Building a Newtonian Astrograph

Total Page:16

File Type:pdf, Size:1020Kb

Building a Newtonian Astrograph Building a Newtonian Astrograph Curt Walker Presented October 2, 2009 for the MARS Club Topics Covered • What is an astrograph? • Fabricating Custom Parts • Building vs. Buying • Assembly • Design Tools • First Light & Focus Test • Design Highlights • First Photographic Results • Materials & Components • Finishing Touches What is an ‘astrograph’ ? An astrograph (astrographic camera) is a telescope designed for the sole purpose of astrophotography. Familiar forms of astrographs: - Schmidt Camera (different than Schmidt Newt) - Short FL, low F-ratio APO refractors - Ritchey-Chretien Examples of currently mass-produced telescopes that are (or could be) considered astrographs: Meade’s Schmidt Newtonians Examples of currently mass-produced telescopes that are (or could be) considered astrographs: Vixen R200SS Examples of currently mass-produced telescopes that are (or could be) considered astrographs: Takahashi Epsilon 160 & 180 Epsilon 160 Examples of currently mass-produced telescopes that are (or could be) considered astrographs: Borg’s Refractor Astrographic Systems Examples of currently mass-produced telescopes that are (or could be) considered astrographs: TeleVue’s Nagler/Peztval APO Refractors Examples of currently mass-produced telescopes that are (or could be) considered astrographs: Various Ritchey-Chretien OTAs RC Optical Systems 16" f/8.4 CF OTA RC Optical Systems 20" f/8.1 Carbon Truss Buying vs. Rolling Your Own Reasons that influenced my decision to build: - Conversations with other ATMs - Luxury of choosing each component to suit needs/wants - Quality assurance (…ha ha) - No perfect matches with my needs/wants among commercially- made astrographs (all require upgrades) - My compulsive need to build stuff. Design Tools NEWT 2.5 Design Tools TurboCAD 14 Deluxe Design Highlights ….a telescope designed for the sole purpose of astrophotography. Needs & Wants: Manifested in specs: • 8” aperture • Thin or lightweight parabolic primary • 1000mm focal length • Motorized stepper focuser • Classic newtonian • Spacings for camera focus • Fine focusing control (extenders may be required for • Imaging first, visual second visual) • Optical accessories • Spacings with room for optical (barlow or coma correction) accessories • Minimal vignetting • Fully illuminated imaging plane Design Highlights Planning for a fully illuminated imager: • The focal plane is generally fully illuminated in the center, and gradually tapers off in brightness toward the edge. • The 100% zone will have all of the brightness available from the primary mirror. • The 75% zone is the area at the focal plane which is 3/4 illuminated by the primary mirror. Source – NEWT 2.5 Help Files Design Highlights Planning for a fully illuminated imager: Differing design principals for visual vs. imaging: Visual: - The larger the eyepiece field lens, the larger areas of 100% and 75% illumination required. - However, To see fine details in planetary images and faint nebulae alike, you need the maximum contrast possible. - In a newtonian telescope, one of the biggest contrast killers is an oversized diagonal mirror. - If possible, the diagonal minor axis should be kept under 20% of the diameter of the primary mirror. Source – NEWT 2.5 Help Files Design Highlights Planning for a fully illuminated imager: Differing design principals for visual vs. imaging: Imaging: - To attain the brightest image possible and help avoid vignetting, the imaging plane should be as fully illuminated as possible. - This requires substantially larger secondary mirrors than in similarly sized scopes intended for visual observing. Typically, a telescope optimized for imaging will not perform well for visual observing. Source – NEWT 2.5 Help Files Design Highlights Planning for a fully illuminated imager: 100% 1.194” Design Highlights Planning for a fully illuminated imager: QHY8 100% APS-C (DSLR) SBIG ST-2000XM Orion StarShoot Materials & Components Telescope Tube – Hastings Aluminum Pipe - 10” OD, 0.064” wall - Both ends ‘rolled’ - Heavy but relatively cheap and available - Variety of finishes Materials & Components Spider Vane – Protostar Secondary Mirror – Protostar - Straight 4-vane - 2.60” minor axis - Built-in secondary offset - ULS Quartz - Internal dew heater - Interferogram says 1/14th Materials & Components Focuser – Moonlight Crayford - 3-point compression ring - Hi-Res Stepper Motor - Cercis Controller - Supports 2 focusers - Supports 2 temp probes and profiles Materials & Components Primary – Royce Conical - 8” F/5 - 3.5 lbs - Very secure mounting (no epoxy necessary) - Cools quickly Fabrication of Custom Parts Fabrication of Custom Parts Fabrication of Custom Parts Assembly Assembly Assembly Assembly First Light & Focus Test Assembly First Photographic Results M51 – Whirlpool Galaxy 3x300 First Photographic Results NGC5139 – Omega Centauri 13x120 First Photographic Results M8 – Lagoon Nebula 12x300 Finishing Touches Finishing Touches What’s Next? Currently saving up for a complete imaging rig: - Mount…….GM11? Mach1GTO??? - Switch to a self-guided monochrome imager (i.e. SBIG ST-2000XM or similar) - Transition to MaximDL or CCDSoft for capture and processing References & Education • The Dobsonian Handbook: A Practical Manual for Building Large Aperture Telescopes By Kriege & Berry • TurboCAD 14 Deluxe Help Files & online user forum • NEWT 2.5 Help Files • Bryan Greer of Protostar • Bob Royce of R. F. Royce Precision Optical Components • Daniel Mounsey of Woodland Hills Telescopes • Fellow ATMs across the globe via Cloudy Nights ATM Forum Thank You Questions? .
Recommended publications
  • Orion Newtonian Astrograph Instruction Manual
    INSTRUCTION MANUAL Orion 8" and 10" f/3.9 Newtonian Astrographs #8297 8" f/3.9, #8296 10" f/3.9 #8296 Providing Exceptional Consumer Optical Products Since 1975 OrionTelescopes.com Customer Support (800) 676-1343 • E-mail: [email protected] Corporate Offices (831) 763-7000 • 89 Hangar Way, Watsonville, CA 95076 © 2011 Orion Telescopes & Binoculars IN 406 Rev. A 07/11 2" Finder scope Accessory bracket collar 9x50 Finder Scope Optical tube Tube rings Focus wheel Drawtube Fine focus wheel tensioning thumbscrew Focus wheel Figure 1. The Orion 8" f/3.9 Newtonian Astrograph Congratulations on your purchase of an Orion f/3.9 Newtonian Astrograph! These powerful imaging telescopes feature “fast,” high-quality parabolic optics, a 2" dual-speed Crayford focuser, and excellent mechanical construction with some special features. Optimized for astrophotography with DSLR and astronomical CCD imaging cameras, our f/3.9 Newtonian Astrographs are capable of delivering breathtak- ing imaging performance – for beginning to advanced astrophotographers. This instruction manual covers both the 8" and 10" mod- Parts List els of f/3.9 Newtonian astrograph. Although they differ • Optical tube assembly in aperture and focal length, physical size, and weight, they are otherwise very similar in mechanical construc- • Optical tube dust cap tion and features. So we will use the 8" model to illus- • 1.25" eyepiece holder trate the features of both astrographs. Any exceptions • 9x50 finder scope with bracket related to the 10" model will be noted. • Pair of hinged tube rings This instruction manual will help you to set up and • 2" thread-on extension adapter, 30mm properly use your telescope.
    [Show full text]
  • U. S. Naval Observatory Washington, D. C. 20392-5420 Ued to Advance for the Astronomical Almanac and Astro- Nomical Phenomena
    633 U. S. Naval Observatory Washington, D. C. 20392-5420 ued to advance for The Astronomical Almanac and Astro- nomical Phenomena. The Astronomical Almanac for 2001 was published at the earliest date in over 15 years. Proceed- I. PERSONNEL ings of the U.S. NAO Sesquicentennial Symposium, held last A. Civilian Personnel year, were published during this reporting period. USNO Circular 178, ‘‘List of Active Professional Observatories,’’ Retirements included Alan Bird. by M. Lukac and R. Miller, went to press in June 2000. Tom Corbin retired on Oct. 2, 1999 after a 35-year career Exchange of material also continued with both the Institut de at USNO. F.S. Gauss retired on 2 June, after a 37-year career Mechanique Celeste ͑France͒ and HMNAO. at USNO. A major effort to streamline almanac production is ongo- ing within the NAO. S. Stewart continued to review, docu- B. DoD Science and Engineering Apprenticeship ment, upgrade, and standardize production of Sections E and Program HofThe Astronomical Almanac, as well as documenting the rest of the sections prepared by the U.S. NAO. This infor- The USNO summer intern program for high school and mation and the status of all publications are now on-line college students continued in the summer of 1999. This pro- within the department for easier access and timeliness. Al- gram, called the Science and Engineering Apprentice Pro- manac production software is being moved into an auto- gram ͑SEAP͒, is sponsored by the Department of Defense mated version control system for the purposes of standard- ͑DoD͒ and managed by George Washington University.
