bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.435439; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Species and strain cultivation of skin, oral, and gut microbiota Elizabeth Fleming1#, Victor Pabst1#, Amelia Hoyt1, Wei Zhou1, Rachel Hardy1, Anna Peterson2, Ryan Beach2, Yvette Ondouah-Nzutchi1, Jinhong Dong1, and Julia Oh1* 1The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA 2The University of Connecticut Health Center, Farmington, Connecticut, USA #These authors contributed equally to this work. * Corresponding author and lead contact: Julia Oh, Ph.D. The Jackson Laboratory for Genomic Medicine 10 Discovery Drive Farmington, CT 860-837-2014
[email protected] ABSTRACT Genomics-driven discovery of microbial species have provided extraordinary insights into the biodiversity of human microbiota. High resolution genomics to investigate species- and strain-level diversity and mechanistic studies, however, rely on the availability of individual microbes from a complex microbial consortia. Here, we describe and validate a streamlined workflow for cultivating microbes from the skin, oral, and gut microbiota, informed by metagenomic sequencing, mass spectrometry, and strain profiling. bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.435439; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. INTRODUCTION Genomics-driven innovations, such as 16S ribosomal RNA (rRNA) sequencing and shotgun metagenomics have been powerful drivers of discovery in a wide range of microbial ecosystems, particularly humans.