<<

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Wits Institutional Repository on DSPACE

The Role of Alcohol in the Development of Fetal Alcohol Syndrome in Two South African Coloured Communities Dhamari Naidoo Division of Genetics National Health Laboratory Service and, School of Pathology, University of Witwatersrand Johannesburg South African AdissertationsubmittedintheFacultyofHealthSciences,UniversityofWitwatersrand,infulfilment oftherequirementsforthedegreeofMastersofScienceinMedicine.

i Declaration I,DhamariNaidoo,herebydeclarethatthisismyownunaidedwork,unlessotherwisestated. Thestatisticalanalyseswereeithercheckedbyastatisticianor,inthecaseofthelogistic regressionanalysis,haplotypeinferenceandlinkagedisequilibriumcalculations,performed byastatisticianwithdetailedconsultation.ItisbeingsubmittedforthedegreeofMastersin MedicalScienceinHumanGeneticsattheUniversityofWitwatersrand.Ithasnotbeen submittedforanyotherdegreeatanyotheruniversity. ……………………….. ………………………….. DhamariNaidoo Date Bsc(Hons)

ii Acknowledgements Prof.MicheleRamsayforallthehelp,guidanceandmostimportantlyyourpatience throughoutmyproject DrLizevanderMerweforallthemuchappreciatedhelpwiththestatisticalanalysis LillianOuko,ZaneLombard,ShelleyMacauley,PhillipHaycockandDesmondSchnugh, thankyouforyourfriendshipandformakingmytimespentonthisprojectanenjoyableone ThankyoutoallmycolleaguesfromtheHumanGeneticsDepartmentforthetechnical assistanceandfriendship UniversityofWitwatersrandandNationalResearchFoundationforthefinancialassistance providedthroughoutmyproject UniversityofWitwatersrandandthePaulandStellaLowensteinCharitableandEducational TrustFundfortheopportunityofattendingtheEuropeanSocietyofHumanGenetics conference(Prague2005)topresentmywork

iii To David

iv Abstract Fetalalcoholsyndrome(FAS)isacommoncauseofmentalretardationandisattributableto theteratogeniceffectsofalcoholexposureinuteroinindividualswithgeneticsusceptibility. TheColouredcommunitiesfromtheWesternandNorthernCaperegionshavesomeofthe highestrecordedincidencerates(~70affectedchildrenper1000livebirths)intheworld. Thecandidategenesselectedforthisstudybelongtothefamilyofalcoholdehydrogenase genesthatcodeforwhichmetabolisealcohol.TheADH1BandADH1Cgeneshave previouslybeenexaminedintheWesternCapeColouredcommunityandthe encodedbythealleleADH1B*2wassignificantlyassociatedwithprotectionagainstthe developmentofFAS.ADH4,anewcandidate,wasselectedduetoitsroleinboththe alcoholandmetabolicpathways. Acasecontrolgeneticassociationstudywasperformedtoexaminethepotentialrolesofthe ADH1B,ADH1CandADH4genesintheetiologyofFASintwoColouredpopulationsfrom theNorthernandWesternCape.Singlenucleotidepolymorphismsfoundwithinthe candidategenesweretypedbyPCRbasedmethodsinsamplesfromtheFASchildren,their mothersandcontrols. SignificantassociationswereobservedintheWesternCapecohortbutwerenotreplicatedin theNorthernCape.AllelicassociationtestsrevealedthatADH1B*2maybeaprotective markerasitoccurredmorecommonlyinthecontrolsthanthemothers(p=0.038).The allelesofthepolymorphicvariant,ADH4.8,havebeenshowntoinfluencethepromoter activityofADH4(the‘A’allelehasbeenshowntoincreasetheactivityofthepromoter whencomparedtothe‘C’alleleasthesameposition).Theallelesofthispolymorphic markerweresignificantlyassociatedwiththeriskforFAS.The‘A’allelewasshownto occurmorecommonlyinthemothersandFASaffectedchildren(p=0.002and0.035 respectively)whencomparedtothecontrols,suggestingaroleindiseasesusceptibilitywhile the‘C’allelewasshowntooccurmorecommonlyinthecontrols.Itwasalsoobservedthat ADH1BandADH4.8whenexaminedtogetherinahaplotypedemonstratedanassociation

v withsusceptibilitytothedisease.Whilethe2Chaplotype(ADH1BADH4.8)wasshownto beassociatedwithprotectionagainstthedevelopmentofFAS,the1Ahaplotypewas associatedwithincreasedsusceptibility.Theresultssuggestthatmotherswiththecommon ADH1B*1alleleandpresumablyanormalADH1BfunctionbutanincreasedlevelofADH4 (allele‘A’)asaresultofthepromoter,will,whenthebloodalcoholconcentration ishigh,haveanincreasedriskofhavingachildwithFAS.Converselywhenthemothers haveafasteralcoholmetabolisingrateduetothealleleADH1B*2andnormallevelsof ADH4protein(allele‘C’),thecirculatingalcoholinthebloodisremovedefficiently resultinginmaternalprotectionagainstdevelopingthedisease. ThisstudyhasalsohighlightedthegeneticdiversitywithinindividualsoftheSouthAfrican Colouredpopulation.HaplotypeanalysisandlogisticregressionrevealedthattheWestern andNorthernCapeColouredcommunitiesaregeneticallydifferentandasaresult,the samplescouldnotbepooledforanalysis.Althoughthetwogroupsofcontrolswere geneticallydiverse,haplotypeanalysisrevealedthatthesampleofmothersandFASaffected childrenwerenotstatisticallydifferentbetweentheprovincesthuspossiblysuggestinga similargeneticetiologyforthedisease.TheresultsfromthisstudysuggestthattheADH genesdoplayaroleinthepathogenesisofFAS.

vi Abbreviations ADH alcoholdehydrogenase ALDH aldehydedehydrogenase APS ammoniumpersulphate ARBD alcoholrelatedbirthdefects ARND alcoholrelatedneurodevelopmentaldisorder ARMS amplifiedrefractorymutationdetectionsystem bp basepair CGF continuousgeneflow CNS centralnervoussystem dATP deoxyadeninetriphosphate dCTP deoxycytosinetriphosphate dGTP deoxyguaninetriphosphate dTTP deoxythyminetriphosphate dNTPs deoxynucleotidetriphosphates dH 2O distilledwater ddH 2O deioniseddistilledwater DNA deoxyribonucleicacid EDTA ethylenediaminetetraaceticacid EM expectationmaximumalgorithm FAE fetalalcoholeffects FAS fetalalcoholsyndrome FASD fetalalcoholspectrumdisorders g gram GABA gammaaminobutyricacid HWE HardyWeinbergEquilibrium IBD Identicalbydescent IOM InstituteofMedicine kb kilobases kD kiloDalton

vii Km MichealisMentonconstant l litre LD linkagedisequilibrium M molar NAD nicotinamideadeninedinucleotide NaCl sodiumchloride NEB NewEnglandBiolabs PCR polymerasechainreaction pmol picomole RFLP restrictionfragmentlengthpolymorphism ROS reactivespecies SASA simultaneousallelespecificamplification SNP singlenucleotidepolymorphism STR shorttandemrepeat TBE trisborateEDTA TDT TransmissionDisequilibriumTest TE trisEDTA TEMED N,N,N1,N1tetramethylethylnediamine WT wildtype l microlitre ml millilitre

