Endogenous Roles of Mammalian Flavin-Containing Monooxygenases

Total Page:16

File Type:pdf, Size:1020Kb

Endogenous Roles of Mammalian Flavin-Containing Monooxygenases catalysts Review Endogenous Roles of Mammalian Flavin-Containing Monooxygenases Ian R. Phillips 1,2,* and Elizabeth A. Shephard 1 1 Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; [email protected] 2 School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK * Correspondence: [email protected] Received: 1 November 2019; Accepted: 25 November 2019; Published: 28 November 2019 Abstract: Flavin-containing monooxygenases (FMOs) catalyze the oxygenation of numerous foreign chemicals. This review considers the roles of FMOs in the metabolism of endogenous substrates and in physiological processes, and focuses on FMOs of human and mouse. Tyramine, phenethylamine, trimethylamine, cysteamine, methionine, lipoic acid and lipoamide have been identified as endogenous or dietary-derived substrates of FMOs in vitro. However, with the exception of trimethylamine, the role of FMOs in the metabolism of these compounds in vivo is unclear. The use, as experimental models, of knockout-mouse lines deficient in various Fmo genes has revealed previously unsuspected roles for FMOs in endogenous metabolic processes. FMO1 has been identified as a novel regulator of energy balance that acts to promote metabolic efficiency, and also as being involved in the biosynthesis of taurine, by catalyzing the S-oxygenation of hypotaurine. FMO5 has been identified as a regulator of metabolic ageing and glucose homeostasis that apparently acts by sensing or responding to gut bacteria. Thus, FMOs do not function only as xenobiotic-metabolizing enzymes and there is a risk that exposure to drugs and environmental chemicals that are substrates or inducers of FMOs would perturb the endogenous functions of these enzymes. Keywords: cholesterol; energy balance; FMO; glucose; human; hypotaurine; insulin; mouse; taurine; weight 1. Introduction Flavin-containing monooxygenases (FMOs; EC 1.14.13.8) are best known for their role in catalyzing the oxidative metabolism of numerous foreign chemicals, which include therapeutic drugs and environmental pollutants [1–4]. This review, however, considers the roles of FMOs in the metabolism of endogenous substrates and in physiological processes. It focuses on FMOs of human and mouse and how the use of genetically modified mouse models are contributing to our understanding of the endogenous roles of FMOs. The human genome encodes five functional FMO genes, designated FMO1, 2, 3, 4 and 5 [5–7]. Four of these genes, FMOs 1, 2, 3 and 4 are located within a 245-kb cluster on chromosome 1, in the region q24.3 [7]. An additional FMO gene, FMO6P, located within this cluster, does not produce a correctly processed mRNA and, thus, is classified as a pseudogene [8]. The FMO5 gene is located closer to the centromere in the region 1q21.1 [7]. A second cluster of FMO genes, located at 1q24.2, consists of five pseudogenes, designated FMO7P, 8P, 9P, 10P and 11P [7]. In the mouse genome, five Fmo genes, Fmo1, 2, 3, 4 and 6, which are the orthologues of the corresponding human genes, are similarly clustered on Chromosome 1 [7]. The Fmo5 gene, which is orthologous to human FMO5, is located on mouse Chromosome 3 [7]. On mouse Chromosome 1 ~3.5 Mb from the main Fmo gene cluster there is a second cluster of Fmo genes containing three genes, Fmo9, Fmo12 and Fmo13 [7]. Based on Catalysts 2019, 9, 1001; doi:10.3390/catal9121001 www.mdpi.com/journal/catalysts Catalysts 2019, 9, 1001 2 of 19 their sequences, Fmo6, Fmo9, Fmo12 and Fmo13 appear to be functional genes; however, the functional capabilities of their protein products have not been analysed. 