Lowell Observatory Issue 92 Fall 2011 from Discovering to Describing Near-Earth Asteroids by Tom Vitron

Total Page:16

File Type:pdf, Size:1020Kb

Lowell Observatory Issue 92 Fall 2011 from Discovering to Describing Near-Earth Asteroids by Tom Vitron LOWELL EXPANDING OUR UNIVERSE OBSERVER The quarterly newsletter of Lowell Observatory Issue 92 Fall 2011 From Discovering to Describing Near-Earth Asteroids by Tom Vitron When the Lowell Observatory Near-Earth Object Search (LONEOS) Asteroids like Ida can have small companion moons like Dactyl (right). Discovering companions is one came to a close in 2008, it did not of the tasks for NEAPS researchers. (Photo courtesy: NASA/JPL) mark the end of near-Earth object research at Lowell. Rather, it marked a With the 24-inch Schmidt Telescope project’s main data output. However, shift from discovering these objects to as the workhorse instrument, research more work is required before robust characterizing them. “[Dr. Ted Bowell] assistant Brian Skiff and other observers statistics about NEA rotation can be opted to use our resources to study one generated a lot of data over the course compiled. of the physical properties of near-Earth of the project. For example, one of the Since this research does not require asteroids (NEAs): rotational period,” most challenging asteroids observed by the biggest, most modern telescopes, says Dr. Bruce Koehn, who recently NEAPS was 2011 AL37. This asteroid amateur astronomers are participating in took the reigns from Dr. Bowell (see closely approached Earth on January asteroid research. “Their data, combined article on page 5) and is the principal 26, 2011 and was moving at almost with ours, will likely make a very good investigator to LONEOS’s successor, the 60 degrees per day. Fortunately, it was data set,” says Dr. Koehn. “We have Near-Earth Asteroid Photometric Survey bright enough that Skiff took short made a significant contribution to the (NEAPS). The goal is to watch several exposures using the Schmidt telescope. understanding of rotation of near-Earth NEAs each night and, ultimately, get The Schmidt, with its wide field, could asteroids.” statistics on the rotational properties keep the asteroid in sight even when it of NEAs, says Dr. Koehn. Insights was moving so fast. The NEAPS team IN THIS ISSUE are being gleaned about the variety found the asteroid had a rotational 1 From Discovering to Describing ... of rotational periods (or how long it period of 6 minutes, 20 seconds. The takes an asteroid to rotate on its axis), only way it could be rotating so fast is if 2 Director’s Letter the type of rotation (principal axis or it was a solid piece of rock. Otherwise, it 3 Three New Astronomers tumbling), and the number of NEAs would come apart. Strangely, astronauts 5 Dr. Ted Bowell Retires that have “companions,” or other, even would not be able to stand on the smaller objects orbiting around them. surface of this asteroid. If they tried, 6 John Radway “If we were lucky, we could also find the they would be hurled into space. 6 Departures and Arrivals direction of the principal axis and shape NEAPS researchers produced several 7 In Memoriam of the asteroid,” explains Dr. Koehn. hundred light curves, which are the 2 THE LOWELL OBSERVER | Fall 2011 performed its successful first flights superb control for eight years. But it also in late June, with a number of Lowell saw some arrivals: we welcomed three folks involved in the airplane itself and outstanding astronomers – Evgenya afar, including Ted Dunham, Georgi Shkolnik, Kevin Covey, and Gerard Mandushev, Tom Bida, Brian Taylor, van Belle – to the scientific staff, and Amanda Bosh, and Stephen Levine. electrical engineer Mike Sweaton joined The summer also involved the the DCT team. Discovery Channel Telescope (DCT) And as always, we saw the continued engineers successfully mounting the lovely mix of engineering and art primary mirror in its support cell and that goes into making DCT a reality. lifting the whole 27,000-pound thing Commanding some of the top bids at three stories up to the observing level the silent auction at our June Friends of the dome, where it was seamlessly event were signed, framed copies of bolted to the telescope (see below). Ralph Nye’s drawings of the DCT’s Director’s During all this heavy lifting, a Discovery instrument cube and guider assembly. Channel film crew was here getting Ralph’s full-size drawings of the cube Letter everything on video and interviewing a and the filter wheel – especially the filter by Jeffrey Hall number of us for Discovery’s first major wheel! – are spectacular, and as I write DCT feature, which will air next year. this, lots of parts are being carefully It saw our scientific staff regularly machined to his specifications by Steve involved with the public on our summer Lauman and electronics assembled Summer at Lowell started in meet-an-astronomer nights – always a hit by Rich Oliver, and the