves (see review in Janvier, 1996b), and intro- one objectively and across the perceived taxonomic duced a computational framework for studying boundaries as though they did not exist at all. In this stem gnathostome relationships (Donoghue, Forey & way, we can better establish the quality of evidence Aldridge, 2000). Although uncertainty and disagree- that forms the basis of our current systematics of early ment remains about the precise relationships of gnathostomes. jawless stem gnathostomes, debates on the topic have proved highly fruitful. The resulting synapomorphic hierarchies have elucidated the step-wise acquisition A HISTORY OF THE ‘PLACODERM PROBLEM’ of a suite of anatomical features
Recommended publications
  • FISHING for DUNKLEOSTEUS You’Re Definitely Gonna Need a Bigger Boat by Mark Peter
    OOhhiioo GGeeoollooggyy EEXXTTRRAA July 31, 2019 FISHING FOR DUNKLEOSTEUS You’re definitely gonna need a bigger boat by Mark Peter At an estimated maximum length of 6 to 8.8 meters (20–29 sediments that eroded from the Acadian Mountains, combined feet), Dunkleosteus terrelli (Fig. 1) would have been a match for with abundant organic matter from newly evolved land plants even the Hollywood-sized great white shark from the and marine plankton, settled in the basin as dark organic movie Jaws. Surfers, scuba divers, and swimmers can relax, muds. Over millions of years, accumulation of additional however, because Dunkleosteus has been extinct for nearly 360 overlying sediments compacted the muds into black shale rock. million years. Dunkleosteus was a placoderm, a type of armored The rocks that formed from the Late Devonian seafloor fish, that lived during the Late Devonian Period from about sediments (along with fossils of Dunkleosteus) arrived at their 375–359 million years ago. Fossil remains of the large present location of 41 degrees north latitude after several species Dunkleosteus terrelli are present in the Cleveland hundred million years of slow plate tectonic movement as the Member of the Ohio Shale, which contains rocks that are North American Plate moved northward. approximately 360–359 million years old. Figure 1. A reconstruction of a fully-grown Dunkleosteus terrelli, assuming a length of 29 feet, with angler for scale. Modified from illustration by Hugo Salais of Metazoa Studio. Dunkleosteus cruised Late Devonian seas and oceans as an Figure 2. Paleogeographic reconstruction of eastern North America during apex predator, much like the great white shark of today.
    [Show full text]
  • Newsletter No. 236 April 2016
    NewsletterNewsletter No.No. 236236 AprilApril 20162016 Contents: Future Programme 2 Other Societies and Events 4 Editorial 6 Annual General Meeting Report 7 Committee Norwegian Mines: Nickel, Molybdenum, Chairman Niobium, Cobalt and Silver 8 Graham Worton The Palaeobiology of the Placoderms 11 Vice Chairman Mike's Musings No. 2 - Age of the Earth? 14 Peter Twigg Members' Forum Hon Treasurer Alan Clewlow Birds, Diaphragms and Dinosaurs 16 Hon Secretary More Photos from the Lapworth 16 Linda Tonkin Cairngorm Gems Exhibition, Braemar 16 Field Secretary Andrew Harrison Newsletter Editor Julie Schroder Webmaster John Schroder Other Members Christopher Broughton Bob Bucki Copy date for the next Newsletter is Wednesday 1 June Newsletter No. 236 The Black Country Geological Society April 2016 Linda Tonkin, Andy Harrison, Julie Schroder, Honorary Secretary, Field Secretary, Newsletter Editor, 4 Heath Farm Road, Codsall, 42 Billesley Lane, Moseley, ☎ Wolverhampton, WV8 1HT. 01384 379 320 Birmingham, B13 9QS. ☎ 01902 846074 Mob: 07973 330706 ☎ 0121 449 2407 [email protected] [email protected] [email protected] For enquiries about field and geoconservation meetings please contact the Field Secretary. To submit items for the Newsletter please contact the Newsletter Editor. For all other business and enquiries please contact the Honorary Secretary. For further information see our website: bcgs.info Future Programme Indoor meetings will be held in the Abbey Room at the Dudley Archives, Tipton Road, Dudley, DY1 4SQ, 7.30 for 8.00 o’clock start unless stated otherwise. Visitors are welcome to attend BCGS events but there will be a charge of £1.00 from January 2016. Please let Andy Harrison know in advance if you intend to go to any of the field or geoconservation meetings.
