International Journal of Molecular Sciences Article Pattern of TAAR5 Expression in the Human Brain Based on Transcriptome Datasets Analysis Anastasia N. Vaganova 1 , Ramilya Z. Murtazina 1 , Taisiia S. Shemyakova 1 , Andrey D. Prjibelski 1 , Nataliia V. Katolikova 1 and Raul R. Gainetdinov 1,2,* 1 Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
[email protected] (A.N.V.);
[email protected] (R.Z.M.);
[email protected] (T.S.S.);
[email protected] (A.D.P.);
[email protected] (N.V.K.) 2 St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia * Correspondence:
[email protected] Abstract: Trace amine-associated receptors (TAAR) recognize organic compounds, including primary, secondary, and tertiary amines. The TAAR5 receptor is known to be involved in the olfactory sensing of innate socially relevant odors encoded by volatile amines. However, emerging data point to the involvement of TAAR5 in brain functions, particularly in the emotional behaviors mediated by the limbic system which suggests its potential contribution to the pathogenesis of neuropsychiatric diseases. TAAR5 expression was explored in datasets available in the Gene Expression Omnibus, Allen Brain Atlas, and Human Protein Atlas databases. Transcriptomic data demonstrate ubiquitous low TAAR5 expression in the cortical and limbic brain areas, the amygdala and the hippocampus, Citation: Vaganova, A.N.; the nucleus accumbens, the thalamus, the hypothalamus, the basal ganglia, the cerebellum, the Murtazina, R.Z.; Shemyakova, T.S.; substantia nigra, and the white matter. Altered TAAR5 expression is identified in Down syndrome, Prjibelski, A.D.; Katolikova, N.V.; Gainetdinov, R.R.