impressive- the second week of last June in with our visitors – and astronomer Lisa looking cube is being assembled in characteristically busy fashion. Not only Prato traveled as far as Maine to give our instrument shop. In all aspects did we hold the annual meeting of our one of her engaging talks on celestial of the DCT from its primary mirror advisory board, but also a Friends of dust bunnies (a.k.a. star formation) at an to its complex guiding system and Lowell thank you event that featured a event sponsored by several of our board instruments, form meets function in wonderful talk by Bill Sheehan, noted members. singular fashion. Lowell and Mars historian. In addition, It involved some farewells, including With all of this and more humming thanks to the impetus and support Byron Smith, who oversaw the along, you won’t be surprised if I say of our trustee Bill Putnam, Flagstaff construction of a beautiful telescope that summer has disappeared in a flash, enjoyed a visit that week by Garrison and passed the commissioning baton in but that’s okay. May fall be equally Keillor and a live broadcast of his well- July to Bill DeGroff, and Bev Welling, quiet. known radio show from Fort Tuthill who kept the company books under County Park. I remember reading Keillor’s story collections as a teenager and smiling DCT M1 Mirror Mounting as each tale opened with his signature line: It has been a quiet week in Lake The DCT staff recently achieved a major construction Wobegon. Invariably those weeks ended and commissioning milestone. DCT project manager Bill up involving headless chickens, septic DeGroff (pictured, tanks, or waterlogged Lutheran pastors, proceeding with glorious inevitability right) oversaw from quiet into mayhem. In that the mounting of spirit, it has been a quiet summer on the primary (M1) Mars Hill. I am not aware of anything involving chickens, except possibly as mirror cell in early part of the non-seafood menu at the August. A big Trustee’s annual staff lobster party in congrats to the August. But the summer has involved Boeing DCT folks who aircraft, specifically the remodeled made it happen! 747 called Stratospheric Observatory for Infrared Astronomy (SOFIA) that THE LOWELL OBSERVER | Fall 2011 3 to exoplanets for her PhD. husband Aaron and their College, a Master’s in physics Three New “Exoplanets are what got me three young children, Dr. from The Johns Hopkins into astronomy,” she says, Shkolnik is very impressed University, and a PhD in Astronomers pointing to the discovery of with the diversity of Flagstaff physics from the University the first exoplanet in 1996 and feels welcomed. Coming of Wyoming in Laramie, by Tom Vitron as decisive for her. After to work at our historic where he came to enjoy the completing her studies institution seems like a high-altitude, small-town in 2004, she worked as a great fit. “You get to spend lifestyle. postdoctoral fellow at the your day in a way that Eager to share that Institute for Astronomy at benefits your research to the lifestyle in Flagstaff with his the University of Hawaii at fullest possible extent,” Dr. wife, Stephanie, and their Manoa and as a Carnegie Shkolnik says. “Being in a three young boys, Dr. van Fellow at the Carnegie place like Lowell is perfect.” Belle comes to Lowell with a Institution of Washington’s wealth of expertise in near- Department of Terrestrial infrared interferometry, or Magnetism. the group of techniques in Dr. Shkolnik’s focus is which electromagnetic waves characterizing exoplanets are superimposed in order after their discovery. For to extract information about Dr. Evgenya Shkolnik almost 10 years, she’s been the source object. Aside from studying these newfound ESO, he previously worked When asked what she worlds for magnetic fields, at Jet Propultion Laboratory wanted to be while in the atmospheric composition, (JPL) as an instrument 7th grade, Dr. Evgenya tidal evolution, and any architect for NASA’s Keck Shkolnik said she wanted effect on the parent star. Interferometer and at to be an astronaut. By the “I’m not yet a planet hunter,” Caltech’s Michelson Science next year, the goal was even she says. Center (now the NASA bolder: be the first person on Choosing to come to Exoplanet Science Institute), Mars. Clearly motivated and Lowell made perfect sense Dr. Gerard van Belle where he participated in not shy, Dr. Shkolnik instead to her. “The ideal is what commissioning Georgia State became a highly skilled and Lowell is putting together,” L os Angeles, Boston, University’s CHAR A Array respected astronomer and is Dr. Shkolnik explains. Flagstaff… Wait, how and the Palomar Testbed now bringing her talent and Excited to join to Lowell’s does Flagstaff fit into this Interferometer. Using the expertise to Lowell. expanding exoplanet group, equation? “Flagstaff is a latter, Dr. van Belle led a Born in Kiev, Ukraine, she points to the freedom real cluster of scientific team that made the first Dr.