viii Table of contents Declaration...... ii Acknowledgements...... iii Abstract...... v Abbreviations...... vii List of Figures...... xii List of Tables...... xiii 1 Introduction...... 2 1.1 HistoricalperspectiveonFAS...... 2 1.2 PathogenesisofFAS ...... 3 1.2.1 Criteriafordiagnosis...... 3 1.3 Epidemiology...... 5 1.3.1 Sociobehaviouralriskfactors...... 5 1.3.2 MaternalRiskfactorsforwomeninSouthAfrica ...... 6 1.3.3 WorldwideprevalenceofFAS...... 7 1.3.4 FASinSouthAfrica...... 8 1.4 Teratogeniceffectsofalcoholexposure...... 8 1.4.1 Stagesoffetaldevelopment ...... 8 1.4.2 Mechanismsofalcohol’seffectsonthefetus ...... 9 1.4.2.1 Freeradicals,oxidativedistressandapoptosis...... 9 1.4.2.2 Celladhesionandmigration...... 11 1.4.2.3 Nutrition ...... 11 1.4.2.4 Hormonalfactors...... 11 1.4.2.5 Acetaldehyde...... 12 1.5 TheroleofgeneticsinFAS...... 12 1.5.1 Twinstudies ...... 12 1.5.2 Animalmodels ...... 13 1.5.2.1 Rodentmodels...... 13 1.5.2.2 Nonmammalianmodels...... 14 1.5.2.3 Largeanimalmodels...... 14 1.6 Identificationofgeneticfactorsinvolvedincomplexdiseases...... 15

ix 1.6.1 Linkageanalysis...... 15 1.6.2 Casecontrolassociationstudies...... 15 1.7 Alcoholmetabolism ...... 17 1.7.1 Alcohol ...... 18 1.7.2 Tissueexpression ...... 18 1.7.3 ADH1B...... 20 1.7.4 ADH1C...... 21 1.7.5 ADH4 ...... 22 1.7.6 Aldehydedehydrogenases(ALDH)...... 24 1.7.6.1 ALDH2...... 24 1.8 Retinolmetabolism ...... 24 1.8.1 Inhibitionofretinoicacidsynthesisbyethanol ...... 25 1.8.1.1 ADH4 ...... 26 1.8.1.2 ALDH1A2...... 28 1.9 Studyobjectives ...... 29 2 Subjects and Methods...... 31 2.1 Subjects ...... 31 2.1.1 Bloodstorage...... 32 2.2 Methods...... 32 2.2.1 DNAextractionandstorage...... 32 2.2.2 Polymerasechainreaction(PCR) ...... 32 2.2.3 Selectionofmarkers...... 33 2.2.3.1 ADH1B...... 33 2.2.3.2 ADH1C...... 36 2.2.3.3 ADH4 ...... 36 2.2.3.4 ALDH1A2...... 37 2.2.4 Primerdesign...... 37 2.2.5 Genotyping...... 38 2.2.5.1 ARMS...... 38 2.2.5.2 SASA...... 39 2.2.5.3 RFLP ...... 40

x 2.2.5.4 Agarosegelelectrophoresis ...... 43 2.2.5.5 DNAsequencing ...... 43 2.2.5.6 StatisticalAnalysis...... 45 3 Results ...... 50 3.1 Genotypeandallelefrequencies ...... 50 3.2 HardyWeinbergequilibrium(HWE) ...... 56 3.3 TestsforassociationswithsusceptibilityforFAS...... 57 3.3.1 Alleleandgenotypeassociations ...... 57 3.3.2 Haplotypeanalysis ...... 58 3.3.2.1 WCvsNC ...... 59 3.3.3 Logisticregression ...... 64 3.4 Linkagedisequilibrium(LD) ...... 66 4 Discussion...... 70 4.1 TheADH1BandADH1CgenesandtheirroleinthesusceptibilitytoFAS...... 70 4.1.1 ADH1B...... 70 4.1.2 ADH1C...... 71 4.2 TheroleofADH4inthepathogenesisofFAS...... 72 4.3 Theimpactofthematernalandfetalgenotypesondiseaseoutcome ...... 77 4.4 GeneticdiversityoftheWesternandNorthernColouredpopulations ...... 78 4.5 ADHandbraindevelopment...... 81 4.6 Limitationsofthestudy...... 82 4.7 Futuredirections...... 84 4.8 Conclusion...... 85 5 References Cited...... 87 5.1 Electronicreferences...... 97 6 Appendix A: Solutions...... 98 7 Appendix B: Molecular weight markers...... 101 8 Appendix C: Ethics approval for the Western Cape study...... 102 9 Appendix D: Ethics approval for the Northern Cape study ...... 103 10 Appendix E: Complete genotype dataset for the Western and Northern Cape104

xi List of Figures Figure1.1:AschematicrepresentationofthefacialcharacteristicsofachildwithFAS (LarkbyandDay,1997) ...... 4 Figure1.2:Schematicrepresentation(nottoscale)oftheADHclusterspanning~380kband therelativepositionoftheADH4gene.AdaptedfromOsieretal.,(2002)...... 19 Figure1.3:SchematicrepresentationofhowethanolinhibitsretinolmetabolismviaADH pathway(Duester,1991) ...... 27 Figure2.1:Anagarosegelimageshowingarestrictionenzymedigestwith Msl Iatexon3of theADH1Bgene...... 34 Figure2.2:Anagarosegelimageshowingarestrictionenzymedigestwith Alw N Iatexon9 oftheADH1Bgene....... 34 Figure2.3:AnillustrationofthescoringofallelesinADH1Bandtheircombinedhaplotypes whicharereferredtoasADH1Ballelesinallpublications...... 35 Figure2.4:Anagarosegelimageshowingarestrictionenzymedigestwith Ssp Iatthe ADH1Clocus...... 36 Figure2.5:Anagarosegelimagedemonstrationarestrictionenzymedigestwith Mbo Ifor ADH4.4...... 37 Figure2.6:IllustrationoftheARMSPCRtechnique...... 38 Figure2.7:AnagarosegelimageshowinganARMSPCRprofileforADH4.8...... 39 Figure2.8:AnillustrationoftheSASAmethod...... 40 Figure2.9:Electropherogramsdepictingtheallelicvariationatposition183bpatthe ADH4.4locus...... 44 Figure2.10:Electropherogramsdepictingtheallelicvariationatposition99bpforthe ADH4.8locus...... 44 Figure3.1:LDestimatesforallthecontrols...... 67 Figure3.2:LDestimatesforthecontrolsfromtheWesternCape ...... 67 Figure3.3:LDestimatesforcontrolsfromtheNorthernCape ...... 68

xii List of Tables Table1.1:ThreebroadcategoriesusedforthediagnosisofFAS ...... 3 Table1.2:NewnomenclatureforADHgenesandenzymes ...... 19 Table2.1:DescriptionofrestrictionenzymedigestionstodetectRFLPs...... 41 Table2.2:CandidategeneswithassociatedDNApolymorphismsandthePCRconditions usedforgenotyping...... 42 Table2.3:TheequationsforthemeasuresofLDfortwoalleles,AandB,atdifferent loci………………………………………………………………………………………47 Table3.1:AlleleandgenotypefrequenciesforADH1BinthestudygroupsfromtheWestern andNorthernCapeprovinces...... 52 Table3.2:AlleleandgenotypefrequenciesforADH1CinthestudygroupsfromtheWestern andNorthernCapeprovinces...... 53 Table3.3:Alleleandgenotypefrequenciesforrs1126670(ADH4.4)inthestudygroups fromtheWesternandNorthernCapeprovinces...... 54 Table3.4:AlleleandgenotypefrequenciesforADH4.8(rs1800759)inthestudygroups fromtheWesternandNorthernCape...... 55 Table3.5:HardyWeinbergequilibriumanalysispvaluesshownforallthepolymorphisms testedintheWesternandNorthernCapeforeachgroup(FASchildren,Mothersand Controls)...... 56 Table3.6:Casecontrolassociationswithindividualpolymorphiclociassociatedwiththe ADH1B,ADH1CandADH4genesandthepvaluesfortheallelicandgenotypic associationtests...... 60 Table3.7:Haplotypeanalysisshowingtheestimatedhaplotypefrequencies( f)inthecontrols andcases(FASchildrenormothers)andthelikelihoodofassociation(p)intheWestern Cape...... 61 Table3.8:Haplotypeanalysisshowingtheestimatedhaplotypefrequencies( f)inthecontrols andcases(FASchildrenormothers)andthelikelihoodofassociation(p)inthe NorthernCape ...... 62 Table3.9:HaplotypesanalysisbetweentheprovincesfortheFASaffectedchildren,mothers andcontrols ...... 63

xiii Table3.10:LogisticregressionanalysisongenotypeprobabilitiesinFASaffectedchildren vsControls,mothersofchildrenwithFASvsContolsandNCvsWC(Controlsonly) 65 Table4.1:Publishedalleleandgenotypefrequenciesfromvariousstudiesforthree polymorphicvariantsintheADH4genescomparedtotheobservedfrequenciesinthe twoColouredsamples...... 76

xiv

Chapter 1

Introduction

1 1 Introduction Itiswidelyacceptedthatalcoholexposureistheleadingcauseofpreventablemental retardationindevelopedcountries(AbelandSokol,1986).Sincethefirstreportsoffetal alcoholsyndrome(FAS)byJonesandSmithin1973,threedecadesofresearchhasleadtoa betterunderstandingofthediseaseetiology.HowevertheincidenceofFASremains unchangedinmanycommunities.