2. Developmental Stage- and Tissue-Specific Regulation of Expression of FMOs in Human and Mouse In both human and mouse, each FMO gene has a distinct pattern of developmental stage- and tissue-specific expression. However, there are marked differences between the two species (Table1). Adult humans do not express FMO1 in liver because in this tissue expression of FMO1 is switched off after birth [9–11]. Transfection experiments revealed that LINEs (long-interspersed nuclear element)-1 like elements located upstream of the core hepatic promoter of the human FMO1 gene repress transcription of the gene [12]. Expression of FMO1 in human extra-hepatic tissues such as kidney [10,13,14] and small intestine [13] is under the control of alternative downstream promoters P1 and P2 [7,12]. In contrast, in mouse the Fmo1 gene is highly expressed in adult liver [15,16]. The gene is also expressed in several other tissues in mouse, including kidney, lung [16], white adipose tissue [17] and brain, a tissue in which it is the most highly expressed FMO [16]. Table 1. Major sites of expression of flavin-containing monooxygenases (FMOs) in adult human and mouse tissues. Human Mouse Male Mouse Female FMO1 Kidney Liver, Lung, Kidney Liver, Lung, Kidney FMO2 Lung Lung Lung FMO3 Liver - Liver FMO5 Liver, Gastrointestinal tract Liver, Gastrointestinal tract Liver, Gastrointestinal tract The main site of expression in both human and mouse of the gene encoding FMO2 is the lung [2,16,18] (Table1). Most humans, however, are homozygous for a genetic variant of FMO2, c.1414C > T[p.(Gln472*)], which introduces a premature translation stop codon. The resulting allele, FMO2*2A, encodes a polypeptide of 471 amino-acid residues that lacks the C-terminal 64 residues and is catalytically inactive [19]. Some individuals of recent African descent possess the ancestral allele, FMO2*1, which encodes a full-length polypeptide of 535 amino-acid residues (FMO2.1) that is catalytically active [19]. In sub-Saharan Africa the ancestral gene is widespread and can attain a frequency of up to 26% in some regions, with up to 50% of individuals possessing at least one FMO2*1 allele [20]. The liver is the main site of expression of FMO3 in humans [10] (Table1). It is also expressed in skin [21], pancreas and in adrenal medulla and cortex [7]. In the liver, FMO3 gene expression is activated within the first two years after birth and increases to reach a maximum in adulthood [11]. Apart from a decline during menstruation [22,23], the expression of FMO3 is similar in females and males. In mouse, however, there is a marked difference in expression of the Fmo3 gene in liver of females and males [16,24]: in females the gene is expressed throughout adulthood, whereas in males, the expression declines from three weeks of age and is undetectable by five to six weeks of age. In contrast, in lung the Fmo3 gene is expressed in both genders throughout adulthood [16]. The expression of FMO4 is very low in both human and mouse [2,7,10,16]. In both human and mouse the gene encoding FMO5 is most highly expressed in the liver [2,16] (Table1). The gene is also expressed in both species in the intestinal tract including the stomach and small and large intestine [2,7,25,26]. In humans, the gene encoding FMO5 is also expressed in pancreas [7] and in mouse in the kidney [16]. Catalysts 2019, 9, 1001 3 of 19 3. Catalytic Mechanism Our understanding of the catalytic mechanism of FMOs is based on the early work of Dan Catalysts 2019, 9, x FOR PEER REVIEW 3 of 19 Ziegler and colleagues [27–29]. FMOs contain FAD, as a prosthetic group, and, for catalysis, require NADPHoxygenation, as a cofactor a soft and nucleophilic oxygen as heteroatom, a co-substrate. typically Preferred nitrogen substrates or sulfur, contain, but as in their some site ofcases oxygenation,phosphorusa soft or selenium.nucleophilic The heteroatom, mechanism typically of action nitrogen of FMOs or is sulfur, unusual but and in some differs cases in several phosphorus aspects or selenium.from other The monooxygenases mechanism of actionsuch as of cytochromes FMOs is unusual P450 [30]. and diFMOsffers incan several activate aspects oxygen from in the other form monooxygenasesof a stable C4a such‐hydroperoxyflavin as cytochromes P450in the [30 absence]. FMOs