    [Show full text]
  • Orion® Ritchey-Chrétien Astrographs
    INSTRUCTION MANUAL Orion® Ritchey-Chrétien Astrographs #8268 6" f/9 RC #8267 8" f/8 RC #8266 10" f/8 RC #8267 #8266 #8268 Providing Exceptional Consumer Optical Products Since 1975 OrionTelescopes.com Customer Support (800) 676-1343 • E-mail: [email protected] Corporate Offices (831) 763-7000 • 89 Hangar Way, Watsonville, CA 95076 IN 361 Rev. B 5/15 Congratulations on your purchase of an Orion Unpacking Your Telescope Ritchey-Chretien astrograph. These compact but large-aperture telescopes are designed and opti- Use care when unpacking the shipping carton. We recom- mized for high-performance astrophotography mend keeping the boxes and all original packaging materi- als. In the event that the telescope needs to be shipped to with CCD and DSLR cameras. Sporting an optical another location, or returned for warranty repair, having the design comprising hyperbolic primary and second- proper packaging will ensure that your telescope will survive ary mirrors, the RC is highly regarded by advanced the journey intact. Returns for refund or exchange will not be astrophotographers and professional observato- accepted without all of the original packaging. Once all items ries worldwide. Even the vaunted Hubble Space have been removed from the box take a moment to confirm Telescope is an RC! Orion RCs deliver exceptional that all pieces are present and intact. Refer to the Parts List to aid in identifying the included items. image quality and resolution with zero image shift, minimal coma, a highly baffled steel tube for out- standing contrast, and exclusive mounting options The Focuser for optional finder scopes and guide scopes.
    [Show full text]
  • The Wide Field Cassegrain: Exploring Solution Space Peter Ceravolo Ceravolo Optical Systems [email protected]
    The Wide Field Cassegrain: Exploring Solution Space Peter Ceravolo Ceravolo Optical Systems www.ceravolo.com [email protected] Abstract This article illustrates the use of an internal aperture stop in a high speed, wide field Cassegrain optical system. The astrograph features a well corrected and uniformly illuminated focal plane. Opto-mechanical design and manufacturing issues are also discussed. 1. Introduction Of all the conventional astronomical telescope Aperture Stop designs used in amateur astronomy the Cassegrain is the least likely to be considered a candidate for wide field imaging applications. This perception is a hangover from the era of visual observing where minimizing the central obscuration was critical to preserving image fidelity. The resulting long focal length, slow telescopes did not lend themselves to photography. The central obscuration in reflector astrographs need not be so constrained since ground based amateur instruments never achieve diffraction limited performance, primarily due to poor seeing, image sampling limitations and tracking errors. Cassegrain astrographs with a large obscuration (50% of the aperture diameter or greater) and a fast primary will permit a relatively short overall focal length, a wider field of view and more uniform focal plane illumination. While the larger obscuration does reduce system through put, the light loss can be compensated for with longer exposures. Figure 1, internal stop Cassegrain astrograph In addition to the benefits of a larger obscuration, allowing the aperture stop position to move from the primary mirror to a more central location in the Cassegrain optical system offers the potential to achieve very wide fields of view in a fast system 2.
