Chapter 18 *Lecture Powerpoint the Circulatory System: Blood
Total Page:16
File Type:pdf, Size:1020Kb
Chapter 18 *Lecture PowerPoint The Circulatory System: Blood *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • Many myths about blood – Mysterious ―vital force‖ – Drained ―bad-blood‖ for medical reasons – Hereditary traits were once thought to be transmitted through blood • Blood cells were seen with the first microscopes • Hematology—the study of blood • Recent developments in this field help save lives 18-2 Introduction • Expected Learning Outcomes – Describe the functions and major components of the circulatory system. – Describe the components and physical properties of blood. – Describe the composition of blood plasma. – Explain the significance of blood viscosity and osmolarity. – Describe in general terms how blood is produced. 18-3 Functions of the Circulatory System • Circulatory system consists of the heart, blood vessels, and blood • Cardiovascular system refers only to the heart and blood vessels • Hematology—the study of blood • Functions of circulatory system – Transport • O2, CO2, nutrients, wastes, hormones, and stem cells – Protection • Inflammation, limit spread of infection, destroy microorganisms and cancer cells, neutralize toxins, and initiate clotting – Regulation • Fluid balance, stabilizes pH of ECF, and temperature control 18-4 Components and General Properties of Blood • Adults have 4 to 6 L of blood • A liquid connective tissue consisting of cells and extracellular matrix – Plasma: matrix of blood • Clear, light yellow fluid – Formed elements: blood cells and cell fragments • Red blood cells, white blood cells, and platelets 18-5 Components and General Properties of Blood • Seven kinds of formed elements – 1)Erythrocytes: red blood cells (RBCs) – 2)Platelets • Cell fragments from special cell in bone marrow – Leukocytes: white blood cells (WBCs) • Five leukocyte types divided into two categories • Granulocytes (with granules) – 3)Neutrophils – 4)Eosinophils – 5)Basophils • Agranulocytes (without granules) – 6)Lymphocytes – 7)Monocytes 18-6 Components and General Properties of Blood Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Monocyte Small lymphocyte Neutrophil Platelets Eosinophil Small Erythrocyte lymphocyte Young (band) neutrophil Neutrophil Monocyte Large lymphocyte Neutrophil Basophil Figure 18.1 18-7 Blood Plasma • Hematocrit—centrifuge blood to Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Withdraw separate components blood – Erythrocytes are heaviest and settle first • 37% to 52% total volume – White blood cells and platelets Centrifuge • 1% total volume • Buffy coat Plasma (55% of whole blood) – Plasma • The remainder of volume Buffy coat: leukocytes • 47% to 63% and platelets (<1% of whole blood) • Complex mixture of water, Erythrocytes Formed proteins, nutrients, (45% of whole blood) elements electrolytes, nitrogenous wastes, hormones, and gases 18-8 Figure 18.2 Blood Plasma • Plasma—liquid portion of blood – Serum: remaining fluid when blood clots and the solids are removed • Identical to plasma except for the absence of fibrinogen • Three major categories of plasma proteins – Albumins: smallest and most abundant • Contribute to viscosity and osmolarity; influence blood pressure, flow, and fluid balance – Globulins (antibodies) • Provide immune system functions • Alpha, beta, and gamma globulins – Fibrinogen • Precursor of fibrin threads that help form blood clots 18-9 Blood Plasma • Plasma proteins formed by liver – Except globulins (produced by plasma cells) • Nitrogenous compounds – Free amino acids • From dietary protein or tissue breakdown – Nitrogenous wastes (urea) • Toxic end products of catabolism • Normally removed by the kidneys 18-10 Blood Plasma • Nutrients – Glucose, vitamins, fats, cholesterol, phospholipids, and minerals • Dissolved O2, CO2, and nitrogen • Electrolytes – Na+ makes up 90% of plasma cations 18-11 Blood Viscosity and Osmolarity • Viscosity—resistance of a fluid to flow, resulting from the cohesion of its particles – Whole blood 4.5 to 5.5 times as viscous as water – Plasma is 2.0 times as viscous as water • Important in circulatory function 18-12 Blood Viscosity and Osmolarity • Osmolarity of blood—the total molarity of those dissolved particles that cannot pass through the blood vessel wall – If too high, blood absorbs too much water, increasing the blood pressure – If too low, too much water stays in tissue, blood pressure drops, and edema occurs – Optimum osmolarity is achieved by the body’s regulation of sodium ions, proteins, and red blood cells 18-13 