of can bound activate substrate oxygen (Figure in the form 1). FMOs of a stable accept C4a-hydroperoxyflavinelectrons directly from in thetheir absence bound of co bound‐factor, substrate NADPH, (Figure and do1). not FMOs require accept an electronsaccessory directly protein to fromassist their in bound the oxygenation co-factor, NADPH, of a substrate. and do not FMOs require oxygenate an accessory substrates protein via to assista two in‐electron the oxygenation mechanism of athat substrate. usuallyFMOs results oxygenate in the productionsubstrates of viareadily a two-electron excretable detoxification mechanism that products. usually results in the production of readily excretable detoxification products. Figure 1. Representation of the catalytic cycle of mammalian FMOs. 1. NADPH binds to the enzyme and reduces FAD to FADH2. 2. Molecular oxygen binds and is reduced, forming C4a-hydroperoxyflavin, whichFigure is stabilized 1. Representation by NADP +of. 3.the Substrate catalytic (S)cycle is oxygenated of mammalian leaving FMOs. the 1. prosthetic NADPH group binds into thethe formenzyme of C4a-hydroflavin.and reduces FAD 4. Water to FADH is released,2. 2. andMolecular FAD is reformed.oxygen binds 5. NADP and+ isis released. reduced, Uncoupling forming ofC4a‐ thehydroperoxyflavin, cycle produces hydrogen which is peroxide stabilized from by NADP the C4a-hydroperoxyflavin,+. 3. Substrate (S) is oxygenated and NADP leaving+ is released the prosthetic to reformgroup FAD in the (dashed form lines).of C4a‐ Basedhydroflavin. on [29, 314. ].Water is released, and FAD is reformed. 5. NADP+ is released. Uncoupling of the cycle produces hydrogen peroxide from the C4a‐hydroperoxyflavin, and NADP+ Theis rate-limiting released to reform steps FAD of FMO-catalyzed (dashed lines). Based reactions on [29,31]. are the breakdown of FADH-OH to release water and the release of NADP+. As both of these steps occur after the oxygenation of substrate, the structureThe rate of‐ thelimiting substrate steps usuallyof FMO‐ hascatalyzed little ereactionsffect on theare catalyticthe breakdown constant of FADH (kcat) and‐OH the to releaseKM + forwater the substrate and the release is the key of NADP determinant.
Recommended publications
  • Regulation of Ribulose-1, 5-Bisphosphate Carboxylase
    Plant Physiol. (1993) 102: 21-28 Regulation of Ribulose- 1,5-Bisphosphate Carboxylase/Oxygenase Activity in Response to Reduced Light lntensity in C4 Plants' Rowan F. Sage* and Jeffrey R. Seemann Department of Botany, University of Georgia, Athens, Ceorgia 30602 (R.F.S.); and Department of Biochemistry, University of Nevada, Reno, Nevada 89557 (J.R.S.) tion of Rubisco activity by reversible carbamylation occurs in lhe light-dependent regulation of ribulose-1,5-bisphosphate response to changes in light intensity as well as the concen- carboxylase/oxygenase (Rubisco) activity was studied in 16 species tration of C02and 02,whereas inhibition of Rubisco activity of C, plants representing all three biochemical subtypes and a by CAlP occurs only in response to varying PPFD (Sharkey variety of taxonomic groups. Rubisco regulation was assessed by et al., 1986; Sage et al., 1990; Seemann et al., 1990). At measuring (a) the ratio of initial to total Rubisco activity, which physiological levels of COz in C3 plants (5-10 PM), full reflects primarily the carbamylation state of the enzyme, and (b) carbamylation of Rubisco requires Rubisco activase (Salvucci, total Rubisco activity per mo1 of Rubisco catalytic sites, which 1989; Portis, 1990). In the absence of Rubisco activase, only declines when 2-carboxyarabinitol I-phosphate (CAlP) binds to carbamylated Rubisco. In all species examined, the activity ratio of 20 to 40% of Rubisco catalytic sites are carbamylated under Rubisco declined with a reduction in light intensity, although sub- physiological conditions, leading to a significant inhibition of stantial variation was apparent between species in the degree of photosynthesis (Salvucci, 1989; Portis, 1990).
