Sediment Distribution, Hydrolytic Enzyme Profiles and Bacterial Activities in the Guts of Oneirophanta Mutabilis, Psychropotes L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hemichordate Phylogeny: a Molecular, and Genomic Approach By
Hemichordate Phylogeny: A molecular, and genomic approach by Johanna Taylor Cannon A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Keywords: phylogeny, evolution, Hemichordata, bioinformatics, invertebrates Copyright 2014 by Johanna Taylor Cannon Approved by Kenneth M. Halanych, Chair, Professor of Biological Sciences Jason Bond, Associate Professor of Biological Sciences Leslie Goertzen, Associate Professor of Biological Sciences Scott Santos, Associate Professor of Biological Sciences Abstract The phylogenetic relationships within Hemichordata are significant for understanding the evolution of the deuterostomes. Hemichordates possess several important morphological structures in common with chordates, and they have been fixtures in hypotheses on chordate origins for over 100 years. However, current evidence points to a sister relationship between echinoderms and hemichordates, indicating that these chordate-like features were likely present in the last common ancestor of these groups. Therefore, Hemichordata should be highly informative for studying deuterostome character evolution. Despite their importance for understanding the evolution of chordate-like morphological and developmental features, relationships within hemichordates have been poorly studied. At present, Hemichordata is divided into two classes, the solitary, free-living enteropneust worms, and the colonial, tube- dwelling Pterobranchia. The objective of this dissertation is to elucidate the evolutionary relationships of Hemichordata using multiple datasets. Chapter 1 provides an introduction to Hemichordata and outlines the objectives for the dissertation research. Chapter 2 presents a molecular phylogeny of hemichordates based on nuclear ribosomal 18S rDNA and two mitochondrial genes. In this chapter, we suggest that deep-sea family Saxipendiidae is nested within Harrimaniidae, and Torquaratoridae is affiliated with Ptychoderidae. -
Biodiversidad De Los Equinodermos (Echinodermata) Del Mar Profundo Mexicano
Biodiversidad de los equinodermos (Echinodermata) del mar profundo mexicano Francisco A. Solís-Marín,1 A. Laguarda-Figueras,1 A. Durán González,1 A.R. Vázquez-Bader,2 Adolfo Gracia2 Resumen Nuestro conocimiento de la diversidad del mar profundo en aguas mexicanas se limita a los escasos estudios existentes. El número de especies descritas es incipiente y los registros taxonómicos que existen provienen sobre todo de estudios realizados por ex- tranjeros y muy pocos por investigadores mexicanos, con los cuales es posible conjuntar algunas listas faunísticas. Es importante dar a conocer lo que se sabe hasta el momen- to sobre los equinodermos de las zonas profundas de México, información básica para diversos sectores en nuestro país, tales como los tomadores de decisiones y científicos interesados en el tema. México posee hasta el momento 643 especies de equinoder- mos reportadas en sus aguas territoriales, aproximadamente el 10% del total de las especies reportadas en todo el planeta (~7,000). Según los registros de la Colección Nacional de Equinodermos (ICML, UNAM), la Colección de Equinodermos del “Natural History Museum, Smithsonian Institution”, Washington, DC., EUA y la bibliografía revisa- 1 Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemá- tica y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México (UNAM). Apdo. Post. 70-305, México, D. F. 04510, México. 2 Laboratorio de Ecología Pesquera de Crustáceos, Instituto de Ciencias del Mar y Lim- nología (ICML), (UNAM), Apdo. Postal 70-305, México D. F., 04510, México. 215 da, existen 348 especies de equinodermos que habitan las aguas profundas mexicanas (≥ 200 m) lo que corresponde al 54.4% del total de las especies reportadas para el país. -
Equinodermos Del Caribe Colombiano II: Echinoidea Y Holothuroidea Holothuroidea