1.1 Historical perspective on FAS Thefirstreportsoftheeffectsofmaternaldrinkingonthedevelopingfetuswerepublishedin 1892byTempleman(ascitedinBurdetal.,2003).InDundee,Scotland,Templemanstudied thedeathsof258infantsborntoalcoholicmothers.Henotedthat46%ofthedeathswerea resultofexcessivedrinkingbythemothersduringweekends.In1899Sullivanreportedon theroleofmaternalalcoholismasthecauseofinfantdeaths.Hestudied100incarcerated womenandshowedthattheinfantmortalityratewasdoubleinthealcoholicmothers.He concludedthat‘maternalintoxication’wasthemainsourceofdamagetothefetus(Burdet al.,2003). In1968LemoineandcolleaguespublishedareportinaFrenchmedicaljournaldescribing thephysicalandbehaviouralcharacteristicsofchildrenborntoalcoholicwomen. Theyhadobservedsimilarfacialcharacteristics,growthdeficiencyandpsychomotor disturbancesinthe127offspring.Adiagnosisofmaternalalcoholismwasmadeinchildren basedontheirresemblancestoeachother(Streissguthetal.,1980). Later,in1973and1974,JonesandSmithpublisheddetaileddescriptionsofcharacteristicsof childrenborntoalcoholicwomen.Inthefirstarticlepublishedin1973,theyexaminedeight childrenwhowereborntoalcoholicmothersandhadalertedphysicianstothealteredfacial andbehaviouralcharacteristics.TheypresentedadetailedcasereportoneachofthreeNative American,threeblackandtwowhitechildren.Theydescribedthesharedanomaliesamong thechildrenincludingdevelopmentaldelay,shortpalpebralfissures,epicanthicfolds,small jaws,flattenedmidface,jointanomalies,alteredpalmarcreasepatternsandcardiac abnormalities.Theyconcludedthatthedefectivefetaldevelopmentcouldhavebeen attributedtomaternalalcoholism.ThetermFASwasintroducedinthesecondarticlewritten

2 byJonesandSmithwhichwaspublishedin The Lancet fivemonthslater.Theydescribedan additionalthreecasesofNativeAmericanchildrenandcharacterisedmoreoftheshared anomalies(ascitedinArmstrong,1998).

1.2 Pathogenesis of FAS

1.2.1 Criteriafordiagnosis Theadverseeffectsoffetalexposuretoalcoholresultinaspectrumofdisordersthathas beentermedfetalalcoholspectrumdisorders(FASD).FASisatthesevereendofthis spectrumandischaracterisedbyaconfirmedhistoryofmaternaldrinkingduringpregnancy, characteristicfacialfeatures,growthdeficiencyandneurocognitivedeficiencies(Hoymeet al.,2005). Asthephysicalcharacteristicscanvaryinseveritybetweenindividuals,researchershave narroweddownthekeyfeaturesfordiagnosistothreebroadcategories(Abel,1998; Weinberg,1997)(Table1.1).

Table 1-1: Three broad categories used for the diagnosis of FAS Growth retardation decreasedbirthweightforgestationalage failuretothrive disproportionateratioofweighttoheight Characteristic facial features shortpalpebralfissures flatupperlip flattenedphiltrum flatmidface Central nervous system abnormalities smallheadsize structuralabnormalitiese.g.smallbrain impairmentoffinemotorskills neurosensoryhearingloss impairedhandeyecoordination

3 ThediagnosisofFASisusuallymadeininfantsandyoungchildrenasthefeaturesbecome moresubtlewithage.Studieshaveshownthatthefacialcharacteristicsbecomeless distinctiveasthechildentersadolescenceandastheweightapproachesthemeanforthe generalpopulation.OthercharacteristicsoftenassociatedwithFAS,suchas neurodevelopmentalandbehaviouralproblemsremainunchangedwithincreasingage (Streissguthetal.,1991;MichaelisEKandMichaelisML,1994).Althoughthefacial featuresofFASchangeduringpuberty,thesymptomsthatpersistincludemicrocephaly, shortpalpebralfissuresandthinupperlipwithindistinctphiltrumandepicanthalfolds (Figure1.1).

Figure 1.1: A schematic representation of the facial characteristics of a child with FAS (Larkby and Day, 1997) Twosetsofpublishedguidelinesarenowbeingusedthatmakethecharacterisationand evaluationofchildrenwhohavebeenprenatallyexposedtoalcohol,mucheasier.Thefirst setofcriteriapublishedbytheInstituteofMedicine(IOM)oftheNationalAcademyof Sciences,developedfivediagnosticcategoriesforFASandalcoholrelatedeffects.These were:FASwithconfirmedmaternalalcoholexposure,FASwithoutconfirmedmaternal alcoholexposure,partialFASwithconfirmedmaternalalcoholexposure,alcoholrelated birthdefects(ARBD)andalcoholrelatedneurodevelopmentaldisorder(ARND)(Hoymeet al.,2005).

4 AstleyandClarrenpublishedanobjectivesetofguidelinesin2000termedtheWashington criteria(AstleyandClarren,2000).ThesecriteriaretainthefourkeyfeaturesofFAS:growth deficiency,facialphenotype,CNSdamageandalcoholexposureinutero.Eachfactoris scoredona4pointLinkertscalewith1representingtheabsenceofthefeatureand4the classicalpresentation.Thissystemhasbeenshowntobeaccurateindiagnosingachildbutit isimpracticalforroutineuseinaclinicalsetting(Hoymeetal.,2005).

1.3 Epidemiology Thesearchforuniquematernalcharacteristics,riskfactorsandprotectivefactorshasbeena goalforresearcherssincetheidentificationofFASasadisease.Identifyingthese characteristicsisimportantforfacilitatingtheeffectivepreventionofthediseaseand understandingitscomplexetiology. Epidemiologicalstudieshaveidentifiedadvancedmaternalage,smoking,useofharmful drugs,lowsocioeconomicstatusandethnicityassomeofthetraitsassociatedwithFAS (Sokoletal.,1980).Afewofthesecharacteristicswillbediscussedbelow.

1.3.1 Sociobehaviouralriskfactors Alcohol intake pattern. ThecommonpatternofalcoholintakeamongthemothersofFAS childrenis‘bingedrinking’.Thispatternofdrinkingresultsinbriefexposurestohighblood alcohollevelsandisthoughttocausemorecellulardamagethanprolongedexposureto lowerlevelsofalcohol(Streissguthetal.,1980). Socioeconomic status .AllepidemiologicalstudiesthathavebeenreportedintheUnited Stateshaveonecommonfactor;mothersatgreatestriskforhavingachildwithFASwere fromlowsocioeconomicbackgrounds.Thesestudieswereconductedininnercityhospitals wherethecommunitywaspredominantlyAfricanAmericanandcharacterisedbypoverty comparedtocasesfrommiddleclassCaucasianmothers(Streissguthetal.,1980).Inthe originalcasereportsbyJonesandSmithinwhich11childrenwerecharacterisedwithFAS, theyallhadmotherswhowerelivingonwelfareeventhoughtheywerefromdifferentethnic groups(JonesandSmith,1973).Itisbelievedthatlowsocioeconomicstatusratherthan biologicalfactorsrelatingtoethnicityisamajorfactorforFAS.