    [Show full text]
  • Polskaakademianauk Instytutpaleobiologii
    POLSKA AKADEMIA NAUK INSTYTUT PALEOBIOLOGII im. Romana Kozłowskiego SILURIAN AND DEVONIAN HETEROSTRACI FROM POLAND AND HYDRODYNAMIC PERFORMANCE OF PSAMMOSTEIDS Sylurskie i dewońskie Heterostraci z Polski oraz efektywność hydrodynamiczna psammosteidów Marek Dec Dissertation for degree of doctor of Earth and related environmental sciences, presented at the Institute of Paleobiology of Polish Academy of Sciences Rozprawa doktorska wykonana w Instytucie Paleobiologii Polskiej Akademii Nauk pod kierunkiem prof. dr hab. Magdaleny Borsuk-Białynickiej w celu uzyskania stopnia doktora w dyscyplinie Nauki o Ziemi oraz środowisku Warszawa 2020 CONTENTS ACKNOWLEDGMENTS…………………………………………………………….….... 3 STRESZCZENIE………………………………………………………………….....….. 4 SUMMARY……………………………………………………………………….…….. 8 CHAPTER I…………………………………………………………………………….. 13 TRAQUAIRASPIDIDAE AND CYATHASPIDIDAE (HETEROSTRACI) FROM LOWER DEVONIAN OF POLAND CHAPTER II……………………………………………………………………….…… 24 A NEW TOLYPELEPIDID (AGNATHA, HETEROSTRACI) FROM THE LATE SILURIAN OF POLAND CHAPTER III…………………………………………………………………………... 41 REVISION OF THE EARLY DEVONIAN PSAMMOSTEIDS FROM THE “PLACODERM SANDSTONE” - IMPLICATIONS FOR THEIR BODY SHAPE RECONSTRUCTION CHAPTER IV……………………………………………………………………….….. 82 NEW MIDDLE DEVONIAN (GIVETIAN) PSAMMOSTEID FROM HOLY CROSS MOUNTAINS (POLAND) CHAPTER V……………………………………………………………………………109 HYDRODYNAMIC PERFORMANCE OF PSAMMOSTEIDS: NEW INSIGHTS FROM COMPUTATIONAL FLUID DYNAMICS SIMULATIONS 2 ACKNOWLEDGMENTS First and foremost I would like to say thank you to my supervisor Magdalena
    [Show full text]
  • Timeline of the Evolutionary History of Life
    Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles
    UNIVERSITY OF CALIFORNIA Los Angeles Evolution of the boxfish carapace: functional consequences of shape A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Biology by Tina Ashley Marcroft 2015 ABSTRACT OF THE THESIS Evolution of the boxfish carapace: functional consequences of shape by Tina Ashley Marcroft Master of Science in Biology University of California, Los Angeles, 2015 Professor Michael Edward Alfaro, Chair Boxfishes are a group of heavily armored Tetraodontiform fishes that are highly variable in shape. Disparification of shape could be driven by a simple performance trade-off between its two hypothesized primary functions: protection from predation and maneuverability. Alternatively, disparification could be driven by many-to-one mapping of shape to performance, where a relaxation in morphological constraint where many of morphologies have the same performance. We tested this by isolating the major features of the boxfish carapace shape and tested for their correlation to performance, as well as for a negative correlation between performances. We found that some features were correlated but very weakly, and that the two performances did trade-off but also weakly. This weak correlation primarily suggests that many- to-one mapping of shape to performance is driving disparification, which was unobserved in continuous 3D shape systems until this study. ii The thesis of Tina Ashley Marcroft is approved. Blaire Van Valkenburgh David K. Jacobs Michael Edward Alfaro, Committee Chair University of California, Los Angeles 2015 iii I dedicate this thesis to Carrie Umetsu, Joseph Aprill, Mai Nguyen, Princess Gilbert, Francisca Wufu, Deb Pires, Jonathan Chang, Herbert Icasiano, and many others, without whose unwavering emotional and professional support I would not have completed this text.