Recommended publications
  • Planetary Research Center Lowell Observatory Flagstaff, Arizona 86002
    N 8 4 - °1* R 7 <• PLANETARY RESEARCH CENTER LOWELL OBSERVATORY FLAGSTAFF, ARIZONA 86002 NASA GRANT NSG-7530 POST-MISSION VIKING DATA ANALYSIS FINAL REPORT ; SUBMITTED: 26 APRIL M-A,- BAUM-- ' KARI_LUMME .__ PRINCIPAL-INVESTIGATOR< -? CO-^INVESTIGATOR J, .WTIN -• LAWRENCE H, WASSERMAN CO-INVESTIGATOR CO-INVESTIGATOR Page 2 PERSONNEL—" Averaged over the time interval (3.7 years) that funds were expended under this grant, the following staff devoted the indicated percentages of their time to it: W. A. Baum, Principal Investigator, 18$ time L. J. Martin, Co-Investigator, 52% K. Lumme, Co-Investigator, 19% L. H. Wasserman, Co-Investigator, S% T. J. Kreidl, Computer Programmer, 5% Others (combined), ResearctuAssistants, 7-$ • ~ -> "Others" include H. S. Horstman, M. L. Kantz, and S. E. Jones. In addition, there are several Observatory employees paid through overhead who provide services such as library, bookkeeping, and maintenance. BACKGROUND Work under this grant was a continuation of our participation in the Viking Mission. That participation commenced in 1970 with Baum's membership on the Viking Orbiter Imaging Team and continued through the end of team operations in 1978. This grant then commenced in 1979 at the start of the Mars Data Analysis Program (MDAP). MDAP was planned by NASA as a 5-year program, and our initial MDAP proposal was scaled to that expectation and to a funding level consistent with the Mars research projects in which we were already engaged. As it turned out, there were subsequent reductions in MDAP funds, and we (like many of our colleagues at other institutions) had to adjust the scope of our Mars research projects accordingly.
    [Show full text]
  • Lowell Observatory Communications Office 1400 W. Mars Hill Rd
    Lowell Observatory Communications Office 1400 W. Mars Hill Rd. Flagstaff, AZ 86001 www.lowell.edu PRESS RELEASE FOR IMMEDIATE RELEASE MAY 12, 2015 ***Contact details appear below*** Image attached LOWELL OBSERVATORY TO HOST PLUTO AND BEYOND GALA ON JUNE 13 Flagstaff, Az- Lowell Observatory will host its fourth annual fundraising gala, Pluto and Beyond, on June 13. Sponsored by APS, it will take place on the campus of Northern Arizona University in Flagstaff and feature experts sharing the latest Pluto news, auctions showcasing a variety of travel packages and astronomy-themed collectibles, and live music. Proceeds support Lowell’s mission of astronomical research and outreach. Lisa Actor, Lowell’s Deputy Director for Development, said, “This will be an exciting event in this year when we’re celebrating the 85th anniversary of the discovery of Pluto at Lowell Observatory! I’m anxious to meet and personally thank the many Flagstaff area supporters of the observatory.” Pluto and Beyond kicks off with the Kuiper VIP Reception at 5:30 p.m. Presented by Blue Cross Blue Shield of Arizona, this champagne and cocktail gathering will meet in the 1899 Bar & Grill. The main event happens in the High Country Conference Center, with doors opening at 6 p.m. and a sit-down dinner served at 7:30 p.m. Afterward, experts from Lowell Observatory will discuss the astronomy news story of the year—the New Horizons spacecraft’s July approach to Pluto after an incredible nine-year journey. This program will start with a look at Clyde Tombaugh’s improbable discovery of this icy world at Lowell in 1930 and continue with the latest news from New Horizons as it prepares to capture the first-ever close-up images of Pluto’s surface.
