CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea

Total Page:16

File Type:pdf, Size:1020Kb

CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea BI82CH09-Wiedenheft ARI 15 May 2013 4:39 CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea Rotem Sorek,1 C. Martin Lawrence,2,3 and Blake Wiedenheft4 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; email: [email protected] 2Thermal Biology Institute, 3Department of Chemistry and Biochemistry, and 4Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana 59717; email: [email protected], [email protected] Annu. Rev. Biochem. 2013. 82:237–66 Keywords First published online as a Review in Advance on bacterial immunity, bacteriophage, crRNA, RNA interference, small March 11, 2013 RNAs The Annual Review of Biochemistry is online at biochem.annualreviews.org Abstract This article’s doi: Effective clearance of an infection requires that the immune system 10.1146/annurev-biochem-072911-172315 rapidly detects and neutralizes invading parasites while strictly avoid- Annu. Rev. Biochem. 2013.82:237-266. Downloaded from www.annualreviews.org Copyright c 2013 by Annual Reviews. ing self-antigens that would result in autoimmunity. The cellular ma- Access provided by Weizmann Institute of Science on 08/03/15. For personal use only. All rights reserved chinery and complex signaling pathways that coordinate an effective immune response have generally been considered properties of the eu- karyotic immune system. However, a surprisingly sophisticated adap- tive immune system that relies on small RNAs for sequence-specific targeting of foreign nucleic acids was recently discovered in bacteria and archaea. Molecular vaccination in prokaryotes is achieved by inte- grating short fragments of foreign nucleic acids into a repetitive locus in the host chromosome known as a CRISPR (clustered regularly in- terspaced short palindromic repeat). Here we review the mechanisms of CRISPR-mediated immunity and discuss the ecological and evolu- tionary implications of these adaptive defense systems. 237 BI82CH09-Wiedenheft ARI 15 May 2013 4:39 environmental and medical science is currently Contents reaching a new crescendo. In the 1980s, marine virologists reported that one liter of sea water INTRODUCTION.................. 238 contains approximately ten billion bacterio- CRISPR DESIGN AND phages, and today these viruses are generally DISTRIBUTION................. 238 considered the most abundant and diverse CRISPRs AND THEIR biological entities on Earth (2–4). The selective ASSOCIATED PROTEIN pressures imposed by these viral predators have MACHINERY.................... 239 a profound impact on the composition and the Type I CRISPR-Associated behavior of microbial communities in every Systems........................ 241 ecological setting (5), and microbial hosts have Type II CRISPR-Associated evolved various mechanisms to evade infec- Systems........................ 243 tion (6–9). Historically our appreciation for Type III CRISPR-Associated microbial immune systems had been restricted Systems........................ 244 to innate defense mechanisms (e.g., restriction IMMUNE SYSTEM ACTIVATION modification and receptor switching), but a ANDREGULATION............. 244 nucleic acid–based adaptive immune system THREE STAGES OF was recently discovered (10–13). Bacteria and CRISPR-MEDIATED archaea acquire resistance to viral and plasmid IMMUNITY...................... 245 challengers by integrating short fragments of CRISPRAdaptation............... 245 foreign nucleic acid into the host chromosome CRISPR RNA Biogenesis . 249 at one end of a repetitive element known as Finding Your Foe: Target a CRISPR (clustered regularly interspaced Surveillance and Destruction . 253 short palindromic repeat). CRISPR-mediated ECOLOGICAL IMPLICATIONS adaptive immunity proceeds in three distinct OF ADAPTIVE IMMUNITY . 255 stages: acquisition of foreign DNA, CRISPR Sampling of CRISPRs in Microbial RNA (crRNA) biogenesis, and target interfer- Communities................... 256 ence (Figure 1a). Although these three basic MathematicalModeling............ 