5 Smoking .Smokinghasadverseeffectsonpregnancyoutcomeandcanresultindecreased birthweight.Smokinghasbeencorrelatedwithalcoholintake,asstudieshaveshownthat groupsofheavydrinkershavethesamenumberofheavysmokers.Smokingcanincreasethe susceptibilitytoalcohol’stoxiceffectbymechanismssuchashypoxia(Streissguthetal., 1980).

1.3.2 MaternalRiskfactorsforwomeninSouthAfrica AnepidemiologicalstudyexaminingtheriskfactorsforwomenfromtheWesternCape showedthatriskfactorsdidnotdifferfromthosefoundforwomenfromaroundtheworld (Viljoenetal.,2002).ThemothersoftheFASchildrenhadalessformaleducationandwere fromlowsocioeconomicbackgrounds.Themotherswerefromfamilieswithextensive drinkingbackgroundsandtheirpartnerswereusuallyheavydrinkers.Thesewomenalso smokedduringtheirpregnanciesbutdidnotabuseothersubstancesotherthanalcoholand tobacco(Viljoenetal.,2002). Bingedrinkingoverweekendsisacommonoccurrenceinsomecommunitiesthroughout SouthAfricaandusuallyoccursathomeorinshebeenswhichareequivalenttoinformal bars.IntheWesternCape,alcoholhadbeenconsumeddailyonmanyfarmsduetothe’Dop’ systemwhichhasnowbeenoutlawed.Thissystemwasaformofpartialpaymenttofarm workersandhasresultedinheavyandepisodicdrinking(CromeandGlass,2000).An epidemiologicalstudyintheWesternCaperevealedthatdrinkingduringpregnancywas commoninpartsoftheWesternCape.Amongpregnantmothers,34.4%ofthosewhodrank duringpregnancywerefrommetropolitanareasand46.1%to50.8%werefromruralareas (CroxfordandViljoen,1999;Viljoenetal.,2002). AlthoughtheresultsfromthisstudywerespecifictotheColouredcommunityintheWestern Cape,itmayholdtrueforotherlowsocioeconomiccommunitiesinotherpartsofSouth Africa.

6 1.3.3 WorldwideprevalenceofFAS EstimatesoftheprevalenceofFASvarybetween0.2and1per1000livebirthsworldwide. Itmustbenotedthatfactorssuchasethnicity,culturalbackgroundsandvaryingdiagnostic criteriacouldgreatlyinfluencetheestimatesfortheprevalenceofFASaroundtheworld. Tworeviews,thefirstbyAbel(1995)andtheotherbySampsonetal.,(1997)havebeen publishedthatcriticisepopulationbasedstudiesthatpublishedtheprevalenceofFAS. In1995AbelreportedtheUSincidenceofFASfortheperiodbetween19731992,tobe 1.95/1000births;0.26/1000whenanalysingmiddle/upperclassCaucasiansand2.29/1000 forAfrican/NativeAmericangroups.Anotherimportantobservationfromthisreportwasthat lowsocioeconomiccircumstancesratherthanethnicbackgroundsplayedagreaterroleinthe determinationofprevalencerates(Abel,1995). In1997SampsonreportedtheincidenceofFASfordifferenttimeperiodsattwoUSsites andoneinFrance.Themotherswerefromdifferentethnicgroupsinthetwosamples;theUS motherswerefromminoritygroupsandthemothersfromFrancewereCaucasian.The mothersfrombothgroupssufferedfromalcoholismandcamefromlowsocioeconomic backgrounds.TheresearchersinFranceuseddifferentdiagnosticcriteriatotheAmericans. ThediagnosticcriteriauseddividedFASintothreecategories;moderateFAS,fullFASand severeFAS.Theincidencesvariedaccordingthediagnosticcriteriaused;1.3/1000forsevere FASto4.8/1000forallFAStypes(moderate,fullorsevere).WhentheUSdiagnosticcriteria wereappliedtotheFrenchdata,theincidenceofFASwas2.3/1000livebirths.Estimates reportedfortheUSwere2.8/1000livebirths(Sampsonetal.,1997).Thisreporthighlighted theinfluencedifferentdiagnosticcriteriacanhaveontheincidenceratesobservedin differentcommunities.Boththesereportsprovidedevidenceforastrongrelationship betweenalcoholintakeandlowsocioeconomiccircumstances. IndigenouscommunitieshavealsobeenidentifiedashavinghigherincidencesofFAS comparedtothegeneralpopulationforacountry.Mayreportedastudyin1991lookingat threeNativeAmericangroups;Navajo,PeubloandSouthWestplains.Thestudywas conductedovertwotimeperiods,19691977and19781982.Resultsshowedvariationinthe

7 prevalenceofFASbetweenculturalgroups(1.0,1.3and17.5/1000birthsrespectively)and alsoindicatedanincreaseinprevalenceovertime.Theresultswereindicativeofincreasing drinkingbehaviourovertime(Mayetal.,2000).TheprevalenceofFASwasalsostudiedin theAlaskanindigenouspopulationsfrom1977to1992.Strictcriteriawereusedtodiagnose FASandNativeAlaskanchildrencomprised83%ofthecases.Theprevalencereportedwas 3.0/1000amongtheAlaskanand0.2/1000forthenonnativepopulation(Egelandetal., 1998).

1.3.4 FASinSouthAfrica TheColouredcommunityoftheWesternCapehasthehighestrecordedprevalenceofFASin theworldwiththelatestincidencelevelsatapproximately70per1000children(Mayetal., 2007).AninitialstudyconductedbyMayetal.,(2000)assessedchildrenofschoolgoingage from11predominantlyColouredandBlackschoolsandonepredominantlywhiteschoolin theWesternCape.TheprevalenceofFASwasshowntobemuchhigherthanexpected,with 61%ofthecasesoccurringinruralareas.Nocasesoffetalalcoholsyndromewereobserved inthewhiteschoolandtherateintheBlack/Colouredschoolswas49.3/1000.Theminimum prevalencerateswerecalculatedas39.242.0astheagespecificratewas39.2per1000for childrenofschoolgoingage.Thispaperprovidedinsightsintothesocialinfluencesonfetal alcoholsyndromeandhasconfirmedthatlowsocioeconomiccircumstancedoesincreasethe riskforthedisease.Currentstudiesarebeingconductedtoascertainwhetherthisholdstrue forotherlowsocioeconomiccommunitiesthroughoutSouthAfrica(Viljoen,personal communication).

1.4 Teratogenic effects of alcohol exposure Asateratogen,alcoholisabletoinducemalformationsinadevelopingembryo.Theextent ofthedamageisdependantonthetime,doseandpatternofalcoholexposure.

1.4.1 Stagesoffetaldevelopment Tounderstandtheteratogeniceffectsofalcoholweneedtounderstandthedifferentstagesof fetaldevelopment.Therearetwomajorperiodsoffetaldevelopment;theembryonicperiod whichisuptoeightweeksofgestationandthefetalperiod,fromeightweekstillbirth.The firststageofeventsofembryodevelopmentiscelldivisionandproliferationfollowedbythe

8 secondstageofcellulargrowthanddifferentiationbywhichtimecellsbecomespecializedin structureandfunction.Thefinalstageismigrationofmaturingcellstotheirultimate locationsinthedevelopingembryowheretheywillremain.Itisduringtheembryonicperiod ofdevelopmentthatmalformationsareformedduetotheexposureofteratogensdirectlyin themother’sbloodstreamorthroughthemother’sdiet(MichaelisEKandMichaelis ML,1994).Duringtheearlystagesofpregnancyalcoholexposureresultsinmorphological malformationswhilegrowthismostaffectedduringthelaterstagesofdevelopment.Damage totheCNSasaresultofalcoholexposureoccursthroughoutthegestationalperiod(Larkby andDay,1997). Alloftheabovestagesareinfluencedanddirectedbynutritional,hormonalandcellular factorsandalcoholcanaffectmanyofthesefactors,therebyinfluencingorganformationand growth(MichaelisEKandMichaelisML,1994).