Holothuroidea Echinoidea y Equinodermos del Caribe colombiano II: Echinoidea y Equinodermos del Caribe colombiano II: Holothuroidea Equinodermos del Caribe colombiano II: Echinoidea y Holothuroidea Autores Giomar Helena Borrero Pérez Milena Benavides Serrato Christian Michael Diaz Sanchez Revisores: Alejandra Martínez Melo Francisco Solís Marín Juan José Alvarado Figuras: Giomar Borrero, Christian Díaz y Milena Benavides. Fotografías: Andia Chaves-Fonnegra Angelica Rodriguez Rincón Francisco Armando Arias Isaza Christian Diaz Director General Erika Ortiz Gómez Giomar Borrero Javier Alarcón Jean Paul Zegarra Jesús Antonio Garay Tinoco Juan Felipe Lazarus Subdirector Coordinación de Luis Chasqui Investigaciones (SCI) Luis Mejía Milena Benavides Paul Tyler Southeastern Regional Taxonomic Center Sandra Rincón Cabal Sven Zea Subdirector Recursos y Apoyo a la Todd Haney Investigación (SRA) Valeria Pizarro Woods Hole Oceanographic Institution David A. Alonso Carvajal Fotografía de la portada: Christian Diaz. Coordinador Programa Biodiversidad y Fotografías contraportada: Christian Diaz, Luis Mejía, Juan Felipe Lazarus, Luis Chasqui. Ecosistemas Marinos (BEM) Mapas: Laboratorio de Sistemas de Información LabSIS-Invemar. Paula Cristina Sierra Correa Harold Mauricio Bejarano Coordinadora Programa Investigación para la Gestión Marina y Costera (GEZ) Cítese como: Borrero-Pérez G.H., M. Benavides-Serrato y C.M. Diaz-San- chez (2012) Equinodermos del Caribe colombiano II: Echi- noidea y Holothuroidea. Serie de Publicaciones Especiales Constanza Ricaurte Villota de Invemar No. 30. Santa Marta, 250 p. Coordinadora Programa Geociencias Marinas (GEO) ISBN 978-958-8448-52-7 Diseño y Diagramación: Franklin Restrepo Marín. Luisa Fernanda Espinosa Coordinadora Programa Calidad Ambiental Impresión: Marina (CAM) Marquillas S.A. Palabras clave: Equinodermos, Caribe, Colombia, Taxonomía, Biodiversidad, Mario Rueda Claves taxonómicas, Echinoidea, Holothuroidea. -
Zootaxa, Psychropotid Holothurians (Echinodermata: Holothuroidea: Elasipodida)
Zootaxa 2096: 460–478 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Psychropotid holothurians (Echinodermata: Holothuroidea: Elasipodida) collected at abyssal depths from around the Crozet Plateau in the Southern Indian Ocean* ANTONINA ROGACHEVA1#, IAN A. CROSS2 & DAVID S. M. BILLETT2 1 P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Pr., 36, Moscow, 117997, Russia. 2 National Oceanography Centre, Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom. # Corresponding author: [email protected] * In: Brökeland, W. & George, K.H. (eds) (2009) Deep-sea taxonomy — a contribution to our knowledge of biodiversity. Zootaxa, 2096, 1–488. Abstract Seven species of holothurians of the family Psychropotidae were collected during the cruise D300 of RRS Discovery to Crozet plateau. Three of them, Benthodytes wolffi, Psycheotrephes discoveryi and Psychropotes xenochromata are described as new to science. One species, Benthodytes abyssicola Théel, regarded recently as incertae sedis, is re- described with designation of a lectotype. Additional notes are provided to descriptions of Psychropotes scotiae (Vaney) known from two specimens and Psychropotes longicauda Théel, the cosmopolitan highly variable species. Key words: Benthodytes, Psycheotrephes, Psychropotes, Psychropotidae, new species Introduction Holothurians of the family Psychropotidae are among the least studied deep-sea holothurians. The family was defined by Théel (1879, 1882, 1886), who erected four new genera and 14 new species based on the collection of H.M.S. Challenger. Subsequently 34 species were described by Verrill (1884), von Marenzeller (1893), Ludwig (1894), Perrier (1896), Hérouard (1896, 1902), Sluiter (1901a, 1901b), Koehler and Vaney (1905), Vaney (1908), Ohshima (1915), H.L. -
DEEP-SEA DILEMMA Mining the Ocean Floor Could Solve Mineral Shortages — and Lead to Epic Extinctions in Some of the Most Remote Ecosystems on Earth