256 stages appear to be common to all CRISPR The Influence of CRISPR systems, CRISPR loci and the proteins that onPhageDiversity.............. 257 mediate each stage of adaptive immunity The Role of Horizontal Gene are remarkably diverse (Figure 1b). Here Transfer in CRISPR-Phage we review the functional diversity among Interactions..................... 258 different versions of this immune system and discuss the evolutionary implications of this Annu. Rev. Biochem. 2013.82:237-266. Downloaded from www.annualreviews.org rapidly evolving, heritable immune system on Access provided by Weizmann Institute of Science on 08/03/15. For personal use only. microbial evolution. INTRODUCTION In the late 1800s, Ernest Hanbury Hankin (1) reported that water from the Ganges and CRISPR DESIGN AND Yamuna rivers in India contained an antibac- DISTRIBUTION terial agent that killed Vibrio cholerae.These CRISPRs are a diverse family of DNA re- filterable agents, later termed bacteriophages peats that all share a common architecture. (from “bacteria” and the Greek word phagein, Each CRISPR locus consists of a series of “to devour”), were heralded as a potential treat- short repeat sequences [typically 20–50 base ment for diseases. Although phages have yet pairs (bp) long] separated by unique spacer to reach their therapeutic potential in clinical sequences of a similar length (Figure 1a). The settings, the importance of bacteriophages in repeat sequences within a CRISPR locus are 238 Sorek · Lawrence · Wiedenheft BI82CH09-Wiedenheft ARI 15 May 2013 4:39 conserved, but repeats in different CRISPR this skewed distribution remains speculative, loci can vary in both sequence and length an assessment of 24 Enterococcus faecalis genome (14). Phylogenetic analyses of CRISPR repeat sequences revealed an inverse correlation sequences have shown that CRISPRs can be between the presence of a CRISPR/Cas locus organized into clusters based on the sequence and antibiotic resistance (20). similarity of their repeat sequences. Some An adenine and thymine (AT)-rich sequence repeats are palindromic and are predicted to called a leader often flanks CRISPR loci. Com- generate RNAs with stable hairpin structures, parative analyses have shown that spacer se- whereas others are predicted to be unstructured quences nearest the leader are most diverse, (Figure 1b) (14). Despite the extreme diversity whereas repeats farthest from the leader (in the of CRISPR repeat sequences, most repeats region known as the trailer) are often degener- have a conserved GAAA(C/G) motif at the 3 ate (21, 22). Although the function of CRISPRs end, which may serve as a binding site for one was unknown at the time of this initial obser- or more of the conserved Cas proteins (14–16). vation, the leader-end diversity and trailer-end In addition to repeat and spacer sequence degeneracy indicated these loci had polarity de- diversity, the number of CRISPR loci and the fined by the position of the leader. We now length of each locus are also variable. It is not know that the leader sequences contain pro- uncommon for a single prokaryotic chromo- moter elements (23–26) and binding sites for some to contain multiple CRISPR loci (e.g., 18 regulatory proteins (25, 26) critical to crRNA CRISPR loci in Methanocaldococcus sp. FS406- expression and new sequence acquisition (27). 22), and some of these loci can be thousands of base pairs in length (hundreds of repeat- CRISPRs AND THEIR spacer units). The number of distinct CRISPR ASSOCIATED PROTEIN loci and the length of these repetitive arrays MACHINERY do not correlate with genome size; some of In addition to the leader sequence, comparative the smallest microbial genomes (e.g., Nanoar- analyses have also identified a variable cassette chaeum equitans) contain multiple CRISPR loci, of cas genes, which is typically located adjacent and CRISPRs in some genomes account for to a CRISPR locus (Figure 1b). Four cas genes more than 1% of the chromosome (e.g., Sul- were initially identified in genomes contain- folobus solfataricus). ing CRISPRs (21), but accumulating genome The repeat-spacer-repeat pattern now sequences and the implementation of increas- considered to be the defining characteristic ingly sophisticated search methods have led to of a CRISPR locus was initially described the identification of ∼45 different gene families in Escherichia coli in 1987 (17). However, the commonly found in association with CRISPRs prevalence and phylogenetic distribution of (28). Six of these cas genes (cas1–cas6) are widely Annu. Rev. Biochem. 