1.4.2 Mechanismsofalcohol’seffectsonthefetus Numerousmechanismshavebeenpostulatedtoexplainhowalcoholexertsitseffectsonfetal developmentbutthemolecularpathway(s)leadingtoFASremainamystery.Duetoitssmall molecularsize,alcoholisfreelyabletomovethroughtheplacentaresultinginnearlyequal concentrationsinthebloodofthemotherandthefetus(MichaelisandMichaelis,1994).The resultingtoxiceffectsonthefetusmaybeduetothedirectexposuretoalcoholorvia secondaryeffectsofthematernal/placentalfunctions.Someofthemechanismspostulated include:a)inappropriateinductionofapoptosisandthegenerationoffreeradicals,b)cell adhesiondefects,c)growthfactorsandd)theinhibitionofretinoicacidsynthesis.

1.4.2.1 Free radicals, oxidative distress and apoptosis Manyactionsofalcoholonthedevelopingorganismresultincelldeathviaaprocessknown asapoptosis.Apoptosisaffectsonlyindividualcellsandleavestheadjacentcellsintact.A balanceexistsbetweencertainproteinfactorswhichcanactivateorblockapoptosisand disruptionofthisbalancemightbeinvolvedinalcoholinducedapoptosis(Olney,2004). Onesuchfactorisgammaaminobutyricacid(GABA).Thisisamajorinhibitorysubstance inthebrain.Studieshaveshownthatprenatalalcoholexposureincreasestheactivityof

9 GABAnergicneuronsresultinginalesserdegreeoffiringoftheneuronscomparedwith controls(Chaudhuri,2000).Animportantneurotransmitter,glutamate,foundinthebrainand spinalcordisalsoaffectedbyprenatalalcoholexposure.AdecreaseinGABAnergicactivity orincreasedlevelsofglutamateresultinhyperstimulationofneuronsandthismayresultin mitochondrialdamage.Growthfactorsalsoaffectedbyalcoholincludetheepidermalgrowth factorsandinsulinlikegrowthfactors. Anotherkeyfactorthatcaninduceapoptosisisoxidativestress.Oxidativestressoccursasa resultofhavingexcesslevelsoffreeradicalsinthecells.Freeradicalsarehighlyreactive moleculesthatareformedduringbiochemicalreactionsinthecell.Manyofthefreeradicals alsocontainoxygenandareknownasreactiveoxygenspecies(ROS).Thelevelsoffree radicalsandROSarecontrolledbyantioxidantswhicharescavengermolecules.Thenormal antioxidantlevelsinthecellcanbereducedbythepresenceofalcoholandconsequently, oxidativestresscanoccur.Thisstresscausesdamagetocellularmembranes,DNAand protein(CohenKeremandKoren,2003). Studiesincelllinesandanimalmodelshavedemonstratedadirecteffectofoxidativestress bytheformationoffreeradicalsonapoptosis.Thecellulardamagecausedbyfreeradicalsis aconsequenceoftheperoxidationoflipidsandalterationofenzymaticactivity.Resultsfrom oxidativestresscanbemanifestedaschromosomalabnormalities,enzymaticmalfunction anddisruptionofcellularmembranes.FormationofROScanbeinducedinthemitochondria inhepatocytesexposedtoethanol.Thisisachievedbythereductioninmitochondriaderived componentsofelectrontransport.Oxidativestressisinducedindirectlybyreducingthe intracellularantioxidantcapacityforexample,byreducingthelevelsofglutathione peroxidase(CohenKeremandKoren,2003). Oxidativestresscanalsoleadtofetalhypoxia.Ithasbeenshownthatmaternalintakeof alcoholrestrictsthematernalbloodflowresultinginreducedoxygensupplytothefetus.One oftheproposedmechanismsforfetalhypoxiaistheoverproductionofprostaglandins.Their activityhasbeenshowntobeelevatedduringalcoholexposureandresultsintheconstriction ofthebloodvesselsintheuterus,placentaandfetus(Schenkeretal.,1990).

10 Diminishedbloodsupplytofetaltissuescanresultinapoptosisandmayalsoinducethe formationoffreeradicalsinsomeembryonictissues.Anorganthatisverysensitiveto hypoxiaisthebrainandthiscanresultinreducedbrainsizeandweightwhichisoneofthe characteristicsofFAS.

1.4.2.2 Cell adhesion and migration Glialcellswhicharenonneuronalcellsareneededfornormalbraindevelopment.Various typesofglialcellsexistwithspecializedfunctions.Oneoftheirfunctionsistoassistinthe migrationofnewlyformedneuronstotheirfinallocations.Thisismediatedbythepresence ofradialglia,whichareabletodirecttheneuronstotheircorrectdestinations.Onceatthe finaldestination,theychangeintostarshapedastrocytes.However,withprenatalalcohol exposure,radialcellsmaybecomeastrocytesprematurely,andasaresult,neuronsstop migratingandresultinabnormalpositions(GoodlettandHorn,2001).

1.4.2.3 Nutrition OneofthecharacteristicsofFASislowbirthweightwherechildrengenerallyremainsmall fortheirage.Fornormalgrowthanddevelopmenttooccurduringgestationtheconstant transferofaminoacidsandglucosefromthemothertothefetusacrosstheplacentalbarrier isrequired.Severalstudieshaveindicatedthatalcoholdirectlyinhibitsthetransportofamino acidsandglucosethereforedeprivingfetaltissuesoftheenergysourcesandmaterialsneeded forcellproliferation,growthanddifferentiation(MichaelisEKandMichaelisML,1994).In lowsocioeconomicstatusgroups,maternalnutritionisthoughttoplayanimportantrole.

1.4.2.4 Hormonal factors Thereleaseofhormonesfrommaternalglands,fetalglandsandtheplacentainfluencethe formationanddevelopmentoftissues.Experimentalstudiesonanimalsexposedtoalcohol in utero showareductionincorticosteroidhormonesinthebrainandblood.Thesehormones regulateaspectsofmetabolismandcaninfluencetheorganism’sresponsetostress.A deficiencyinthishormonecouldaffectthefetus’sresponsetostress.Thyroidhormone deficiencieshavebeenidentifiedinbabiesborntoalcoholicmothersandthesehavea deleteriouseffectonthedevelopmentofsometissuessuchasthebrain(MichaelisEKand MichaelisML,1994).

11 1.4.2.5 Acetaldehyde Ethanolmetabolism,eitherthroughthealcoholdehydrogenase(ADH)ormicrosomal pathways,resultsinacetaldehyde.ThismetabolitehasbeenshowntoinduceFASrelated malformations in vivo (Menegolaetal.,2001).Thehumanplacentaiscapableoftransferring acetaldehydefromthemothertothefetusandofconvertingethanoltoacetaldehyde. Experimentalevidencehasshownthathighacetaldehydelevelswerereversibleuponalcohol withdrawalbutwereincreasedbypregnancyandlactation(Lieber,2000).Thereisalso evidenceforthecarcinogenicityofacetaldehyde,whenitisinhaleditcancausethe formationoftumorsoftherespiratorytractinnasalmucosaofrats.Italsohastheabilityto inducechromosomalaberrations,micronucleiandsisterchromatidexchangesanditcanalso interactwithDNAtoformDNAadductswhichistheinitiatingstepofchemical carcinogenesis(YokoyamaandOmori,2003).