    [Show full text]
  • Novel Neuroprotective Compunds for Use in Parkinson's Disease
    Novel neuroprotective compounds for use in Parkinson’s disease A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ahmed Shubbar December, 2013 Thesis written by Ahmed Shubbar B.S., University of Kufa, 2009 M.S., Kent State University, 2013 Approved by ______________________Werner Geldenhuys ____, Chair, Master’s Thesis Committee __________________________,Altaf Darvesh Member, Master’s Thesis Committee __________________________,Richard Carroll Member, Master’s Thesis Committee ___Eric_______________________ Mintz , Director, School of Biomedical Sciences ___Janis_______________________ Crowther , Dean, College of Arts and Sciences ii Table of Contents List of figures…………………………………………………………………………………..v List of tables……………………………………………………………………………………vi Acknowledgments.…………………………………………………………………………….vii Chapter 1: Introduction ..................................................................................... 1 1.1 Parkinson’s disease .............................................................................................. 1 1.2 Monoamine Oxidases ........................................................................................... 3 1.3 Monoamine Oxidase-B structure ........................................................................... 8 1.4 Structural differences between MAO-B and MAO-A .............................................13 1.5 Mechanism of oxidative deamination catalyzed by Monoamine Oxidases ............15 1 .6 Neuroprotective effects
    [Show full text]
  • Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions
    PsychoTropical Commentaries (2016) 1:1 – 90 © Fernwell Publications Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions PK Gillman PsychoTropical Research, Bucasia, Queensland, Australia Abstract This comprehensive monograph surveys original data on the subject of both dietary tyramine and drug interactions relevant to Monoamine Oxidase Inhibitors (MAOIs), about which there is much outdated, incorrect and incomplete information in the medical literature and elsewhere. Fewer foods than previously supposed have problematically high tyramine levels because international food hygiene regulations have improved both production and handling. Cheese is the only food that has, in the past, been associated with documented fatalities from hypertension, and now almost all ‘supermarket’ cheeses are perfectly safe in healthy-sized portions. The variability of sensitivity to tyramine between individuals, and the sometimes unpredictable amount of tyramine content in foods, means a little knowledge and care are still advised. The interactions between MAOIs and other drugs are now well understood, are quite straightforward, and are briefly summarized here (by a recognised expert). MAOIs have no apparently clinically relevant pharmaco-kinetic interactions, and the only significant pharmaco-dynamic interaction, other than the ‘cheese reaction’ (caused by indirect sympatho-mimetic activity [ISA], is serotonin toxicity ST (aka serotonin syndrome) which is now well defined and straightforward to avoid by not co-administering any drug with serotonin re-uptake inhibitor (SRI) potency. There are no therapeutically used drugs, other than SRIs, that are capable of inducing serious ST with MAOIs. Anaesthesia is not contra- indicated if a patient is taking MAOIs. Most of the previously held concerns about MAOIs turn out to be mythical: they are either incorrect, or over-rated in importance, or stem from apprehensions born out of insufficient knowledge.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Somatic Aging Pathways Regulate Reproductive Plasticity in Caenorhabditis Elegans Maria C Ow, Alexandra M Nichitean, Sarah E Hall*
    RESEARCH ARTICLE Somatic aging pathways regulate reproductive plasticity in Caenorhabditis elegans Maria C Ow, Alexandra M Nichitean, Sarah E Hall* Department of Biology, Syracuse University, Syracuse, United States Abstract In animals, early-life stress can result in programmed changes in gene expression that can affect their adult phenotype. In C. elegans nematodes, starvation during the first larval stage promotes entry into a stress-resistant dauer stage until environmental conditions improve. Adults that have experienced dauer (postdauers) retain a memory of early-life starvation that results in gene expression changes and reduced fecundity. Here, we show that the endocrine pathways attributed to the regulation of somatic aging in C. elegans adults lacking a functional germline also regulate the reproductive phenotypes of postdauer adults that experienced early-life starvation. We demonstrate that postdauer adults reallocate fat to benefit progeny at the expense of the parental somatic fat reservoir and exhibit increased longevity compared to controls. Our results also show that the modification of somatic fat stores due to parental starvation memory is inherited in the F1 generation and may be the result of crosstalk between somatic and reproductive tissues mediated by the germline nuclear RNAi pathway. Introduction Evidence indicating that experiences during early development affect behavior and physiology in a stress-specific manner later in life is abundant throughout the animal kingdom (Telang and Wells, *For correspondence: [email protected] 2004; Weaver et al., 2004; Binder et al., 2008; Pellegroms et al., 2009; van Abeelen et al., 2012; Zhao and Zhu, 2014; Canario et al., 2017; Dantzer et al., 2019; Vitikainen et al., 2019).