DEEP-SEA DILEMMA Mining the ocean floor could solve mineral shortages — and lead to epic extinctions in some of the most remote ecosystems on Earth. lot of fights,” he says. On another voyage, Thiel A ghostly sponge visited the Red Sea with would-be miners who lives on a Pacific were keen to extract potentially valuable ores seamount, one of BY OLIVE HEFFERNAN from the region’s metal-rich muds. At one point, the environments he cautioned them that if they went ahead with targeted by contractors their plans and dumped their waste sediment at interested in mining the sea surface, it could suffocate small swim- the ocean floor. mers such as plankton. “They were nearly ready n 1972, a young ecologist named Hjalmar Thiel ventured to a to drown me,” Thiel recalls of his companions. remote part of the Pacific Ocean known as the Clarion–Clipperton In a later confrontation, Thiel — who was at the University of Zone (CCZ). The sea floor there boasts one of the world’s largest Hamburg in Germany — questioned how industry planned to test the untapped collections of rare-earth elements. Some 4,000 metres environmental impacts of sea-bed mining. He was curtly advised to do below the ocean surface, the abyssal ooze of the CCZ holds tril- his own test. So he did, in 1989. Ilions of polymetallic nodules — potato-sized deposits loaded with cop- Thirty years on, the test that Thiel and a colleague devised is still per, nickel, manganese and other precious ores. the largest experiment ever on the potential impacts of commercial ZHANG JIANSONG/XINHUA/ALAMY Thiel was interested in the region’s largely unstudied meiofauna — the deep-sea mining. -
107Th Annual Meeting May 2-3, 2014
SOUTHERN CALIFORNIA ACADEMY OF SCIENCES TH 107 ANNUAL MEETING MAY 2-3, 2014 AT CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS CAMARILLO, CALIFORNIA SOUTHERN CALIFORNIA ACADEMY OF SCIENCES About the Academy The objectives of the Academy are to promote fellowship among scientists and those interested in science; to contribute to scientific literature through publication of pertinent manuscripts; to encourage and promote scholarship among young scientists; and to provide information to the membership, to the public, and to the public agencies on such matters as may be of joint interest to the sciences and society. ARTICLE II – OBJECTIVES in the By-Laws of the Southern California Academy of Sciences revised and adopted December 2009 The Academy utilizes dues and contributions to promote student research, from high school students through the college graduate level through these activities: • Research Training Program – High school students conduct research with professional mentors and present their results at the Annual Meeting. Top presenters also attend the National Association of the Academies of Science annual conference. • Research support – Undergraduate and graduate students receive grants to help cover their research costs. • Cash awards – Undergraduate and graduate students receive awards for best presentation and best poster at the Annual Meeting. The Academy is working toward expanding its student programs by increasing the number of participating students and increasing the size of the student research support and cash awards. Contributions -
Program and Abstract Book
11th International Deep-Sea Biology Symposium NATIONAL OCEANOGRAPHY cENTRE, Southampton, UK 9 - 14 July 2006 BOOK OF ABSTRACTS Compiled by: Sven Thatje Paul Tyler Pam talbot tammy horton Lis Maclaren Sarah Murty Nina Rothe david billett 11th International Deep-Sea Biology Symposium National Oceanography Centre, Southampton Southampton Solent University Conference Centre Southampton UK 9 – 14 July 2006 Symposium Organising Committee • Professor Paul Tyler (Chair), NOC DEEPSEAS Group, UK. • Mrs Pam Talbot (Secretary), George Deacon Division, NOC, UK. • Dr David Billett, NOC DEEPSEAS Group, UK. • Dr Sven Thatje, NOC DEEPSEAS Group, UK. • Professor Monty Priede, OceanLab, University of Aberdeen, UK. • Dr Gordon Paterson, The Natural History Museum, London, UK. • Professor George Wolff, University of Liverpool, UK. • Dr Kerry Howell, Joint Nature Conservation Committee, UK. • Dr Alex Rogers, British Antarctic Survey, Cambridge, UK. • Dr