2013.82:237-266. Downloaded from www.annualreviews.org these repetitive elements were not appreciated conserved and are considered core cas genes, Access provided by Weizmann Institute of Science on 08/03/15. For personal use only. for more than a decade (16). Computational but only cas1 and cas2 are universally conserved methods for detecting these repeat patterns in genomes that contain CRISPR loci (28, 29). have been developed, and there are cur- cas1 is a hallmark of this immune system, and rently two web-based utilities (CRISPRdb phylogenetic analysis of cas1 sequences suggests and CRISPI) dedicated to the identification several distinct versions of CRISPR systems ex- and annotation of CRISPRs and CRISPR- ist (28, 29). Each of these different phylotypes is associated (cas) genes (18, 19). Interestingly, defined by a unique composition and conserved CRISPRs are unevenly distributed between arrangement of cas genes. Remarkably,
Recommended publications
  • Islamic Geometric Patterns Jay Bonner
    Islamic Geometric Patterns Jay Bonner Islamic Geometric Patterns Their Historical Development and Traditional Methods of Construction with a chapter on the use of computer algorithms to generate Islamic geometric patterns by Craig Kaplan Jay Bonner Bonner Design Consultancy Santa Fe, New Mexico, USA With contributions by Craig Kaplan University of Waterloo Waterloo, Ontario, Canada ISBN 978-1-4419-0216-0 ISBN 978-1-4419-0217-7 (eBook) DOI 10.1007/978-1-4419-0217-7 Library of Congress Control Number: 2017936979 # Jay Bonner 2017 Chapter 4 is published with kind permission of # Craig Kaplan 2017. All Rights Reserved. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • A CRISPR Activation and Interference Toolkit for Industrial Saccharomyces Cerevisiae Strain KE6‑12 Elena Cámara, Ibai Lenitz & Yvonne Nygård*
    www.nature.com/scientificreports OPEN A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6‑12 Elena Cámara, Ibai Lenitz & Yvonne Nygård* Recent advances in CRISPR/Cas9 based genome editing have considerably advanced genetic engineering of industrial yeast strains. In this study, we report the construction and characterization of a toolkit for CRISPR activation and interference (CRISPRa/i) for a polyploid industrial yeast strain. In the CRISPRa/i plasmids that are available in high and low copy variants, dCas9 is expressed alone, or as a fusion with an activation or repression domain; VP64, VPR or Mxi1. The sgRNA is introduced to the CRISPRa/i plasmids from a double stranded oligonucleotide by in vivo homology‑directed repair, allowing rapid transcriptional modulation of new target genes without cloning. The CRISPRa/i toolkit was characterized by alteration of expression of fuorescent protein‑encoding genes under two diferent promoters allowing expression alterations up to ~ 2.5‑fold. Furthermore, we demonstrated the usability of the CRISPRa/i toolkit by improving the tolerance towards wheat straw hydrolysate of our industrial production strain. We anticipate that our CRISPRa/i toolkit can be widely used to assess novel targets for strain improvement and thus accelerate the design‑build‑test cycle for developing various industrial production strains. Te yeast Saccharomyces cerevisiae is one of the most commonly used microorganisms for industrial applications ranging from wine and beer fermentations to the production of biofuels and high-value metabolites1,2. How- ever, some of the current production processes are compromised by low yields and productivities, thus further optimization is required3.