    [Show full text]
  • A Three-Component Dicamba O-Demethylase from Pseudomonas Maltophilia, Strain DI-6 GENE ISOLATION, CHARACTERIZATION, and HETEROLOGOUS EXPRESSION*
    THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 280, No. 26, Issue of July 1, pp. 24759–24767, 2005 © 2005 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. A Three-component Dicamba O-Demethylase from Pseudomonas maltophilia, Strain DI-6 GENE ISOLATION, CHARACTERIZATION, AND HETEROLOGOUS EXPRESSION* Received for publication, January 18, 2005, and in revised form, March 16, 2005 Published, JBC Papers in Press, April 26, 2005, DOI 10.1074/jbc.M500597200 Patricia L. Herman‡, Mark Behrens, Sarbani Chakraborty, Brenda M. Chrastil, Joseph Barycki, and Donald P. Weeks§ From the Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 65888-0664 Dicamba O-demethylase is a multicomponent enzyme The herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) from Pseudomonas maltophilia, strain DI-6, that cata- has been used to effectively control broadleaf weeds in crops lyzes the conversion of the widely used herbicide di- such as corn and wheat for almost 40 years. Like a number of camba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA other chlorinated organic compounds, dicamba does not persist (3,6-dichlorosalicylic acid). We recently described the in the soil because it is efficiently metabolized by a consortium biochemical characteristics of the three components of of soil bacteria under both aerobic and anaerobic conditions this enzyme (i.e. reductaseDIC, ferredoxinDIC, and oxy- (1–4). Studies with different soil types treated with dicamba genaseDIC) and classified the oxygenase component of have demonstrated that 3,6-dichlorosalicylic acid (DCSA),1 a dicamba O-demethylase as a member of the Rieske non- compound without herbicidal activity, is a major product of the heme iron family of oxygenases.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Regulation of Xenobiotic and Bile Acid Metabolism by the Anti-Aging Intervention Calorie Restriction in Mice
    REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE By Zidong Fu Submitted to the Graduate Degree Program in Pharmacology, Toxicology, and Therapeutics and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Dissertation Committee ________________________________ Chairperson: Curtis Klaassen, Ph.D. ________________________________ Udayan Apte, Ph.D. ________________________________ Wen-Xing Ding, Ph.D. ________________________________ Thomas Pazdernik, Ph.D. ________________________________ Hao Zhu, Ph.D. Date Defended: 04-11-2013 The Dissertation Committee for Zidong Fu certifies that this is the approved version of the following dissertation: REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE ________________________________ Chairperson: Curtis Klaassen, Ph.D. Date approved: 04-11-2013 ii ABSTRACT Calorie restriction (CR), defined as reduced calorie intake without causing malnutrition, is the best-known intervention to increase life span and slow aging-related diseases in various species. However, current knowledge on the exact mechanisms of aging and how CR exerts its anti-aging effects is still inadequate. The detoxification theory of aging proposes that the up-regulation of xenobiotic processing genes (XPGs) involved in phase-I and phase-II xenobiotic metabolism as well as transport, which renders a wide spectrum of detoxification, is a longevity mechanism. Interestingly, bile acids (BAs), the metabolites of cholesterol, have recently been connected with longevity. Thus, this dissertation aimed to determine the regulation of xenobiotic and BA metabolism by the well-known anti-aging intervention CR. First, the mRNA expression of XPGs in liver during aging was investigated.
