The ANGLE Project: Implementing Opengl ES 2.0 on Direct3d 545
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to the Vulkan Computer Graphics API
1 Introduction to the Vulkan Computer Graphics API Mike Bailey mjb – July 24, 2020 2 Computer Graphics Introduction to the Vulkan Computer Graphics API Mike Bailey [email protected] SIGGRAPH 2020 Abridged Version This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License http://cs.oregonstate.edu/~mjb/vulkan ABRIDGED.pptx mjb – July 24, 2020 3 Course Goals • Give a sense of how Vulkan is different from OpenGL • Show how to do basic drawing in Vulkan • Leave you with working, documented, understandable sample code http://cs.oregonstate.edu/~mjb/vulkan mjb – July 24, 2020 4 Mike Bailey • Professor of Computer Science, Oregon State University • Has been in computer graphics for over 30 years • Has had over 8,000 students in his university classes • [email protected] Welcome! I’m happy to be here. I hope you are too ! http://cs.oregonstate.edu/~mjb/vulkan mjb – July 24, 2020 5 Sections 13.Swap Chain 1. Introduction 14.Push Constants 2. Sample Code 15.Physical Devices 3. Drawing 16.Logical Devices 4. Shaders and SPIR-V 17.Dynamic State Variables 5. Data Buffers 18.Getting Information Back 6. GLFW 19.Compute Shaders 7. GLM 20.Specialization Constants 8. Instancing 21.Synchronization 9. Graphics Pipeline Data Structure 22.Pipeline Barriers 10.Descriptor Sets 23.Multisampling 11.Textures 24.Multipass 12.Queues and Command Buffers 25.Ray Tracing Section titles that have been greyed-out have not been included in the ABRIDGED noteset, i.e., the one that has been made to fit in SIGGRAPH’s reduced time slot. -
GLSL 4.50 Spec
The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. -
Computer Graphics on Mobile Devices
Computer Graphics on Mobile Devices Bruno Tunjic∗ Vienna University of Technology Figure 1: Different mobile devices available on the market today. Image courtesy of ASU [ASU 2011]. Abstract 1 Introduction Computer graphics hardware acceleration and rendering techniques Under the term mobile device we understand any device designed have improved significantly in recent years. These improvements for use in mobile context [Marcial 2010]. In other words this term are particularly noticeable in mobile devices that are produced in is used for devices that are battery-powered and therefore physi- great amounts and developed by different manufacturers. New tech- cally movable. This group of devices includes mobile (cellular) nologies are constantly developed and this extends the capabilities phones, personal media players (PMP), personal navigation devices of such devices correspondingly. (PND), personal digital assistants (PDA), smartphones, tablet per- sonal computers, notebooks, digital cameras, hand-held game con- soles and mobile internet devices (MID). Figure 1 shows different In this paper, a review about the existing and new hardware and mobile devices available on the market today. Traditional mobile software, as well as a closer look into some of the most important phones are aimed at making and receiving telephone calls over a revolutionary technologies, is given. Special emphasis is given on radio link. PDAs are personal organizers that later evolved into de- new Application Programming Interfaces (API) and rendering tech- vices with advanced units communication, entertainment and wire- niques that were developed in recent years. A review of limitations less capabilities [Wiggins 2004]. Smartphones can be seen as a that developers have to overcome when bringing graphics to mobile next generation of PDAs since they incorporate all its features but devices is also provided. -
Opencl on the GPU San Jose, CA | September 30, 2009
OpenCL on the GPU San Jose, CA | September 30, 2009 Neil Trevett and Cyril Zeller, NVIDIA Welcome to the OpenCL Tutorial! • Khronos and industry perspective on OpenCL – Neil Trevett Khronos Group President OpenCL Working Group Chair NVIDIA Vice President Mobile Content • NVIDIA and OpenCL – Cyril Zeller NVIDIA Manager of Compute Developer Technology Khronos and the OpenCL Standard Neil Trevett OpenCL Working Group Chair, Khronos President NVIDIA Vice President Mobile Content Copyright Khronos 2009 Who is the Khronos Group? • Consortium creating open API standards ‘by the industry, for the industry’ – Non-profit founded nine years ago – over 100 members - any company welcome • Enabling software to leverage silicon acceleration – Low-level graphics, media and compute acceleration APIs • Strong commercial focus – Enabling members and the wider industry to grow markets • Commitment to royalty-free standards – Industry makes money through enabled products – not from standards themselves Silicon Community Software Community Copyright Khronos 2009 Apple Over 100 companies creating authoring and acceleration standards Board of Promoters Processor Parallelism CPUs GPUs Multiple cores driving Emerging Increasingly general purpose performance increases Intersection data-parallel computing Improving numerical precision Multi-processor Graphics APIs programming – Heterogeneous and Shading e.g. OpenMP Computing Languages Copyright Khronos 2009 OpenCL Commercial Objectives • Grow the market for parallel computing • Create a foundation layer for a parallel -