Eva Ramirez Llodra, NOC DEEPSEAS/CSIC Barcelona, Spain. • Dr Phil Bagley, OceanLab, University of Aberdeen, UK. • Dr Maria Baker, NOC DEEPSEAS Group, UK. • Dr Brian Bett, NOC DEEPSEAS Group, UK. • Dr Jon Copley, NOC DEEPSEAS Group, UK. • Dr Adrian Glover, The Natural History Museum, London, UK. • Professor Andrew Gooday, NOC DEEPSEAS Group, UK. • Dr Lawrence Hawkins, NOC DEEPSEAS Group, UK. • Dr Tammy Horton, NOC DEEPSEAS Group, UK. • Dr Ian Hudson, NOC DEEPSEAS Group, UK. • Dr Alan Hughes, NOC DEEPSEAS Group, UK. • Dr Bhavani Narayanaswamy, Scottish Association for Marine Science, Oban, UK. • Dr Martin Sheader, NOC DEEPSEAS Group, UK. • Miss Michelle Sterckx, Southampton Solent University Conference Centre, UK. • Dr Ben Wigham, OceanLab, University of Aberdeen, UK. • Supported by the DEEPSEAS post-graduate/doctorate team: Lis Maclaren, Sarah Murty, Nina Rothe, Tania Smith, John Dinley, Chris Hauton, Jon Copley, Hannah Flint, Abigail Pattenden, Emily Dolan, Teresa Madurell, Teresa Amaro, Janne Kaariainen, Daniel Jones, Kate Larkin, Eulogio Soto. -
Sea Cucumbers 2013-2020 Bibliography
Sea Cucumbers 2013-2020 Bibliography Jamie Roberts, Librarian, NOAA Central Library Erin Cheever, Librarian, NOAA Central Library NCRL subject guide 2020-11 https://doi.org/10.25923/nebs-2p41 June 2020 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background & Scope ................................................................................................................................. 3 Sources Reviewed ..................................................................................................................................... 3 Section I: Biology ...................................................................................................................................... 3 Section II: Ecology ................................................................................................................................... 29 Section III: Fisheries & Aquaculture ........................................................................................................ 33 Section IV: Population Abundance & Trends .......................................................................................... 74 Section V: Conservation .......................................................................................................................... 82 2 Background & Scope This bibliography focuses on sea cucumber literature published since 2013. Sea cucumbers live on the sea floor -
(Echinodermata Holothuroidea Elasipodida) of the Western Pacific with Phylogenetic Analyses
PREPRINT Author-formatted, not peer-reviewed document posted on 14/07/2021 DOI: https://doi.org/10.3897/arphapreprints.e70999 New psychropotid species (Echinodermata Holothuroidea Elasipodida) of the Western Pacific with phylogenetic analyses Chuan Yu, Dongsheng Zhang, Ruiyan Zhang, Chunsheng Wang Disclaimer on biological nomenclature and use of preprints The preprints are preliminary versions of works accessible electronically in advance of publication of the final version. They are not issued for purposes of botanical, mycological or zoological nomenclature andare not effectively/validly published in the meaning of the Codes. Therefore, nomenclatural novelties (new names) or other nomenclatural acts (designations of type, choices of priority between names, choices between orthographic variants, or choices of gender of names)should NOT be posted in preprints. The following provisions in the Codes of Nomenclature define their status: International Code of Nomenclature for algae, fungi, and plants (ICNafp) Article 30.2: “An electronic publication is not effectively published if there is evidence within or associated with the publication that its content is merely preliminary and was, or is to be, replaced by content that the publisher considers final, in which case only the version with that final content is effectively published.” In order to be validly published, a nomenclatural novelty must be effectively published (Art. 32.1(a)); in order to take effect, other nomenclatural acts must be effectively published (Art. 7.10, 11.5, 53.5, 61.3, and 62.3). International Code of Zoological Nomenclature (ICZN) Article: 21.8.3: "Some works are accessible online in preliminary versions before the publication date of the final version. -