1.5 The role of genetics in FAS

1.5.1 Twinstudies In1974Palmeretal.,(1974)andcolleagues(ascitedinStreissguthandDehaene,1993), describedmonozygotictwinswhowereexposedtoalcohol in utero .Thetwinswere describedasbeingidenticalatbirthandallfollowthroughexaminations.Theywereboth mildlyretardedandtheirmotordevelopmentwasalsorestricted.Fourpairsofdizygotic twinswerealsodescribedindetail.Inthreeofthese,onetwinwasseentobemoreseverely affectedthantheother.Onlyonepairoftwinswerediscordantindiagnosis,onetwinhad FASandtheotherhadFAE(fetalalcoholeffects).AlaterreportbyCrainetal.,(1983) describedadizygotictwinpairinwhichthetwinwiththesmallerheadcircumferenceand mostgrowthdeficiencyalsohadmoreseverementalretardation. In1993,StreissguthandDehaenedescribed16pairsoftwinswhichincludedfive monozygoticand11dizygotictwinpairs.Allthemonozygotictwinswereconcordantfor diagnosise.g.,intwopairsoftwins,bothtwinshadFAS,inonepairbothhadFAEandthe otherpairtherewasnodiagnosis.Inthedizygotictwinssevenofthepairswereconcordant fordiagnosisandtheremainingfourdiscordant.Amongthetwins,thereweretwopairsof

12 twinswhereonetwinhadFASandtheotherhadFAE,andanothertwopairswereonetwin hadnodiagnosisandtheothertwinhadFAE. Theabovestudiesdemonstratedthatmonozygotictwinsshowahigherrateofconcordant alcoholrelateddiagnosiswhencomparedwithdizygotictwins.Thesestudiesalsoexamined IQandthereagainthemonozygotictwinswereconcordantmoreoftenwithIQwhen comparedtothedizygotictwins.Thesestudiesconfirmthatgeneticfactorscaninfluencethe developmentaleffectsofinuteroalcoholexposure.Maternalresponsetoalcoholandalcohol metabolismandthefetalgenotypeallplayavitalroleintheoutcomeofthedisease.

1.5.2 Animalmodels Animalmodelsplayasignificantroleindevelopingstrategiestounderstandandpreventthe damagecausedbyprenatalalcoholexposure.Thedamagecausedresultsfrommultiple mechanismsthataredependantondose,patternandthetimingofexposure.Byusinganimal models,researchershavebeenabletoreplicatehumanphysicalcharacteristicsintheratand thereforeprovidefurtherevidencethatalcoholdoeshaveadirecttoxiceffectonthebody. Theyhavealsoadvancedtheknowledgeonareassuchaseffectsofprenatalalcoholexposure ontheimmunesystem,hormonalsystems,andtheCNS.

1.5.2.1 Rodent models Theratisananimalmodelthathasbeenwidelyusedbyresearchers.Ithasbeenusedto studytheeffectofalcohol,particularlyonthecerebellum.Inonestudy,alcoholwas administeredpostnatallyduringtheperiodofrapiddevelopmentofthecerebellumbecause thestructuresthatdevelop in utero inonlydeveloppostnatallyintherat(Cudd, 2005).AreviewbyPonnappaandRubindescribedstudiesthatdemonstratedthatdueto alcoholexposure,therewasareductioninthenumberofsynapticcontactsandinthenumber ofPurkinjecellswhichisthoughttocontributetoimpairedmotorcontrol(Ponnappaand Rubin,2000). Micehavealsobeenusedasananimalmodelandhaveadvantagessuchasshortgestation periodsandagreaterpotentialforgeneticmanipulationcomparedtotherat.Mouseembryos

13 wereexposedtoalcoholatspecifictimesduringgestationanditwasdemonstratedthat in utero alcoholexposureinmicecanproducefacialfeaturesthatarecharacteristictoFASin humans(Suliketal.,1981).Studiesonmouseembryoshaverevealedthatcelldeath specificallyoccursinneuralcrestcells(Smith,1997). Theguineapig,ananimalmodelwithalongergestationalperiod(68days)allows researcherstotargetaparticulardevelopmentalperiod.Theyalsohavethefeatureofprenatal braingrowth,soresearcherscanstudyprenatalalcoholexposureduringthethirdtrimesterof theguineapigdevelopment.Studieshaveshownthatprenatalalcoholexposurehasresulted inlowbirthweightandreducedfetalbrainweight(Kimuraetal.,1999).Deficitsinthe cerebralcortex,hippocampusandcerebellumhavealsobeenobserved.

1.5.2.2 Nonmammalian models Thechickmodelhasbeenusefulinstudyingthedevelopmentofthefacefollowingprenatal alcoholexposure.Thezebrafish,roundwormandfruitfly(Drosophila)havealsobeenused asmodelsandtheyhavetheadvantagesofsimplenervoussystemsandshortgeneration times.Thesesystemsallowresearcherstostudyquestionsthatinvolvegeneticsand development.Butaconcernrelatingtothesesystemsisthehighdoseofalcoholneededto inducemalformations,suggestingthatthemechanismsofdamagemightbedifferenttothose observedinlowerdosealcoholconcentrationforlargeranimals(Cudd,2005).

1.5.2.3 Large animal models Theuseoflargeanimalmodelstostudyprenatalalcoholexposurerequirestheinsertionof cathetersintothefetus.Theintubationresultsinhighfetallossandisconsideredagreat liability.Althoughnonhumanprimatesexhibitmanyofthesamebehaviourpatternsas humans,thesestudiesarecomplicatedbytheneedforanestheticsandtheneedtorestrain animalsafterinstrumentation.Investigatorshavealsousedthepigasamodeltostudythe behaviouraleffectsofprenatalalcoholexposure.Therearedisadvantagessuchastheexpense ofmaintainingtheanimals,thelargelittersandthefetusesthataredifficulttointubate. Sheephavealsobeenusedasamodelandstudiesincludeinvestigatingtheeffectofalcohol onbrainmetabolismandtheactionsofalcoholonbrainactivityandfetalbrain neurotransmitteractivity(Cudd,2005).

14 1.6 Identification of genetic factors involved in complex diseases Complexdiseasesresultfromtheinteractionofmultiplegenesandenvironmentalfactors, witheachgenecontributingtowardstheoverallphenotype.Theidentificationofcausative genesinvolvedincomplexdiseaseshasposedgreatchallengesforresearchers.Two strategiesaregenerallyusedbyresearcherstoidentifyandcharacterisegenes;linkage analysisandcasecontrolassociationstudies.

1.6.1 Linkageanalysis Thismethodattemptstoidentifyaregionofthegenomethatistransmittedwithinfamilies alongwiththediseasephenotype(SilvermanandPalmer,2000).Thefamiliesarestudiedfor ahigherthanexpectednumberofsharedallelesamongaffectedindividualswithinafamily (Carlsonetal.,2004).Oneapproachinvolvestheuseofaffectedsibpairs.Iftheaffectedsib pairssharemarkersthatareidenticalbydescent(IBD)theMendelianexpectationsofsharing allelesIBD0,1,2withfrequenciesof0.25,0.5and0.25willbeexpected.Ifthereislinkage betweenthediseasepredisposinglocusandamarkerthendeviationsfromMendelian expectationswillbeobserved.Thetransmissiondisequilibriumtestisalsousedtoidentify markersthataretransmittedfromparentstotheaffectedoffspring(DalyandDay,2001).A limitationtothisapproachistheneedtocollectDNAsamplesfromtheparents,theaffected individualsandthesiblings,anditmaybecomemoredifficulttoperformwhenstudyinglate onsetdiseases. Theuseoflinkageanalysistostudycomplexdiseaseshasbeenlesssuccessfulthanitsusein elucidatingsinglegenesinMendelianinheriteddiseases.Thisisduetomultiplegene interactionsandtheinfluenceoftheenvironmentondiseaseoutcome,heterogeneitydueto ethnicdifferences,smallsamplesizesandinappropriateselectionofcontrols(Risch,2000). Ithas,however,beenusedwithlimitedsuccessinidentifyingregionsofthegenomethat containsusceptibilitygenesforcomplexdiseases.