    [Show full text]
  • Modeling Bacteria-Phage Interactions and Its Implications for Phage
    CHAPTER THREE Modeling Bacteria–Phage Interactions and Its Implications for Phage Therapy Saptarshi Sinha, Rajdeep K. Grewal, Soumen Roy1 Bose Institute, Kolkata, India 1Corresponding author: e-mail address: [email protected] Contents 1. The Bacteria–Phage Interaction 104 1.1 Discovery of Bacteriophages: A Brief History 104 1.2 Lytic and Lysogenic Cycle 106 1.3 Adsorption Rate 107 1.4 Multiplicity of Infection 109 1.5 One-Step Growth Curve 110 1.6 Phage Therapy 111 1.7 Bacteria–Phage Coevolution 113 1.8 Modeling Bacteria–Phage Interactions 113 2. Mathematical Modeling 115 2.1 Differential Equations 115 2.2 Basic Model for Bacteria–Phage Interactions 117 2.3 Resource Concentration Factor 118 2.4 Phage Resistance in Bacteria 118 2.5 Bacteria–Phage Interaction Networks 120 2.6 System of ODEs 121 2.7 Recent Developments 122 3. Computer Simulations 124 3.1 Monte Carlo Simulations 124 3.2 Probability Distribution 126 3.3 Probability of Cell Division 128 3.4 Probability of Phage Adsorption 129 3.5 Latent Period and Burst Size 130 3.6 Secondary Infection and Killing 130 4. Phage Bacteria Interaction Under Spatial Limitations 132 4.1 Formation of Plaque 132 4.2 Factors Affecting Plaque Diameter 133 4.3 Modeling of Plaque Growth as a Reaction–Diffusion System 134 # Advances in Applied Microbiology, Volume 103 2018 Elsevier Inc. 103 ISSN 0065-2164 All rights reserved. https://doi.org/10.1016/bs.aambs.2018.01.005 104 Saptarshi Sinha et al. 4.4 Traveling Wave Front Solutions 135 4.5 Cellular Automata Modeling 135 4.6 SIR-Type Modeling 136 Acknowledgments 137 References 138 Abstract Bacteriophages are more abundant than any other organism on our planet.
    [Show full text]
  • Cyclic Di-AMP Signaling in Listeria Monocytogenes by Aaron Thomas
    Cyclic di-AMP signaling in Listeria monocytogenes By Aaron Thomas Whiteley A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Infectious Diseases and Immunity in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Daniel A. Portnoy, Chair Professor Sarah A. Stanley Professor Russell E. Vance Professor Kathleen R. Ryan Summer 2016 Abstract Cyclic di-AMP signaling in Listeria monocytogenes by Aaron Thomas Whiteley Doctor of Philosophy in Infectious Diseases and Immunity University of California, Berkeley Professor Daniel A. Portnoy, Chair The Gram positive facultative intracellular pathogen Listeria monocytogenes is both ubiquitous in the environment and is a facultative intracellular pathogen. A high degree of adaptability to different growth niches is one reason for the success of this organism. In this dissertation, two facets of L. monocytogenes, growth and gene expression have been investigated. The first portion examines the function and necessity of the nucleotide second messenger c-di-AMP, and the second portion of this dissertation examines the signal transduction network required for virulence gene regulation. Through previous genetic screens and biochemical analysis it was found that the nucleotide second messenger cyclic di-adenosine monophosphate (c-di-AMP) is secreted by the bacterium during intracellular and extracellular growth. Depletion of c-di- AMP levels in L. monocytogenes and related bacteria results in sensitivity to cell wall acting antibiotics such as cefuroxime, decreased growth rate, and decreased virulence. We devised a variety of bacterial genetic screens to identify the function of this molecule in bacterial physiology. The sole di-adenylate cyclase (encoded by dacA) responsible for catalyzing synthesis of c-di-AMP in L.
    [Show full text]
  • The Eagle 1939 (Easter)
    96 THE EAGLE . THE EAGLE � I.QttQacQt 1.Q1.1.Q1 l.Q1c1tcQtcbtf.(/hf.Q1 cbt to't c.()'t '" cQt� I.Q1 eb't""" � COLLEGE AWARDS .,pt.,pt &Q'I.,pt tbtlbtc.QJcg.tQt No. 223 VOL. LI June 1939 � l.Q1 cQt cQt following awards were made on the results of the &Q'Ic.()'Ic.()'Ic.()'I&Q'I�cQtc.QJl.Q1f.(/hcQt l.Q1f.(/hcQtf.(/hl.Q1l.Q1c.()'tcQt c.()'tf.(/h l.Q1c.QJtQt�"' � THE Annual Entrance Scholarships Examination, December 1938: Major Scholarships: Read, A. H., Marlborough College, for Mathematics (Baylis Scholar- ship). Goldie, A. W., Wolverhampton Grammar School, for Mathematics. Charlesworth, G. R, Penis tone Grammar School, for Mathematics. Brough, J., Edinburgh University, for Classics. Howorth, R H., Manchester Grammar School, fo r Classics (Patchett Scholarship ). THE COMMEMORATION SERMON Freeman, E. J., King Edward VI School, Birmingham, for Classics. Crook, J. A., Dulwich College, for Classics. By THE MASTER, Sunday, 7 May 1939 Hereward, H. G., King Edward VI School, Birmingham, for Natural Sciences. T from the will of the Lady Robinson, R E., Battersea Grammar School, for History. me begin with a sentence Lapworth, H. J., King Edward VI School, Birmingham, for Modern Margaret: Languages. I "Be it remembered that it was also the last will of the said Minor Scholarships: princess to dissolve the hospital of Saint John in Cambridge Jones, R P. N., Manchester Grammar School, for Mathematics. persons, Bell, W. R G., Bradford Grammar School, for Mathematics. and to alter and to found thereof a College of secular Ferguson, J" Bishop's Stortford College, for Classics.