    [Show full text]
  • Comets in UV
    Comets in UV B. Shustov1 • M.Sachkov1 • Ana I. G´omez de Castro 2 • Juan C. Vallejo2 • E.Kanev1 • V.Dorofeeva3,1 Abstract Comets are important “eyewitnesses” of So- etary systems too. Comets are very interesting objects lar System formation and evolution. Important tests to in themselves. A wide variety of physical and chemical determine the chemical composition and to study the processes taking place in cometary coma make of them physical processes in cometary nuclei and coma need excellent space laboratories that help us understand- data in the UV range of the electromagnetic spectrum. ing many phenomena not only in space but also on the Comprehensive and complete studies require for ad- Earth. ditional ground-based observations and in-situ exper- We can learn about the origin and early stages of the iments. We briefly review observations of comets in evolution of the Solar System analogues, by watching the ultraviolet (UV) and discuss the prospects of UV circumstellar protoplanetary disks and planets around observations of comets and exocomets with space-born other stars. As to the Solar System itself comets are instruments. A special refer is made to the World Space considered to be the major “witnesses” of its forma- Observatory-Ultraviolet (WSO-UV) project. tion and early evolution. The chemical composition of cometary cores is believed to basically represent the Keywords comets: general, ultraviolet: general, ul- composition of the protoplanetary cloud from which traviolet: planetary systems the Solar System was formed approximately 4.5 billion years ago, i.e. over all this time the chemical composi- 1 Introduction tion of cores of comets (at least of the long period ones) has not undergone any significant changes.
    [Show full text]
  • J'/ 7 ~,J,,F42~OD'/ 4~Z T 0014- AL4 '4 N 444 4 V-~ V~'4,,/C4D4 ;/L X' 3* ''(N I /I -- -K
    4'T,4 "~ J, itI' ~ " 4 4~~~~~~t f"- N'. 4 tV34 '' '4~~~~~~~r "''',) m/4' - 4 / .,~~~~t 4f {'NW ' I, '~ / . 4 4'~~~~~-' ~~~~-"" ' ' A '' " I \ ' o A4 j'/ 7 ~,j,,f42~OD'/ 4~z t 0014- AL4 '4 N 444 4 v-~ v~'4,,/C4D4 ;/l x' 3* ''(N I /I -- -K . 2 . /-, -, 1 '> 97 (; ' '-I' -4 )-' Ni\iS ,L -I-' "1/ iT h 'i l I .=.,, ca ec~- fr ain ivsoOd* .: 25 C , '-A- ", ---.- a a en .- -_ . - ; . - - '1 (N, -< I' 4 -I --. N ?- j -. Thspprpeet h veso h uhrs adde o eesr .I ~rf~c :";athethe vieio oddr Spce ight Cenbitr o: NASA r 7-ref e.'th viGods th~ar ddSpace', Fligt . enter. .. orN-/- " -- -' -- I / -I- _ . - " . -,t -" , *-*- . : TABLE OF CONTENTS Page LIST OF ATTENDEES 3 FOREWORD 6 INTRODUCTION TO SPACELAB/SHUTTLE 8 ASTRONOMY PAYLOADS 12 I. A Very High Resolution Spectrograph for Interstellar Matter 15 Research - E. Jenkins and D. York, Princeton University Observatory 2. Schmidt Camera/Spectrograph for Far Ultraviolet Sky Survey 20 G. Carruthers and C. Opal, Naval Research Laboratory 3. UV Telescope with Echelle Spectrometer - Y. Kondo and 25 C. Wells, Johnson Spacecraft Center 4. Small Infrared Cryogenic Telescope - R. Walker, Air Force 29 Cambridge Research Laboratory 5. Two EUV Experiments - S. Bowyer, University of California 33 at Berkeley 6. Ultraviolet Photometer - A. Code and R. Bless, University 39 of Wisconsin 7. Schwarzschild Camera - A. Smith, Goddard Space Flight Center 43 8. Three Rocket-Class Payloads for Spacelab - C. Lillie, 49 University of Colorado 9. Additional Payloads 57 ASTRONOMY MISSION STUDIES - W. Scull, Goddard Space Flight Center 60 SMALL INSTRUMENT POINTING SYSTEM (SIPS) - C.