    [Show full text]
  • Cambridge University Press 978-1-107-17944-8 — Evolution And
    Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21
    [Show full text]
  • Categorical Versus Geometric Morphometric Approaches To
    [Palaeontology, 2020, pp. 1–16] CATEGORICAL VERSUS GEOMETRIC MORPHOMETRIC APPROACHES TO CHARACTERIZING THE EVOLUTION OF MORPHOLOGICAL DISPARITY IN OSTEOSTRACI (VERTEBRATA, STEM GNATHOSTOMATA) by HUMBERTO G. FERRON 1,2* , JENNY M. GREENWOOD1, BRADLEY DELINE3,CARLOSMARTINEZ-PEREZ 1,2,HECTOR BOTELLA2, ROBERT S. SANSOM4,MARCELLORUTA5 and PHILIP C. J. DONOGHUE1,* 1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; [email protected], [email protected], [email protected] 2Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/ Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia, Spain; [email protected], [email protected] 3Department of Geosciences, University of West Georgia, Carrollton, GA 30118, USA; [email protected] 4School of Earth & Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK; [email protected] 5School of Life Sciences, University of Lincoln, Riseholme Hall, Lincoln, LN2 2LG, UK; [email protected] *Corresponding authors Typescript received 2 October 2019; accepted in revised form 27 February 2020 Abstract: Morphological variation (disparity) is almost aspects of morphology. Phylomorphospaces reveal conver- invariably characterized by two non-mutually exclusive gence towards a generalized ‘horseshoe’-shaped cranial mor- approaches: (1) quantitatively, through geometric morpho- phology and two strong trends involving major groups of metrics;
    [Show full text]
  • Catalogue Palaeontology Vertebrates (Updated July 2020)
    Hermann L. Strack Livres Anciens - Antiquarian Bookdealer - Antiquariaat Histoire Naturelle - Sciences - Médecine - Voyages Sciences - Natural History - Medicine - Travel Wetenschappen - Natuurlijke Historie - Medisch - Reizen Porzh Hervé - 22780 Loguivy Plougras - Bretagne - France Tel.: +33-(0)679439230 - email: [email protected] site: www.strackbooks.nl Dear friends and customers, I am pleased to present my new catalogue. Most of my book stock contains many rare and seldom offered items. I hope you will find something of interest in this catalogue, otherwise I am in the position to search any book you find difficult to obtain. Please send me your want list. I am always interested in buying books, journals or even whole libraries on all fields of science (zoology, botany, geology, medicine, archaeology, physics etc.). Please offer me your duplicates. Terms of sale and delivery: We accept orders by mail, telephone or e-mail. All items are offered subject to prior sale. Please do not forget to mention the unique item number when ordering books. Prices are in Euro. Postage, handling and bank costs are charged extra. Books are sent by surface mail (unless we are instructed otherwise) upon receipt of payment. Confirmed orders are reserved for 30 days. If payment is not received within that period, we are in liberty to sell those items to other customers. Return policy: Books may be returned within 14 days, provided we are notified in advance and that the books are well packed and still in good condition. Catalogue Palaeontology Vertebrates (Updated July 2020) Archaeology AE11189 ROSSI, M.S. DE, 1867. € 80,00 Rapporto sugli studi e sulle scoperte paleoetnologiche nel bacino della campagna romana del Cav.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • 'Placoderm' (Arthrodira)
    Jobbins et al. Swiss J Palaeontol (2021) 140:2 https://doi.org/10.1186/s13358-020-00212-w Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access A large Middle Devonian eubrachythoracid ‘placoderm’ (Arthrodira) jaw from northern Gondwana Melina Jobbins1* , Martin Rücklin2, Thodoris Argyriou3 and Christian Klug1 Abstract For the understanding of the evolution of jawed vertebrates and jaws and teeth, ‘placoderms’ are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire ‘placoderms’. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontich- thys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered syna- pomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were pos- sibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large. Keywords: Arthrodira, Dentition, Food web, Givetian, Maïder basin, Palaeoecology Introduction important to reconstruct character evolution in early ‘Placoderms’ are considered as a paraphyletic grade vertebrates.
    [Show full text]
  • Chordates (Phylum Chordata)
    A short story Leathem Mehaffey, III, Fall 201993 The First Chordates (Phylum Chordata) • Chordates (our phylum) first appeared in the Cambrian, 525MYA. 94 Invertebrates, Chordates and Vertebrates • Invertebrates are all animals not chordates • Generally invertebrates, if they have hearts, have dorsal hearts; if they have a nervous system it is usually ventral. • All vertebrates are chordates, but not all chordates are vertebrates. • Chordates: • Dorsal notochord • Dorsal nerve chord • Ventral heart • Post-anal tail • Vertebrates: Amphioxus: archetypal chordate • Dorsal spinal column (articulated) and skeleton 95 Origin of the Chordates 96 Haikouichthys Myllokunmingia Note the rounded extension to Possibly the oldest the head bearing sensory vertebrate: showed gill organs bars and primitive vertebral elements Early and primitive agnathan vertebrates of the Early Cambrian (530MYA) Pikaia Note: these organisms were less Primitive chordate, than an inch long. similar to Amphioxus 97 The Cambrian/Ordovician Extinction • Somewhere around 488 million years ago something happened to cause a change in the fauna of the earth, heralding the beginning of the Ordovician Period. • Rather than one catastrophe, the late-Cambrian extinction seems to be a series of smaller extinction events. • Historically the change in fauna (mostly trilobites as the index species) was thought to be due to excessive warmth and low oxygen. • But some current findings point to an oxygen spike due perhaps to continental drift into the tropics, driving rapid speciation and consequent replacement of old with new organisms. 98 Welcome to the Ordovician YOU ARE HERE 99 The Ordovician Sea, 488 million years 100 ago The Ordovician Period lasted almost 45 million years, from 489 to 444 MYA.
    [Show full text]