    [Show full text]
  • Astro2020 APC White Papers the Navy Precision Optical Interferometer
    Astro2020 APC White Papers The Navy Precision Optical Interferometer Type of Activity: Ground Based Project Space Based Project Infrastructure Activity 4 Technological Development Activity State of the Professions Consideration4 Other Principal Author: Name: Gerard van Belle Institution: Lowell Observatory Email: [email protected] Phone: 928-255-7865 Co-authors: (names, institutions, emails) J. Thomas Armstrong (NRL, [email protected]), Ellyn Baines (NRL, [email protected]), Joe Llama (Lowell, [email protected]), Henrique Schmitt (NRL, [email protected]) Abstract: The Navy Precision Optical Interferometer (NPOI) is one of the premier U.S. long-baseline optical interferometric facilities, capable of providing sub-milliarcsecond imaging in the visible. We outline a plan for NPOI for 2020-2030 that will cement its leadership as the highest resolution optical system on the planet, with multi-kilometer baselines. This capability will serve a wide variety of Astro2020 science needs, resolving the sizes and shapes of stars, resolving AGNs, imaging protoplanetary disks, and observing the passage of exoplanets across their stellar disks. 1 1 Introduction The Navy Precision Optical Interferometer (NPOI), a long baseline optical interferometer located on Anderson Mesa, near Flagstaff, Arizona, is operated as a partnership between Lowell Observatory, the Naval Research Laboratory (NRL), and the US Naval Observatory (USNO). It features a Y-shaped layout with 250 m arms, telescopes that can be moved among 30 stations along the arms, visible-band beam combiners, and a vacuum feed system to avoid ground seeing and differential longitudinal dispersion. NPOI currently operates with up to six telescopes simultaneously feeding the beam combination laboratory with 12-cm effective apertures, on baselines (separations between the apertures) up to 98-m.
    [Show full text]
  • TENURE-TRACK Or TENURED ASTRONOMER Lowell Observatory
    TENURE-TRACK or TENURED ASTRONOMER Lowell Observatory invites applications for one or more tenure-track or tenured research positions in astronomy or planetary science. We invite applicants at any career level who can build on current strengths or open new areas for Lowell. A Ph.D. in astronomy, planetary science, or a related field is required, as is an outstanding record of research and demonstrated ability or potential to obtain external research funding. Candidates are invited to describe how they would make use of our observational facilities, but we will give equal consideration to all research areas. The start date for this position is flexible but desired by Fall 2016. Lowell Observatory is an independent, non-profit research institution. Our astronomers have access to our new 4.3-meter Discovery Channel Telescope, operated in partnership with Boston University, the University of Toledo, the University of Maryland/GSFC, Northern Arizona University, Yale University, and Discovery Communications. Lowell also maintains 1.8-m, 1.1-m, and 0.9-m telescopes equipped with optical and IR imagers and spectrographs. We partner with the US Naval Observatory and the Naval Research Laboratory in the Navy Precision Optical Interferometer. Lowell offers numerous opportunities for involvement in education and outreach as well. To apply: Send applications electronically to [email protected]. Applications should include (1) a cover letter and CV, (2) a research plan of 3 pages or less, and (3) names and mail/email addresses of three individuals who have agreed to serve as references. Do not ask for reference letters to be sent in advance.