Fraps Windows 10
Fraps windows 10 Continue I noticed a person in the myst-Uru community point out that FRAPS doesn't work on their Windows 10 machine. I'm on the verge of upgrading my main machine to 10. So what's going on? First, visit the FRAPS website. FRAPS is advertised for Windows until version 7. The newest version of 3.5.99 was released in February 2013... two or more years ago. (By number 11/24/2018 there are still no updates.) Are they going to update it for Windows 10? I can't find any information to reliably answer that question. I've seen some people commenting that the latest pace of updates several times a year stopped in February 2013. Requests that use the contact form in FRAPS have largely gone unanswered. A June 2015 video shows FRAPS working in Win10 on older hardware. Some search shows people have problems with FRAPS on Win10. There is some discussion of this issue in the FRAPS Windows 10 Thread issues on Microsoft forums. Update 11/2018: No new FRAPS updates, 5 years. Now I find FRAPS dead. Exploring ways to get FRAPS working on Win10... I don't find good fixes or solutions. Tom's Hardware Review and other technology sites have no answers. In this topic, one person says they received an email back from FRAPS people saying an update to Windows 10 is in the process. (I take it as a rumor.) This one doesn't exist. This is from the post in August 2015. The date of the letter was not included. -
Implementing FPGA Design with the Opencl Standard
Implementing FPGA Design with the OpenCL Standard WP-01173-3.0 White Paper Utilizing the Khronos Group’s OpenCL™ standard on an FPGA may offer significantly higher performance and at much lower power than is available today from hardware architectures such as CPUs, graphics processing units (GPUs), and digital signal processing (DSP) units. In addition, an FPGA-based heterogeneous system (CPU + FPGA) using the OpenCL standard has a significant time-to-market advantage compared to traditional FPGA development using lower level hardware description languages (HDLs) such as Verilog or VHDL. 1 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. Introduction The initial era of programmable technologies contained two different extremes of programmability. As illustrated in Figure 1, one extreme was represented by single core CPU and digital signal processing (DSP) units. These devices were programmable using software consisting of a list of instructions to be executed. These instructions were created in a manner that was conceptually sequential to the programmer, although an advanced processor could reorder instructions to extract instruction-level parallelism from these sequential programs at run time. In contrast, the other extreme of programmable technology was represented by the FPGA. These devices are programmed by creating configurable hardware circuits, which execute completely in parallel. A designer using an FPGA is essentially creating a massively- fine-grained parallel application. For many years, these extremes coexisted with each type of programmability being applied to different application domains. However, recent trends in technology scaling have favored technologies that are both programmable and parallel. Figure 1. -
The Opengl Graphics System