    [Show full text]
  • Quantitative CRISPR Interference Screens in Yeast Identify Chemical-Genetic Interactions and New Rules for Guide RNA Design Justin D
    Smith et al. Genome Biology (2016) 17:45 DOI 10.1186/s13059-016-0900-9 RESEARCH Open Access Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design Justin D. Smith1,2, Sundari Suresh1, Ulrich Schlecht1, Manhong Wu3, Omar Wagih4, Gary Peltz3, Ronald W. Davis1, Lars M. Steinmetz1,2,5, Leopold Parts2,5,6* and Robert P. St.Onge1* Abstract Background: Genome-scale CRISPR interference (CRISPRi) has been used in human cell lines; however, the features of effective guide RNAs (gRNAs) in different organisms have not been well characterized. Here, we define rules that determine gRNA effectiveness for transcriptional repression in Saccharomyces cerevisiae. Results: We create an inducible single plasmid CRISPRi system for gene repression in yeast, and use it to analyze fitness effects of gRNAs under 18 small molecule treatments. Our approach correctly identifies previously described chemical-genetic interactions, as well as a new mechanism of suppressing fluconazole toxicity by repression of the ERG25 gene. Assessment of multiple target loci across treatments using gRNA libraries allows us to determine generalizable features associated with gRNA efficacy. Guides that target regions with low nucleosome occupancy and high chromatin accessibility are clearly more effective. We also find that the best region to target gRNAs is between the transcription start site (TSS) and 200 bp upstream of the TSS. Finally, unlike nuclease-proficient Cas9 in human cells, the specificity of truncated gRNAs (18 nt of complementarity to the target) is not clearly superior to full-length gRNAs (20 nt of complementarity), as truncated gRNAs are generally less potent against both mismatched and perfectly matched targets.
    [Show full text]
  • Regulation of Stringent Factor by Branched-Chain Amino Acids
    Regulation of stringent factor by branched-chain amino acids Mingxu Fanga and Carl E. Bauera,1 aMolecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405 Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved May 9, 2018 (received for review February 21, 2018) When faced with amino acid starvation, prokaryotic cells induce a Under normal growth conditions, the synthetase activity of Rel is stringent response that modulates their physiology. The stringent thought to be self-inhibited; however, during times of amino acid response is manifested by production of signaling molecules starvation, Rel interacts with stalled ribosomes, which activates guanosine 5′-diphosphate,3′-diphosphate (ppGpp) and guanosine synthetase activity to produce (p)ppGpp. The regulation of hy- 5′-triphosphate,3′-diphosphate (pppGpp) that are also called drolase activity is less understood but may involve one or more alarmones. In many species, alarmone levels are regulated by a downstream domains called the TGS and ACT domains. The TGS multidomain bifunctional alarmone synthetase/hydrolase called domain of SpoT has been shown to interact with an acyl carrier Rel. In this enzyme, there is an ACT domain at the carboxyl region protein, so it is presumed to sense the status of fatty acid metab- that has an unknown function; however, similar ACT domains are olism in E. coli (4). The function of the ACT domain is not as clear; present in other enzymes that have roles in controlling amino acid however, recent cryo-EM structures of E. coli RelA show that this metabolism. In many cases, these other ACT domains have been domain is involved in binding deacyl-tRNA as well as the ribosome shown to allosterically regulate enzyme activity through the bind- (5–7).