    [Show full text]
  • Planetary Patrol - an International Effort
    136 COMMISSIONS 16, 17 AND 40 ments devoted to the passage through the asteroid belt which precedes the Jupiter rendezvous. Emphasis was placed on the anticipated contributions of these three programs to our understanding of the solar system. In discussion Carl Sagan stressed that mission B of the Mariner Mars 1971 program is designed to have an orbital period four-thirds the Martian rotational period so that every four days the space­ craft observes the same area under the same lighting conditions. In this way intrinsic Martian albedo changes can be distinguished from effects due to the scattering phase function of surface material. He also mentioned the possibility that photographic mapping of Phobos and Deimos by the Mariner Mars 1971 mission would provide cartography of these moons superior to the best groundbased cartography of Mars. PLANETARY PATROL - AN INTERNATIONAL EFFORT W. A. Baum Lowell Observatory Abstract. An international photographic planetary patrol network, consisting of the Mauna Kea Observatory in Hawaii, the Mount Stromlo Observatory in eastern Australia, the Republic Observa­ tory in South Africa, the Cerro Tololo Inter-American Observatory in northern Chile, and the Lowell Observatory, has been in operation since April 1969. The Magdalena Peak Station of the Mexico State University also participated temporarily. New stations are now being added at the Perth Observatory in western Australia and at the Kavalur Station of the Kodaikanal Observatory in southern India. During 1969 Mars and Jupiter were photographed through blue, green, and red filters; and the network produced more than 11000 fourteen-exposure filmstrips with images of a quality suitable for analysis.
    [Show full text]
  • Orion Newtonian Astrograph Instruction Manual
    INSTRUCTION MANUAL Orion 8" and 10" f/3.9 Newtonian Astrographs #8297 8" f/3.9, #8296 10" f/3.9 #8296 Providing Exceptional Consumer Optical Products Since 1975 OrionTelescopes.com Customer Support (800) 676-1343 • E-mail: [email protected] Corporate Offices (831) 763-7000 • 89 Hangar Way, Watsonville, CA 95076 © 2011 Orion Telescopes & Binoculars IN 406 Rev. A 07/11 2" Finder scope Accessory bracket collar 9x50 Finder Scope Optical tube Tube rings Focus wheel Drawtube Fine focus wheel tensioning thumbscrew Focus wheel Figure 1. The Orion 8" f/3.9 Newtonian Astrograph Congratulations on your purchase of an Orion f/3.9 Newtonian Astrograph! These powerful imaging telescopes feature “fast,” high-quality parabolic optics, a 2" dual-speed Crayford focuser, and excellent mechanical construction with some special features. Optimized for astrophotography with DSLR and astronomical CCD imaging cameras, our f/3.9 Newtonian Astrographs are capable of delivering breathtak- ing imaging performance – for beginning to advanced astrophotographers. This instruction manual covers both the 8" and 10" mod- Parts List els of f/3.9 Newtonian astrograph. Although they differ • Optical tube assembly in aperture and focal length, physical size, and weight, they are otherwise very similar in mechanical construc- • Optical tube dust cap tion and features. So we will use the 8" model to illus- • 1.25" eyepiece holder trate the features of both astrographs. Any exceptions • 9x50 finder scope with bracket related to the 10" model will be noted. • Pair of hinged tube rings This instruction manual will help you to set up and • 2" thread-on extension adapter, 30mm properly use your telescope.
    [Show full text]
  • 1400 West Mars Hill Rd | Flagstaff, Arizona 86001-4499 | USA 928.774.3358 | Lowell.Edu
    1400 West Mars Hill Rd | Flagstaff, Arizona 86001-4499 | USA 928.774.3358 | lowell.edu POSITION ANNOUNCEMENT Multi-Cultural Outreach Astronomer DUTIES: Serve as a Public Program Educator and act as the “Meet an Astronomer” professional for our observatory several times a month. Develop new educational materials and translate existing educational materials for the Spanish speaking community. Participate directly in the Lowell Observatory Camp for Kids programs. These hands-on day camps offer kids the opportunity to learn about STEM through activities such as science investigations, games, story time, music, engineering, art, and more. Partner with schools each year within the Native American Astronomy Outreach program and participate in expansions of that program to other cultures in the region. Partnerships are sponsored by National Science Foundation and private donors. Develop and deliver informal education talks about astronomy, with an emphasis on the most recent astronomy-related news and events, as well as the current and past research done at Lowell Observatory. Engage with visitors and lead tours of the Lowell Observatory campus including occasional tours in Spanish. Deliver public lectures for historical observatory exhibitions. Operate public telescopes, lead outdoor stargazing programs and special pre-K-12 programs. Other duties as assigned, which may include: lead tours of other Lowell telescopes and facilities, assist with design and delivery of new programs, and assist with exclusive programs both on and off-site. REQUIREMENTS: Master’s degree in Astronomy, Physics, or a closely related field or the foreign academic equivalent, plus 1 year of experience in an astronomy related position. Alternatively, Lowell will also accept Bachelor’s degree, in Astronomy, Physics, or a closely related field, with 6 years of experience in an astronomy related position in lieu of a master’s degree and 1 year of experience.