OpenGL R ES Native Platform Graphics Interface (Version 1.0) Editor: Jon Leech Copyright c 2002-2003 Promoters of the Khronos Group (3Dlabs, ARM Ltd., ATI Technologies, Inc., Discreet, Ericsson Mobile, Imagination Technologies Group plc, Motorola, Inc., Nokia, Silicon Graphics, Inc., SK Telecom, and Sun Microsystems). This document is protected by copyright, and contains information proprietary to The Khronos Group. Any copying, adaptation, distribution, public performance, or public display of this document without the express written consent of the copy- right holders is strictly prohibited. The receipt or possession of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manu- facture, use, or sell anything that it may describe, in whole or in part. R This document is a derivative work of ”OpenGL Graphics with the X Window System (Version 1.4)”. Silicon Graphics, Inc. owns, and reserves all rights in, the latter document. OpenGL is a registered trademark, and OpenGL ES is a trademark, of Silicon Graphics, Inc. Contents 1 Overview 1 2 EGL Operation 2 2.1 Native Window System and Rendering APIs . 2 2.1.1 Scalar Types . 2 2.1.2 Displays . 3 2.2 Rendering Contexts and Drawing Surfaces . 3 2.2.1 Using Rendering Contexts . 4 2.2.2 Rendering Models . 4 2.2.3 Interaction With Native Rendering . 4 2.3 Direct Rendering and Address Spaces . 5 2.4 Shared State . 5 2.4.1 Texture Objects . 6 2.5 Multiple Threads . 6 2.6 Power Management . 7 3 EGL Functions and Errors 8 3.1 Errors . -
414 Advances in Opengl ES for Ios 5 V3 DD F
Advances in OpenGL ES for iOS 5 Session 414 Gokhan Avkarogullari Eric Sunalp iPhone GPU Software These are confidential sessions—please refrain from streaming, blogging, or taking pictures 1 iPad 2 2 3 Per Pixel Lighting/ Normal Maps 4 LightMaps GlossMaps SpecularMaps 5 Dynamic Shadows 6 MSAA 7 Higher Poly Models 8 GLKit New Features 9 GLKit New Features 10 OpenGL ES 2.0 Molecules.app OpenGL ES 1.1 OpenGL ES 2.0 11 GLKit Goals • Making life easier for the developers ■ Find common problems ■ Make solutions available • Encourage unique look ■ Fixed-function pipeline games look similar ■ Shaders to rescue ■ How about porting 12 GLKit GLKTextureLoader GLKTextureLoader • Give a reference—get an OpenGL Texture Object • No need to deal ImageIO, CGImage, libjpg, libpng… 13 GLKit GLKView and GLKViewController GLKTextureLoader GLKView/ViewController • First-class citizen of UIKit hierarchy • Encapsulates FBOs, display links, MSAA management… 14 GLKit GLKMath GLKTextureLoader GLKView/ViewController GLKMath • 3D Graphics math library • Matrix stack, transforms, quaternions… 15 GLKit GLKEffects GLKTextureLoader GLKView/ViewController GLKMath GLKEffects • Fixed-function pipeline features implemented in ES 2.0 context 16 GLKTextureLoader 17 GLKTextureLoader Overview • Makes texture loading simple • Supports common image formats ■ PNG, JPEG, TIFF, etc. • Non-premultiplied data stays non-premultiplied • Cubemap texture support • Convenient loading options ■ Force premultiplication ■ Y-flip ■ Mipmap generation 18 GLKTextureLoader Basic usage • Make an EAGLContext -
Webgl™ Optimizations for Mobile
WebGL™ Optimizations for Mobile Lorenzo Dal Col Senior Software Engineer, ARM 1 Agenda 1. Introduction to WebGL™ on mobile . Rendering Pipeline . Locate the bottleneck 2. Performance analysis and debugging tools for WebGL . Generic optimization tips 3. PlayCanvas experience . WebGL Inspector 4. Use case: PlayCanvas Swooop . ARM® DS-5 Streamline . ARM Mali™ Graphics Debugger 5. Q & A 2 Bring the Power of OpenGL® ES to Mobile Browsers What is WebGL™? Why WebGL? . A cross-platform, royalty free web . It brings plug-in free 3D to the web, standard implemented right into the browser. Low-level 3D graphics API . Major browser vendors are members of . Based on OpenGL® ES 2.0 the WebGL Working Group: . A shader based API using GLSL . Apple (Safari® browser) . Mozilla (Firefox® browser) (OpenGL Shading Language) . Google (Chrome™ browser) . Opera (Opera™ browser) . Some concessions made to JavaScript™ (memory management) 3 Introduction to WebGL™ . How does it fit in a web browser? . You use JavaScript™ to control it. Your JavaScript is embedded in HTML5 and uses its Canvas element to draw on. What do you need to start creating graphics? . Obtain WebGLrenderingContext object for a given HTMLCanvasElement. It creates a drawing buffer into which the API calls are rendered. For example: var canvas = document.getElementById('canvas1'); var gl = canvas.getContext('webgl'); canvas.width = newWidth; canvas.height = newHeight; gl.viewport(0, 0, canvas.width, canvas.height); 4 WebGL™ Stack What is happening when a WebGL page is loaded . User enters URL . HTTP stack requests the HTML page Browser . Additional requests will be necessary to get Space User JavaScript™ code and other resources WebKit JavaScript Engine . -
Gaia Sky Documentation Release 1.5.0