1.6.2 Casecontrolassociationstudies Theaimofthisstrategyistotesttheassociationbetweenageneticpolymorphismanda phentoype.Allelesarethoughttoplayaroleinadiseaseoractasamarkerforadisease whenthefrequenciesdiffersignificantlybetweenthecasesandcontrols.Itcanalsobe

15 inferredthattheseallelesmaybeinlinkagedisequilibriumwithanotherallelewhichmay playacausalroleinthedisease,atanearbylocus(Schork,1997).Significantdifferencesin alleleandgenotypefrequenciesbetweencasesandcontrolsareregardedassupportforthe involvementofanalleleindiseasesusceptibility(SilvermanandPalmer,2000),however furtherstudieswouldneedtoconfirmacausativeeffect.Thisstrategyisthoughttobemore powerfulthanlinkageanalysisforthedetectionofthemorecommondiseaseallelesthat confermodestdiseaserisk.Anotheradvantageofanassociationanalysisistheabilityto moreeasilycollectlargernumbersofunrelatedaffectedindividualsthantocollectlarge numbersoffamilies(Carlsonetal.,2004). Thereareafewconsiderationstotakeintoaccountwhenperformingacasecontrolstudyand theseinclude:choiceofcandidategeneandpolymorphismforstudy,patientandcontrol recruitmentmethods,matchingofcontrolsandthenumberofsubjectstobestudied. Choice of candidate gene and polymorphism. Itisimportanttochooseacandidategenethat hasrelevancetothepathogenesisofthedisease.Considerationofthefunctionaleffects ofthe polymorphismisalsoimportantbecausestudyingfunctionallyrelevantpolymorphisms insteadofrandomneutralpolymorphismsmightleadtothedetectionofthecausaldisease genes.Ageneisselectedascandidatesdependingonanumberofvariablessuchasit’s expressioninthetissuesthatareaffectedbythedisease,it’sproposedfunctions,the biologicalpathwayinwhichitoccursorit’shomologytoothergenes.Adisadvantagetothis approachisthelargenumberofgenesthatcanbeconsideredascandidatesforanygiven disease(Schork,1997). Statistical aspects of study design .Considerationshouldbegiventocorrectingformultiple testing.Althoughmanymethodshavebeenproposedforcorrectingformultipletesting,the appropriatetesttouseinagivensituationremainsunclear.Manyresearchershavesuggested usingtheBonferronimethodofcorrectionbutthismethodresultsinadecreaseinpowerto detectanygeneaffectsandmaybetoosevereacorrectionformultipletestingwhen consideringcandidategenesthathavenotbeenrandomlychosen(DalyandDay,2001).

16 Recruitment of subjects and controls. Thecarefulselectionofcasesandcontrolsisvery importantasonemustensurethatcasesdonotincludeaheterogenouscollectionof phenotypeswhichcanreducethepowerofthestudy(DalyandDay,2001).Onlycases diagnosedwithFASwereincludedinthisstudyandthoseclassifiedwith‘partial’FASwere excluded. Spuriousassociationsmayariseduetopopulationstratificationorpopulation substructure.Thisarisesasaresultofrecentpopulationadmixtureorcanresultfrom differentethnicitiesbetweencasesandcontrols(DalyandDay,2001).Ourstudyfocusedon twooftheColouredcommunitiesofSouthAfrica,whichhaveresultedfrompopulation admixture.Wecarefullyselectedourcontrolssothattheyweregeographicallyandethnically matchedtothecases. Forthisstudywehavechosecandidategenecasecontrolassociationstudydesign.We selectedourcandidategenesaccordingtotheirproposedroleinalcoholmetabolism,since thisdiseaseresultsfromtheabuseofalcoholduringpregnancy.Thepolymorphisms associatedwitheachcandidategenewereselectedwithrespecttothepublishedfrequency dataandfunctionalrelevance.

1.7 Alcohol metabolism Moleculargeneticresearchonalcoholismhasdrawnattentiontotheimportanceofalcohol andacetaldehydemetabolisingenzymes.Functionalpolymorphismsexistforvariousgenes involvedinalcoholmetabolismandtheyhavetheabilitytoaltertherateofmetabolism.The molecularmechanismsthatcontroltheeliminationandmetabolismofalcoholareimportant inunderstandingthechemicalbasisofalcoholtoxicity. Ninetytwoto95%ofalcoholmetabolismoccursinthehepatocyteswhicharelocatedinthe .Alcoholdehydrogenase(ADH)andaldehydedehydrogenase(ALDH)aretwoenzymes involvedintheoxidationofalcohol(ethanol)tocarbondioxideandwater.Alcoholis metabolisedfirsttoacetaldehydebyClassIADH,withNAD +asthecoenzymeina reversiblereaction.Theacetaldehydethenbecomesoxidisedtoacetatebyaldehyde dehydrogenases,withNAD + alsoactingasthecoenzymeinanonreversiblereaction.The endproductsofthispathwayarecarbondioxideandwater,aftertheoxidationofacetatein

17 theKreb’scycle(Norbergetal.,2003).Duetotheequilibriumconstantfavouringthe directionofareductionofacetaldehydetoethanol,acetaldehydeisusuallyfoundatlower concentrationsthanethanoloracetate(WarrenandLi,2005).Secondaryethanolmetabolism occursinthemicrosomalfractionoftheliverandthispathwayisknownasmicrosomal ethanoloxidisingsystemorMEOS.ThisisthemajornonADHpathwayanditsactivity increasesafterchronicalcoholconsumption.TheP450familyofenzymes, namelyCYP2E1,isinvolvedinthispathway(Agarwal,2001).

1.7.1 Alcoholdehydrogenases Thealcoholdehydrogenasegenefamilyencodesenzymesthatmetaboliseawidevarietyof substratesincludingethanolandretinol.HumanADHisadimericproteinconsistingoftwo subunitswithamolecularweightof40kDeach.Sevendifferentgeneticlocicodeforhuman ADHandtheADHenzymesarederivedfromtheassociationofdifferenttypesofsubunits. Thesevengeneshavebeenorganisedintofiveclasses(Table1.2)basedonaminoacid sequencealignmentsandsimilarities,catalyticpropertiesandpatternsoftissuespecific expression(Ramchandanietal.,2001).Originallythegeneswerenamedaccordingtothe sequenceofdiscoverybutanewnomenclaturehasbeenadoptedandwillbeusedthroughout thisdissertation.TheADHgenefamilyisclusteredonchromosome4q22spanning367kb

(Figure1.2).ClassIgenes(ADH1A,ADH1B,ADH1C)arethelowKmformsforethanol oxidationandareconsideredtoplayamajorroleinethanolmetabolismwhileClassIIand

ClassIIIarethehighKmforms.ClassIIIwhichisaglutathionedependantformaldehyde dehydrogenasedoesnotfavourethanolasaandthekineticfeaturesofClassVhave notyetbeendefined.

1.7.2 Tissueexpression ThehumanADHgenesaredifferentiallyexpressedindifferenttissueswhichisavery importantfeatureforthephysiologicalconsequencesofalcoholmetabolisminspecificcells andtissues.AstudyconductedbyEstoniusetal.,(1996)examinedtissuedistributionsforthe differentADHenzymesusing23adultandfourfetaltissues.ClassItranscriptsshoweda widerangeofexpressionlevelsamongdifferenttissues.Itoccurredwithhighestlevelsinthe adultliverandvaryinglevelsinthestomach,smallintestine,colon,adrenalcortex,heartand lung.ClassImRNAwasmainlyexpressedintheliver.Itwasalsoobservedinthesmall

18 intestine,pancreasandstomachbutatlowlevels.ClassIIIshowedadifferentdistribution patternwithtranscriptsoccurringinalltissuesexamined.ClassIIADHactivitywasdetected mainlyinstomachmucosabutalsoinoesophagus,gingivaandtonguetissues.Theseresults indicatethatADHisfoundinmosttissuesinthebodybutwithhighestlevelsintheliver.

Table 1-2: New nomenclature for ADH genes and enzymes (www.gene.ucl.ac.uk/nomenclature) ADH class new gene nomenclature Enzyme subunit I ADH1A α I ADH1B β I ADH1C γ II ADH4 π III ADH5 χ IV ADH7 σ V ADH6 notidentified ClassIClassII ADH7 1C1B1A ADH6 ADH4 ADH5

Figure 1.2: Schematic representation (not to scale) of the ADH cluster spanning ~380kb and the relative position of the ADH4 gene. Adapted from Osier et al.,(2002).