    [Show full text]
  • The Alarmone (P)Ppgpp Is Part of the Heat Shock Response of Bacillus
    bioRxiv preprint doi: https://doi.org/10.1101/688689; this version posted July 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 The alarmone (p)ppGpp is part of the heat shock response of Bacillus 2 subtilis 3 4 Heinrich Schäfer1,2, Bertrand Beckert3, Wieland Steinchen4, Aaron Nuss5, Michael 5 Beckstette5, Ingo Hantke1, Petra Sudzinová6, Libor Krásný6, Volkhard Kaever7, Petra 6 Dersch5,8, Gert Bange4*, Daniel Wilson3* & Kürşad Turgay1,2* 7 8 Author affiliations: 9 1 Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, 10 Hannover, Germany. 11 2 Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117 Berlin, Germany 12 3 Institute for Biochemistry and Molecular Biology, Martin-Luther-King Platz 6, University of 13 Hamburg, 20146 Hamburg, Germany. 14 4 Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and 15 Department of Chemistry, Hans-Meerwein-Strasse, 35043 Marburg, Germany. 16 5 Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 17 Braunschweig, Germany 18 6 Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, 19 Czech Republic. 20 7 Hannover Medical School, Research Core Unit Metabolomics, Carl-Neuberg-Strasse 1, 21 30625, Hannover, Germany. 22 8 Institute of Infectiology, Von-Esmarch-Straße 56, University of Münster, Münster, Germany 23 24 Short title: The interplay of heat shock and stringent response 25 1 bioRxiv preprint doi: https://doi.org/10.1101/688689; this version posted July 1, 2019.
    [Show full text]
  • (P)Ppgpp Synthesis by the Ca2+-Dependent Rela-Spot Homolog
    bioRxiv preprint doi: https://doi.org/10.1101/767004; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Plastidial (p)ppGpp synthesis by the Ca2+-dependent RelA-SpoT homolog regulates the adaptation of chloroplast gene expression to darkness in Arabidopsis Sumire Ono1,4, Sae Suzuki1,4, Doshun Ito1 Shota Tagawa2, Takashi Shiina2, and Shinji Masuda3,5 1School of Life Science & Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan 2Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan 3Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan 4These authors contributed equally to the study 5Corresponding author: E-mail, [email protected] Abbreviations: CRSH, Ca2+-activated RSH; flg22, flagellin 22; (p)ppGpp, 5'-di(tri)phosphate 3'-diphosphate; PAMPs; pathogen-associated molecular patterns; RSH, RelA-SpoT homolog; qRT-PCR, quantitative real-time PCR 1 bioRxiv preprint doi: https://doi.org/10.1101/767004; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract In bacteria, the hyper-phosphorylated nucleotides, guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp), function as secondary messengers in the regulation of various metabolic processes of the cell, including transcription, translation, and enzymatic activities, especially under nutrient deficiency. The activity carried out by these nucleotide messengers is known as the stringent response.
    [Show full text]
  • Tetracycline Modulates the Valine Induced Stringent Response and Decreases Expressed Rpos in Escherichia Coli
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 15: 117 – 124 Copyright © April 2011, M&I UBC Tetracycline Modulates the Valine Induced Stringent Response and Decreases Expressed RpoS in Escherichia coli Natasha Castillon, Krysta Coyle, June Lai, and Cindy Yang Department of Microbiology & Immunology, University of British Columbia The stringent response in Escherichia coli is a physiological response to stress characterized by accumulation of the alarmone (p)ppGpp and the down-regulation of various processes involved in cellular growth and protein synthesis. It has been previously shown that activation of the stringent response by amino acid starvation is able to confer protection against various classes of antibiotics, including tetracycline and ampicillin. However, no observations have been made on partial activation of stringency. This investigation attempted to repress the level of bacterial stringent response in E. coli CP78 through the use of tetracycline. Tetracycline is an antibiotic which has been shown to restrict the cellular accumulation of (p)ppGpp in CP78 Escherichia coli. The effectiveness of the starvation by valine was monitored by measuring turbidity. The modulation of stringent response was monitored by the level of RpoS, since RpoS production is known to be enhanced by activated stringent response. As measured by turbidity, we successfully established an amino acid starvation condition with valine treatment as seen in the inhibited growth of CP78 cells as compared to untreated cells. The valine inhibition of the growth of the bacteria appeared to be reduced by the addition of tetracycline. However, cultures treated with high concentrations of tetracycline seemed to become more turbid than the untreated control even though they had similar levels of protein.