Gaia Sky Documentation Release 1.5.0 Toni Sagrista Selles Jul 06, 2018 Contents 1 Main features 3 2 Contents 5 2.1 Download.................................................5 2.2 Requirements and Installation......................................5 2.2.1 System requirements......................................5 2.2.2 Installation and uninstallation..................................5 2.2.3 Running from source......................................7 2.3 Running Gaia Sky............................................7 2.3.1 Running from source......................................8 2.3.2 Running from downloaded package..............................9 2.4 Documentation.............................................. 10 2.4.1 Settings and configuration................................... 10 2.4.2 The configuration file...................................... 12 2.4.3 Graphics settings........................................ 13 2.4.4 Graphics performance..................................... 15 2.4.5 User Interface.......................................... 19 2.4.6 Controls............................................. 22 2.4.7 Camera modes......................................... 26 2.4.8 Cinematic camera........................................ 29 2.4.9 Stereoscopic (3D) mode.................................... 29 2.4.10 Planetarium mode........................................ 32 2.4.11 Panorama mode......................................... 32 2.4.12 Recording and playing camera paths.............................. 35 2.4.13 Performance.......................................... -
Opengl Shading Languag 2Nd Edition (Orange Book)
OpenGL® Shading Language, Second Edition By Randi J. Rost ............................................... Publisher: Addison Wesley Professional Pub Date: January 25, 2006 Print ISBN-10: 0-321-33489-2 Print ISBN-13: 978-0-321-33489-3 Pages: 800 Table of Contents | Index "As the 'Red Book' is known to be the gold standard for OpenGL, the 'Orange Book' is considered to be the gold standard for the OpenGL Shading Language. With Randi's extensive knowledge of OpenGL and GLSL, you can be assured you will be learning from a graphics industry veteran. Within the pages of the second edition you can find topics from beginning shader development to advanced topics such as the spherical harmonic lighting model and more." David Tommeraasen, CEO/Programmer, Plasma Software "This will be the definitive guide for OpenGL shaders; no other book goes into this detail. Rost has done an excellent job at setting the stage for shader development, what the purpose is, how to do it, and how it all fits together. The book includes great examples and details, and good additional coverage of 2.0 changes!" Jeffery Galinovsky, Director of Emerging Market Platform Development, Intel Corporation "The coverage in this new edition of the book is pitched just right to help many new shader- writers get started, but with enough deep information for the 'old hands.'" Marc Olano, Assistant Professor, University of Maryland "This is a really great book on GLSLwell written and organized, very accessible, and with good real-world examples and sample code. The topics flow naturally and easily, explanatory code fragments are inserted in very logical places to illustrate concepts, and all in all, this book makes an excellent tutorial as well as a reference." John Carey, Chief Technology Officer, C.O.R.E. -
Khronos Template 2015
Ecosystem Overview Neil Trevett | Khronos President NVIDIA Vice President Developer Ecosystem [email protected] | @neilt3d © Copyright Khronos Group 2016 - Page 1 Khronos Mission Software Silicon Khronos is an Industry Consortium of over 100 companies creating royalty-free, open standard APIs to enable software to access hardware acceleration for graphics, parallel compute and vision © Copyright Khronos Group 2016 - Page 2 http://accelerateyourworld.org/ © Copyright Khronos Group 2016 - Page 3 Vision Pipeline Challenges and Opportunities Growing Camera Diversity Diverse Vision Processors Sensor Proliferation 22 Flexible sensor and camera Use efficient acceleration to Combine vision output control to GENERATE PROCESS with other sensor data an image stream the image stream on device © Copyright Khronos Group 2016 - Page 4 OpenVX – Low Power Vision Acceleration • Higher level abstraction API - Targeted at real-time mobile and embedded platforms • Performance portability across diverse architectures - Multi-core CPUs, GPUs, DSPs and DSP arrays, ISPs, Dedicated hardware… • Extends portable vision acceleration to very low power domains - Doesn’t require high-power CPU/GPU Complex - Lower precision requirements than OpenCL - Low-power host can setup and manage frame-rate graph Vision Engine Middleware Application X100 Dedicated Vision Processing Hardware Efficiency Vision DSPs X10 GPU Compute Accelerator Multi-core Accelerator Power Efficiency Power X1 CPU Accelerator Computation Flexibility © Copyright Khronos Group 2016 - Page 5 OpenVX Graphs