    [Show full text]
  • U. S. Naval Observatory Washington, D. C. 20392-5420 Ued to Advance for the Astronomical Almanac and Astro- Nomical Phenomena
    633 U. S. Naval Observatory Washington, D. C. 20392-5420 ued to advance for The Astronomical Almanac and Astro- nomical Phenomena. The Astronomical Almanac for 2001 was published at the earliest date in over 15 years. Proceed- I. PERSONNEL ings of the U.S. NAO Sesquicentennial Symposium, held last A. Civilian Personnel year, were published during this reporting period. USNO Circular 178, ‘‘List of Active Professional Observatories,’’ Retirements included Alan Bird. by M. Lukac and R. Miller, went to press in June 2000. Tom Corbin retired on Oct. 2, 1999 after a 35-year career Exchange of material also continued with both the Institut de at USNO. F.S. Gauss retired on 2 June, after a 37-year career Mechanique Celeste ͑France͒ and HMNAO. at USNO. A major effort to streamline almanac production is ongo- ing within the NAO. S. Stewart continued to review, docu- B. DoD Science and Engineering Apprenticeship ment, upgrade, and standardize production of Sections E and Program HofThe Astronomical Almanac, as well as documenting the rest of the sections prepared by the U.S. NAO. This infor- The USNO summer intern program for high school and mation and the status of all publications are now on-line college students continued in the summer of 1999. This pro- within the department for easier access and timeliness. Al- gram, called the Science and Engineering Apprentice Pro- manac production software is being moved into an auto- gram ͑SEAP͒, is sponsored by the Department of Defense mated version control system for the purposes of standard- ͑DoD͒ and managed by George Washington University.
    [Show full text]
  • New Horizons 2 Alan Stern (Swri), Rick Binzel (MIT), Hal Levison
    New Horizons 2 Alan Stern (SwRI), Rick Binzel (MIT), Hal Levison (SwRI), Rosaly Lopes (JPL), Bob Millis (Lowell Observatory), and Jeff Moore (NASA Ames) New Horizons is the inaugural mission in NASA’s New Frontiers program—a series of mid-sized planetary exploration projects. This mission was competitively selected in 2001 after a peer review competition between industry-university teams. The mission is on track toward a planned launch in January 2006—just over 6 months hence. The primary objective of New Horizons (NH) is to make the first reconnaissance of the solar system’s farthest planet, Pluto, its comparably sized satellite Charon. If an extended mission is approved, New Horizons may be able to also flyby a Kuiper Belt Object (KBOs) farther from the Sun. The exploration of the Kuiper Belt and Pluto-Charon was ranked as the highest new start priority for planetary exploration by the National Research Council’s recently completed (2002) Decadal Survey for Planetary Science. In accomplishing its goals, the mission is expected to reveal fundamental new insights into the nature of the outer solar system, the formation history of the planets, the workings of binary worlds, and the ancient repository of water and organic building blocks called the Kuiper Belt. Beyond its scientific ambitions, New Horizons is also breaking ground in lowering the cost of exploration of the outer solar system—for it is being built and launched for what are literally dimes on the dollar compared to deep outer solar system missions like Voyager, Galileo, and Cassini. The New Horizons spacecraft carries a suite of seven advanced, miniaturized instruments to obtain detailed imagery, mapping spectroscopy, thermal mapping, gravitational data, and in situ plasma composition, density, and energy sampling of the exotic, icy Pluto- Charon binary and a modest-sized (~50 km diameter) KBO.