    [Show full text]
  • CRISPR-Cas Systems Restrict Horizontal Gene Transfer In
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304717; this version posted September 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 CRISPR-Cas systems restrict horizontal gene transfer in 2 Pseudomonas aeruginosa 3 Running title: CRISPR-Cas systems in Pseudomonas aeruginosa 4 5 Authors: Rachel M. Wheatley1,* and R. Craig MacLean1 6 7 Affiliations: Department of Zoology, University of Oxford, Oxford OX1 3PS, UK 8 9 Contact details: [email protected] 10 11 Competing interests 12 This project was supported by Wellcome Trust Grant 106918/Z/15/Z held by RCM. The authors declare 13 they have no conflict of interest. 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304717; this version posted September 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 28 Abstract 29 CRISPR-Cas systems provide bacteria and archaea with an adaptive immune system that targets foreign 30 DNA. However, the xenogenic nature of immunity provided by CRISPR-Cas raises the possibility that 31 these systems may constrain horizontal gene transfer. Here we test this hypothesis in the opportunistic 32 pathogen Pseudomonas aeruginosa, which has emerged an important model system for understanding 33 CRISPR-Cas function. Across the diversity of P. aeruginosa, active CRISPR-Cas systems are 34 associated with smaller genomes and a reduced GC content, suggesting that CRISPR-Cas inhibits the 35 acquisition of foreign DNA.
    [Show full text]
  • CRISPR Interference (Crispri) for Gene Regulation and Succinate Production in Cyanobacterium S
    Huang et al. Microb Cell Fact (2016) 15:196 DOI 10.1186/s12934-016-0595-3 Microbial Cell Factories RESEARCH Open Access CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942 Chun‑Hung Huang, Claire R. Shen, Hung Li, Li‑Yu Sung, Meng‑Ying Wu and Yu‑Chen Hu* Abstract Background: Cyanobacterium Synechococcus elongatus PCC 7942 holds promise for biochemical conversion, but gene deletion in PCC 7942 is time-consuming and may be lethal to cells. CRISPR interference (CRISPRi) is an emerging technology that exploits the catalytically inactive Cas9 (dCas9) and single guide RNA (sgRNA) to repress sequence- specific genes without the need of gene knockout, and is repurposed to rewire metabolic networks in various pro‑ caryotic cells. Results: To employ CRISPRi for the manipulation of gene network in PCC 7942, we integrated the cassettes express‑ ing enhanced yellow fluorescent protein (EYFP), dCas9 and sgRNA targeting different regions on eyfp into the PCC 7942 chromosome. Co-expression of dCas9 and sgRNA conferred effective and stable suppression of EYFP produc‑ tion at efficiencies exceeding 99%, without impairing cell growth. We next integrated the dCas9 and sgRNA targeting endogenous genes essential for glycogen accumulation (glgc) and succinate conversion to fumarate (sdhA and sdhB). Transcription levels of glgc, sdhA and sdhB were effectively suppressed with efficiencies depending on the sgRNA binding site. Targeted suppression of glgc reduced the expression to 6.2%, attenuated the glycogen accumulation to 4.8% and significantly enhanced the succinate titer. Targeting sdhA or sdhB also effectively downregulated the gene expression and enhanced the succinate titer 12.5-fold to 0.58–0.63 mg/L.
    [Show full text]