    [Show full text]
  • To Photographing the Planets, Stars, Nebulae, & Galaxies
    Astrophotography Primer Your FREE Guide to photographing the planets, stars, nebulae, & galaxies. eeBook.inddBook.indd 1 33/30/11/30/11 33:01:01 PPMM Astrophotography Primer Akira Fujii Everyone loves to look at pictures of the universe beyond our planet — Astronomy Picture of the Day (apod.nasa.gov) is one of the most popular websites ever. And many people have probably wondered what it would take to capture photos like that with their own cameras. The good news is that astrophotography can be incredibly easy and inexpensive. Even point-and- shoot cameras and cell phones can capture breathtaking skyscapes, as long as you pick appropriate subjects. On the other hand, astrophotography can also be incredibly demanding. Close-ups of tiny, faint nebulae, and galaxies require expensive equipment and lots of time, patience, and skill. Between those extremes, there’s a huge amount that you can do with a digital SLR or a simple webcam. The key to astrophotography is to have realistic expectations, and to pick subjects that are appropriate to your equipment — and vice versa. To help you do that, we’ve collected four articles from the 2010 issue of SkyWatch, Sky & Telescope’s annual magazine. Every issue of SkyWatch includes a how-to guide to astrophotography and visual observing as well as a summary of the year’s best astronomical events. You can order the latest issue at SkyandTelescope.com/skywatch. In the last analysis, astrophotography is an art form. It requires the same skills as regular photography: visualization, planning, framing, experimentation, and a bit of luck.
    [Show full text]
  • Lick Observatory Records: Correspondence UA.036.Ser.01
    http://oac.cdlib.org/findaid/ark:/13030/c8dj5m3f No online items Guide to the Lick Observatory Records: Correspondence UA.036.Ser.01 Alix Norton University of California, Santa Cruz 2015 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Guide to the Lick Observatory UA.036.Ser.01 1 Records: Correspondence UA.036.Ser.01 Language of Material: English Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Correspondence Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.01 Physical Description: 148.5 Linear Feet257 boxes and 54 microfilm reels Date (inclusive): 1833-2009 Date (bulk): 1870-1960 Access Collection is open for research. The physical copybooks are restricted due to the fragile nature of the material. All use is directed to the microfilm of these volumes. The microfilm reels can be accessed by requesting them from Special Collections via the Library Catalog. Historical note The Lick Observatory was completed in 1888 and continues to be an active astronomy research facility at the summit of Mount Hamilton, near San Jose, California. It is named after James Lick (1796-1876), who left $700,000 in 1875 to purchase land and build a facility that would be home to "a powerful telescope, superior to and more powerful than any telescope yet made". The completion of the Great Lick Refractor in 1888 made the observatory home to the largest refracting telescope in the world for 9 years, until the completion of the 40-inch refractor at Yerkes Observatory in 1897. Since its founding in 1887, the Lick Observatory facility has provided on-site housing on Mount Hamilton for researchers, their families, and staff, making it the world's oldest residential observatory.
    [Show full text]
  • Astrometry with Small Instruments
    ASTROMETRY WITH SMALL INSTRUMENTS Petre Popescu1, Alin Nedelcu1, Radu Popescu1, Octavian Bădescu1,2 1Astronomical Institute of Romanian Academy: [email protected]; [email protected]; [email protected]; 2Technical University of Civil Engineering, Faculty of Geodesy: [email protected] Abstract Based on an analyze concerning Bucharest astrometric instruments, a modernization project was elaborated. There are exposed the general aims of the project and the preliminary results obtained: the selection of data from astronomical catalogues, data acquisition concerning instrument positioning and tracking, data selection from astronomical image acquisition system and data processing by means of specific procedures. I. Observational astrometry in Romania Main topics of research in Romanian astrometry were connected with the use of 4 instruments: Prin-Merz Astrograph, Meridian Circle Gauthier- Prin, Zeiss Transit Telescope and Danjon Astrolabe. Meridian Circle Gauthier-Prin 19/235 cm was installed in 1926, it had an important contribution in improving, in an extended international cooperation, stellar catalogues. Zonal and local catalogues for different purposes were built using this instrument. The developments of CCD astrometry and the difficulties of financing such a special project obliged us to stop visual observations. Now the Meridian Circle is preserved and we are studying the opportunity of future modernization. Zeiss Transit Telescope 10/100 cm was set up in 1956 and was used for Earth rotation monitoring. After using 30 years, taking into account the new development of this class of instruments we stopped the observations. In the future, such an astronomic instrument has no use, except for education. Danjon Astrolabe 10/100 cm was borrowed from Brussels Observatory and installed in 1993.