    [Show full text]
  • Flavin-Containing Monooxygenases: Mutations, Disease and Drug Response Phillips, IR; Shephard, EA
    Flavin-containing monooxygenases: mutations, disease and drug response Phillips, IR; Shephard, EA For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/1015 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Flavin-containing monooxygenases: mutations, disease and drug response Ian R. Phillips1 and Elizabeth A. Shephard2 1School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK 2Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author: Shephard, E.A. ([email protected]). and, thus, contribute to drug development. This review Flavin-containing monooxygenases (FMOs) metabolize considers the role of FMOs and their genetic variants in numerous foreign chemicals, including drugs, pesticides disease and drug response. and dietary components and, thus, mediate interactions between humans and their chemical environment. We Mechanism and structure describe the mechanism of action of FMOs and insights For catalysis FMOs require flavin adenine dinucleotide gained from the structure of yeast FMO. We then (FAD) as a prosthetic group, NADPH as a cofactor and concentrate on the three FMOs (FMOs 1, 2 and 3) that are molecular oxygen as a cosubstrate [5,6]. In contrast to most important for metabolism of foreign chemicals in CYPs FMOs accept reducing equivalents directly from humans, focusing on the role of the FMOs and their genetic NADPH and, thus, do not require accessory proteins.
    [Show full text]
  • Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 6-2019 Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity Mohammad Arifur Rahman University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Rahman, Mohammad Arifur (0000-0002-5589-0114), "Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity" (2019). Theses and Dissertations (ETD). Paper 482. http://dx.doi.org/10.21007/etd.cghs.2019.0474. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity Abstract Cytochrome P450 2E1 (CYP2E1)-mediated hepatic and extra-hepatic toxicity is of significant clinical importance. Diallyl sulfide (DAS) has been shown to prevent xenobiotics such as alcohol- (ALC/ETH), acetaminophen- (APAP) induced toxicity and disease (e.g. HIV-1) pathogenesis. DAS imparts its beneficial effect by inhibiting CYP2E1-mediated metabolism of xenobiotics, especially at high concentration. However, DAS also causes toxicity at relatively high dosages and with long exposure times. The objective of the first project was to find potent ASD analogs which can replace DAS as a research tool or as potential adjuvant therapy in CYP2E1-mediated pathologies.
    [Show full text]
  • Type of the Paper (Article
    Supplementary Material A Proteomics Study on the Mechanism of Nutmeg-induced Hepatotoxicity Wei Xia 1, †, Zhipeng Cao 1, †, Xiaoyu Zhang 1 and Lina Gao 1,* 1 School of Forensic Medicine, China Medical University, Shenyang 110122, P. R. China; lessen- [email protected] (W.X.); [email protected] (Z.C.); [email protected] (X.Z.) † The authors contributed equally to this work. * Correspondence: [email protected] Figure S1. Table S1. Peptide fraction separation liquid chromatography elution gradient table. Time (min) Flow rate (mL/min) Mobile phase A (%) Mobile phase B (%) 0 1 97 3 10 1 95 5 30 1 80 20 48 1 60 40 50 1 50 50 53 1 30 70 54 1 0 100 1 Table 2. Liquid chromatography elution gradient table. Time (min) Flow rate (nL/min) Mobile phase A (%) Mobile phase B (%) 0 600 94 6 2 600 83 17 82 600 60 40 84 600 50 50 85 600 45 55 90 600 0 100 Table S3. The analysis parameter of Proteome Discoverer 2.2. Item Value Type of Quantification Reporter Quantification (TMT) Enzyme Trypsin Max.Missed Cleavage Sites 2 Precursor Mass Tolerance 10 ppm Fragment Mass Tolerance 0.02 Da Dynamic Modification Oxidation/+15.995 Da (M) and TMT /+229.163 Da (K,Y) N-Terminal Modification Acetyl/+42.011 Da (N-Terminal) and TMT /+229.163 Da (N-Terminal) Static Modification Carbamidomethyl/+57.021 Da (C) 2 Table S4. The DEPs between the low-dose group and the control group. Protein Gene Fold Change P value Trend mRNA H2-K1 0.380 0.010 down Glutamine synthetase 0.426 0.022 down Annexin Anxa6 0.447 0.032 down mRNA H2-D1 0.467 0.002 down Ribokinase Rbks 0.487 0.000
    [Show full text]