Starvation and Plasma Protein Deficiency • Hypoproteinemia – Deficiency of plasma proteins • Extreme starvation • Liver or kidney disease • Severe burns • Kwashiorkor – Children with severe protein deficiency • Fed on cereals once weaned – Thin arms and legs – Swollen abdomen 18-14 How Blood Is Produced • Adult production of 400 billion platelets, 200 billion RBCs, and 10 billion WBCs every day • Hemopoiesis—production of blood, especially its formed elements • Hemopoietic tissues produce blood cells – Yolk sac produces stem cells for first blood cells • Colonize fetal bone marrow, liver, spleen, and thymus – Liver stops producing blood cells at birth – Spleen remains involved with lymphocyte production 18-15 How Blood is Produced – Red bone marrow produces all seven formed elements • Pluripotent stem cells (PPSC) – Formerly called hemocytoblasts or hemopoietic stem cells • Colony-forming units—specialized stem cells only producing one class of formed element of blood • Myeloid hemopoiesis—blood formation in the bone marrow • Lymphoid hemopoiesis—blood formation in the lymphatic organs 18-16 Erythrocytes • Expected Learning Outcomes – Discuss the structure and function of erythrocytes (RBCs). – Describe the structure and function of hemoglobin. – State and define some clinical measurements of RBC and hemoglobin quantities. – Describe the life cycle of erythrocytes. – Name and describe the types, causes, and effects of RBC excesses and deficiencies. 18-17 Erythrocytes Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Capillary wall Erythrocytes Figure 18.4c (c) 7 µm © Dr. Don W. Fawcett/Visuals Unlimited • Two principal functions – Carry oxygen from lungs to cell tissues – Pick up CO2 from tissues and bring to lungs • Insufficient RBCs may kill in minutes due to lack of oxygen to tissues 18-18 Form and Function Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. • Disc-shaped cell with thick rim Surface view – 7.5 m diameter and 2.0 m thick at rim 7.5 µm – Lose nearly all organelles during development • Lack mitochondria – Anaerobic fermentation to produce ATP 2.0 µm • Lack of nucleus and DNA (a) Sectional view – No protein synthesis or mitosis Figure 18.4a 18-19 Form and Function – Blood type determined by surface glycoprotein and glycolipids – Cytoskeletal proteins (spectrin and actin) give membrane durability and resilience • Stretch and bend as squeezed through small capillaries 18-20 Form and Function • Gas transport—major function – Increased surface area/volume ratio • Due to loss of organelles during maturation • Increases diffusion rate of substances – 33% of cytoplasm is hemoglobin (Hb) • 280 million hemoglobin molecules on one RBC • O2 delivery to tissue and CO2 transport to lungs • Carbonic anhydrase (CAH) in cytoplasm – Produces carbonic acid from CO2 and water – Important role in gas transport and pH balance 18-21 Hemoglobin Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. • Each Hb molecule consists of: Beta Alpha – Four protein chains—globins Heme groups – Four heme groups (a) Alpha Beta CH3 CH CH2 • Heme groups C C HC C C CH – Nonprotein moiety that binds O2 C N C CH C CH 2+ 3 C 3 to ferrous ion (Fe ) at its center N Fe2+ N CH2 C C CH CH2 C N C CH 2 HC C C CH COOH C C CH2 CH3 CH2 COOH (b) Figure 18.5a,b 18-22 Hemoglobin • Globins—four protein chains – Two alpha and two beta chains – 5% CO2 in blood is bound to globin moiety • Adult vs. fetal hemoglobin 18-23 Quantities of Erythrocytes and Hemoglobin • RBC count and hemoglobin concentration indicate amount of O2 blood can carry – Hematocrit (packed cell volume): percentage of whole blood volume composed of RBCs • Men 42% to 52% cells; women 37% to 48% cells – Hemoglobin concentration of whole blood • Men 13 to 18 g/dL; women 12 to 16 g/dL – RBC count • Men 4.6 to 6.2 million/L; women 4.2 to 5.4 million/L 18-24 Quantities of Erythrocytes and Hemoglobin • Values are lower in women – Androgens stimulate RBC production – Women have periodic menstrual losses – Hematocrit is inversely proportional to percentage of body fat 18-25 Erythrocyte Production Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Pluripotent Colony-forming Precursor Mature stem cell unit (CFU) cells cell Erythrocyte CFU Erythroblast Reticulocyte Erythrocyte Figure 18.6 • 2.5 million RBCs are produced per second • Average lifespan of about 120 days • Development takes 3 to 5 days – Reduction in cell size, increase in cell number, synthesis of hemoglobin, and loss of nucleus 18-26 Erythrocyte Production Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Pluripotent Colony-forming Precursor Mature stem