    [Show full text]
  • JUNE 2011 Sky Tch
    WESTCHESTER AMATEUR ASTRONOMERS JUNE 2011 Sky tch Sea of Rains Rick Bria took this picture of the Moon on May 12th at the Mary Aloysia Hardey Observatory. Explains Rick: Just right of center is Mare Imbrium, Latin for “Sea of Rains”. It’s a 1200 kilometer wide circular smooth area created by a large impact 4 billion years ago. The impact formed 7km high mountains chains that encircle Mare Imbrium. Lava then filled the crater giving it a smooth look. The crater Plato is also lava filled and very smooth. Formed by an impact just after the formation of Mare Imbrium, Plato is 100 kilometers across. Copernicus is an impact crater 93 kilometers in diameter and 4 kilometers deep. At only 800 million years old, Copernicus is much younger than Plato. As a result, its shape is noticeably more sharp and detailed. Copernicus has a rather obvious ray system formed by ejected material blasted out by the impact. This ray system is most obvious at full Moon, but can be seen in the attached picture taken just after first quarter phase. SERVING THE ASTRONOMY COMMUNITY SINCE 1983 Page 1 WESTCHESTER AMATEUR ASTRONOMERS JUNE 2011 Events for June 2011 WAA Lectures WAA Club Picnic “Exploring Exotic Matter of the Saturday June 18th, 2pm Universe” Friday June 3rd, 7:30pm Trailside Museum, Ward Pound Ridge Miller Lecture Hall, Pace University The event is for WAA members and their guests only. Club members are encouraged to bring side-dishes, Pleasantville, NY salads and desserts. Tell the guard at gatehouse you Deirdre Frost will speak on the search for unusual are going to WAA Picnic.
    [Show full text]
  • Innovative Astronomy Gear Products Our 16Th Annual Roundup of Hot Products Highlights the for Most Intriguing New Astronomy Gear in the Worldwide Market
    Innovative Astronomy Gear Products Our 16th annual roundup of Hot Products highlights the for most intriguing new astronomy gear in the worldwide market. 2014 By the Editors of Sky & Telescope Wow! What a year it’s been for product introductions. When we fi nished compiling our “short list” of candidates for this year’s Hot Products, we had the biggest list ever in the history of pre- paring our annual survey. Furthermore, when the dust settled and we had our fi nal selection, it too comprised the most items ever. While it’s been a great year for new products, things need to be more than just “new” to make our list. They need to introduce new technologies, off er solutions to old problems, or deliver unprecedented value. As such, our selection aims to honor the products that help our hobby evolve. This year’s picks range from the elegantly simple (the dual fi nder bracket on page 68) to the mind-bogglingly complex (the Diff erential Autoguider System on page 66). The costs are equally varied, ranging from a free smartphone app to telescopes costing $15,000 and more. As always, we hope you enjoy reading about the new products that intrigued us the most for 2014. ▶ StarSense AutoAlign Celestron • celestron.com U.S. price: $329.95 Celestron’s SkyProdigy telescopes (reviewed in our March 2013 issue, page 62) introduced the company’s StarSense Technology, which uses a dedicated imaging module to provide foolproof initialization of the scopes’ computerized Go To pointing. The new StarSense AutoAlign system now brings that technology to the company’s full line of Go To telescopes.
    [Show full text]
  • Patrick Moore's Practical Astronomy Series
    Patrick Moore’s Practical Astronomy Series For other titles published in the series, go to www.springer.com/series/3192 Choosing and Using a New CAT Getting the Most from Your Schmidt Cassegrain or Any Catadioptric Telescope Rod Mollise Rod Mollise 1207 Selma Street Mobile AL 36604 USA ISBN 978-0-387-09771-8 e-ISBN 978-0-387-09772-5 DOI: 10.1007/978-0-387-09772-5 Library of Congress Control Number: 2008934774 © Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by simi- lar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper springer.com About the Author Rod Mollise is an engineer by profession. He is also the author of numerous books and magazine articles on every aspect of amateur astronomy. Known to his fans as “Uncle” Rod Mollise, he is most well known for his books about catadioptric tel- escopes (CATs), which aim to help new CAT owners get past the inexperience and anxiety that often accompanies their entry into this wonderful hobby.
    [Show full text]