    [Show full text]
  • Orion® Ritchey-Chrétien Astrographs
    INSTRUCTION MANUAL Orion® Ritchey-Chrétien Astrographs #8268 6" f/9 RC #8267 8" f/8 RC #8266 10" f/8 RC #8267 #8266 #8268 Providing Exceptional Consumer Optical Products Since 1975 OrionTelescopes.com Customer Support (800) 676-1343 • E-mail: [email protected] Corporate Offices (831) 763-7000 • 89 Hangar Way, Watsonville, CA 95076 IN 361 Rev. B 5/15 Congratulations on your purchase of an Orion Unpacking Your Telescope Ritchey-Chretien astrograph. These compact but large-aperture telescopes are designed and opti- Use care when unpacking the shipping carton. We recom- mized for high-performance astrophotography mend keeping the boxes and all original packaging materi- als. In the event that the telescope needs to be shipped to with CCD and DSLR cameras. Sporting an optical another location, or returned for warranty repair, having the design comprising hyperbolic primary and second- proper packaging will ensure that your telescope will survive ary mirrors, the RC is highly regarded by advanced the journey intact. Returns for refund or exchange will not be astrophotographers and professional observato- accepted without all of the original packaging. Once all items ries worldwide. Even the vaunted Hubble Space have been removed from the box take a moment to confirm Telescope is an RC! Orion RCs deliver exceptional that all pieces are present and intact. Refer to the Parts List to aid in identifying the included items. image quality and resolution with zero image shift, minimal coma, a highly baffled steel tube for out- standing contrast, and exclusive mounting options The Focuser for optional finder scopes and guide scopes.
    [Show full text]
  • To Photographing the Planets, Stars, Nebulae, & Galaxies
    Astrophotography Primer Your FREE Guide to photographing the planets, stars, nebulae, & galaxies. eeBook.inddBook.indd 1 33/30/11/30/11 33:01:01 PPMM Astrophotography Primer Akira Fujii Everyone loves to look at pictures of the universe beyond our planet — Astronomy Picture of the Day (apod.nasa.gov) is one of the most popular websites ever. And many people have probably wondered what it would take to capture photos like that with their own cameras. The good news is that astrophotography can be incredibly easy and inexpensive. Even point-and- shoot cameras and cell phones can capture breathtaking skyscapes, as long as you pick appropriate subjects. On the other hand, astrophotography can also be incredibly demanding. Close-ups of tiny, faint nebulae, and galaxies require expensive equipment and lots of time, patience, and skill. Between those extremes, there’s a huge amount that you can do with a digital SLR or a simple webcam. The key to astrophotography is to have realistic expectations, and to pick subjects that are appropriate to your equipment — and vice versa. To help you do that, we’ve collected four articles from the 2010 issue of SkyWatch, Sky & Telescope’s annual magazine. Every issue of SkyWatch includes a how-to guide to astrophotography and visual observing as well as a summary of the year’s best astronomical events. You can order the latest issue at SkyandTelescope.com/skywatch. In the last analysis, astrophotography is an art form. It requires the same skills as regular photography: visualization, planning, framing, experimentation, and a bit of luck.
    [Show full text]
  • Lick Observatory Records: Correspondence UA.036.Ser.01
    http://oac.cdlib.org/findaid/ark:/13030/c8dj5m3f No online items Guide to the Lick Observatory Records: Correspondence UA.036.Ser.01 Alix Norton University of California, Santa Cruz 2015 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Guide to the Lick Observatory UA.036.Ser.01 1 Records: Correspondence UA.036.Ser.01 Language of Material: English Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Correspondence Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.01 Physical Description: 148.5 Linear Feet257 boxes and 54 microfilm reels Date (inclusive): 1833-2009 Date (bulk): 1870-1960 Access Collection is open for research. The physical copybooks are restricted due to the fragile nature of the material. All use is directed to the microfilm of these volumes. The microfilm reels can be accessed by requesting them from Special Collections via the Library Catalog. Historical note The Lick Observatory was completed in 1888 and continues to be an active astronomy research facility at the summit of Mount Hamilton, near San Jose, California. It is named after James Lick (1796-1876), who left $700,000 in 1875 to purchase land and build a facility that would be home to "a powerful telescope, superior to and more powerful than any telescope yet made". The completion of the Great Lick Refractor in 1888 made the observatory home to the largest refracting telescope in the world for 9 years, until the completion of the 40-inch refractor at Yerkes Observatory in 1897. Since its founding in 1887, the Lick Observatory facility has provided on-site housing on Mount Hamilton for researchers, their families, and staff, making it the world's oldest residential observatory.
    [Show full text]