Michel Jangoux's Publications About Sea Cucumbers
74 SPC Beche-de-mer Information Bulletin #32 – March 2012 of marine protected areas (MPAs). A multi-area bulk biomass model was used to design MPAs off the east coast of Sri Lanka and spatial management through marine reserves is seen to have potential to rebuild the highly depleted sea cucumber populations. Apart from the management of local sea cucumber resources, the informa- tion gained through this study is important for updating the regional and global sea cucumber catch statistics as well as to contribute information for the implementation of regional management programmes. Master's thesis Estimation des stocks d’holothuries commerciales dans le lagon de Moorea et recommandations de gestion associées Marine Preuvost Université de Perpignan Via Domitia Holothurians are eaten by Asian populations since ancient times and are therefore fished in many Pacific islands. In the lagoon of Moorea, five species are now harvested and have been studied to get an estimation of their stock size. Sea cucumbers were surveyed in the lagoon, the reef crest and passes, along transects. In order to correlate the number of individuals and the biomass, size-to-weight relationships from the lit- erature were used, except for Bohadschia argus, for which the relationship was established in collaboration with the wholesaler from Moorea. Ecological preferences for each species were also studied. The data set provides management advices to sustainably preserve this marine resource. As a result, recommended quo- tas (kg of gutted weight/year) and minimum harvestable sizes (cm) are as follow: Bohadschia argus (11,430 kg, 35 cm), Thelenota ananas (6 kg, 30 cm), Holothuria fuscogilva (241 kg, 35 cm), Holothuria whitmaei (52 kg, 30 cm) and Actinopyga mauritiana (75 kg, 17 cm). -
University of Southampton Research Repository Eprints Soton
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES School of Ocean & Earth Sciences Satellite to Seafloor - The Global Biogeography of the Elasipodid Holothurians by Elizabeth Jane Ross Thesis for the degree of Doctor of Philosophy September 2012 1 2 UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS SCHOOL OF OCEAN & EARTH SCIENCES Doctor of Philosophy ABSTRACT Satellite to Seafloor - The Global Biogeography of the Elasipodid Holothurians Elizabeth Jane Ross Knowledge of the environmental factors driving species distributions in the deep-sea is essential for a better understanding of the biogeography of the abyssal benthos. Differences in the niches of elasipodid holothurians appear to exist at the level of species, genera and family. This study analysed the global distributions of elasipodid holothurians from records collected from online Natural History Collection databases, cruise reports and published literature. -
University of Southampton Research Repository Eprints Soton
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk THE UNIVERSITY OF SOUTHAMPTON The Ecology of Deep-Sea Holothurians by David Stewart Martin Billett A thesis submitted to the University of Southampton for the degree of Doctor of Philosophy. Department of Oceanography, The University, April 1988 Southampton, S09 5NH. Table of Contents Abstract V 1 Preface V1 i 1. Introduction. 1 Feeding. 2 Locomotion and bioturbation 3 Swimming. 11 4 Reproduction. 13 5 Population structure. 16 6 Growth and longevity. 18 7 Metabolism. 19 8 Chemical composition. 19 9 Abundance and biomass. 21 10 Spatial distributions. 25 11 Bathymetric zonation. 26 1.12 Geographic distributions. 30 1.13 Summary. 32 2. Materials and Methods, 35 2. 1 Study area. 35 2. 2 Sampling details 52 3. Taxonomic details. 67 3. 1 The family Ypsilothuriidae Heding, 1942 : 68 taxonomy and ontogenetic changes in body wall ossicles.