19 1.7.3 ADH1B ThisenzymeislargelyresponsibleformostoftheliverADHactivityandremainsactivein thetissuethroughoutlife.Threeallelicvariantshavebeenidentified;ADH1B*1,ADH1B*2 andADH1B*3whichencodethesubunitsβ1,β2andβ3respectively(Chenetal.,1999).The isoenzymeencodedbyADH1B*2hasahigherturnoverrateforethanolmetabolismthan ADH1B*1.TheofthisallelediffersfromtheADH1B*1,thecommonallele,bya singleaminoacidsubstitutionresultinganargininetohistidineexchangeatposition47 (Chenetal.,1999).ForindividualswiththeADH1B*3allele,therateofethanoloxidationis alsogreaterthanforindividualswiththeADH1B*1allele(WarrenandLi,2005).Itdiffers fromADH1B*1byanargininetocysteinesubstitutionatposition369(Chenetal.,1999).It hasbeensuggestedthatADH1B*2andADH1B*3protectagainstalcoholinduced teratogenicityduetofasterethanolmetabolismathigherethanolconcentrationsbutnotall studiessupportthisassertion(WarrenandLI,2005). ADH1B*1isthemostcommonalleleamongstCaucasians(frequencyof0.85to1)and AfricanAmericans(frequencyof0.66to0.85),ADH1B*2isthemostfrequentalleleinthe EastAsianpopulationsoccurringatfrequenciesbetween0.65to0.85.ADH1B*3hasbeen identifiedinAfricanAmericanpopulationsatfrequenciesbetween0.15to0.33(Burdetal., 2003). Intheliterature,therearemanyreportsregardingtheADH1Bpolymorphismandalcoholism. IthasbeensuggestedthatADH1B*2mightprotectagainstalcoholisminAsianpersons (Muramatsuetal.,1995)andCaucasianpopulations(Borrasetal.,2000),thoughthe mechanismremainsunclear.Ithasbeensuggestedthattheunpleasanteffectssuchasfacial flushingfollowingalcoholintakedirectlyaffecttheamountofalcoholingested.Thiswas supportedbystudieswherethisallelewasfoundtooccuratalowerfrequencyinalcoholics. HowevertherehavebeencontradictingstudiessuchastheoneconductedbyRussian researchers,whereanegativeassociationbetweenADH1B*2andalcoholmisusewas reported(Ogurtsovetal.,2001). TheeffectoftheADH1Bpolymorphismonalcoholexposedfetuseshasbeenstudiedinthe UnitedStates.McCarveretal.,(1997)notedthepresenceofmaternalADH1B*3was

20 associatedwithadecreasedriskforreducedbirthweightandbirthlength.Incontrast, anotherstudyStoleretal.,(2002)reportedon404womenofwhom108wereAfrican American.Theyfoundthat60%oftheAfricanAmericaninfantswhomtheyclassifiedas affectedwithFAShadanADH1B*3allelecomparedwithonly29%intheunaffected infants.TheseresultsdifferedfromthoseofMcCarveretal.,(1997)whoindicatedthatthe absenceofADH1B*3wasprotectiveagainstadversefetaloutcomewhereasotherstudies foundthatthepresenceofADH1B*3wasprotective. TheroleofADH1BinFASetiologyhasalsobeenexaminedinothercohorts.Erikssonetal., (2001)suggestedthatADH1B*2maybeprotectiveagainstdevelopingthediseaseby preventingthemotherfromconsumingalcoholduetotheadverseeffectsexperienced.The ADH1B*2allelewasalsofoundtoconferprotectionortobeamarkeragainstthe developmentofFASintheSouthAfricanColouredcommunityfromtheWesternCape.In thisstudytheADH1Blocuswasexaminedin56FASchildren,theirmothersandagroupof controls.TheADH1B*2alleleoccurredmorecommonlyinthecontrolsthanintheFAS affectedchildrenortheirmothershowevernosignificantassociationswereobservedfor ADH1B*3(Viljoenetal.,2002).

1.7.4 ADH1C Twoallelicvariantshavebeenidentified;ADH1C*1andADH1C*2whichencodethe subunitsγ1andγ2respectively.ADH1C*1andADH1C*2differbyanaminoacid substitutionofisoluecinebyvalineatposition349inexon8(Osieretal.,2002). ADH1C*2whichistheloweractivityallele,isthecommonalleleinmostpopulationswith ADH1C*1beingthepredominantalleleamongstEastAsiansandAfricansoccurringin90% ofsamples.Thetwoalleles,ADH1C*1andADH1C*2,areequallydistributedwithin Caucasianpopulations(Chenetal.,1999).In1999Osieretal.,demonstratedthatADH1B*2 andADH1C*1,whichare21kbapart,wereinstronglinkagedisequilibriuminasampleof TaiwaneseChinesealcoholicindividuals.Throughtheuseofhaplotypeanalysis,the researchersfoundthattheassociationwithalcoholismwascausedbyADH1B*2alleleand thedecreasedfrequencyofADH1C*1alleleintheTaiwaneseChinesealcoholicindividuals comparedtothecontrolswasduetothestronglinkagedisequilibriumwithADH1B*2 (Osieretal.,1999).

21 1.7.5 ADH4 ADH4isthesolememberofClassII.Itwasfirstcharacterisedfromstomachmucosaand wasdesignatedσADHorADH.Itispredominantlyexpressedintheepithelialtissueof theupperdigestivetracti.e.esophagus,gingivalandtongue(Baraonaetal.,1991). Thisenzymehastwoimportantfunctionsthatmakesitaninterestingcandidategeneforthis study.Firstlyitaffectstheamountofingestedalcoholthatreachesthebloodstreamasaresult offirstpassmetabolism.Itisthefirstmetabolicbarrierasaresultofitstissuedistribution thatingestedalcoholcomesintocontactwith.Secondlyitfunctionsasaratelimitingstepin retinoicacid(RA)synthesis.Alcoholisabletocompetitivelyinhibitretinolfrombindingto ADH4whichfunctionsasanefficientretinoldehydrogenase.Thisleadstothereducedlevels ofretinoicacidwhichisimportantduringembryogenesis(Yinetal.,1999). AstudybyEdenbergetal.,(1999)characterisedthreepolymorphismsinthepromoterregion ofADH4thataffecteditsexpression;192bp(T/A),159bp(G/A)and75(A/C).They foundthatpromoteractivityincreasedifthe‘A’allelewaspresentinsteadofthe‘C’alleleat position75bp.Theyhypothesisedthatthe‘A’allelemayhaveaprotectiveeffectby modulatingalcoholmetabolismtherebyreducingtheriskofdevelopingalcoholism.Astudy conductedinBrazilexaminedtheassociationofthepromoterpolymorphismsinalcoholic patients(Guindalinietal.,2005).TheirresultswereinagreementwithEdenbergetal., (1999)asthe‘C’alleleat75bpwasassociatedwithalcoholdependence(oddsratioof1.6). RecentlyLuoetal.,(2005)publishedtheirresultsontheassociationofpolymorphicvariants intheADH4genewithalcoholanddrugdependence.Theystudiedsevenpolymorphic variantsintheADH4geneinEuropeanAmericansandAfricanAmericansandfourofthe sevenSNPstheyexaminedwerechosenforthepresentstudy;rs1800759,rs1126670, rs1126671,rs1042363.TheyfoundthatwithintheEuropeanAmericancontrols,thegenotype distributionfrequencieswereinHWEbutinthealcoholanddrugdependantgroups,they werenot.TwoSNPs,rs1042363andrs1800759,showedthegreatestdegreeofHardy Weinbergdisequilibriuminbothpatientgroups.Significantassociationswerefoundatthe genotypelevelbutnotwithallelesorhaplotypefrequencydistributions.Theyconcludedthat

22 ADH4genotypeswereassociatedwithalcoholanddrugdependencewithrs1042363and rs1800759beingthemarkersclosesttotheriskloci. In2006Edenbergandcolleaguescharacterised110SNPsencompassedwithinandaround theADHgeneclusteronchromosome4qinanattempttodeterminesignificantassociations betweenSNPsintheregionandalcoholdependence.Thefamiliesstudiedwererecruited fromtheCOGAstudyandincludedindividualsofEuropeanAmericanandAfrican Americanethnicitywhohadbeendiagnosedwithalcoholism.Intheirstudytheyobserved stronglinkagedisequilibriumwithintheADHgenesbutlowlinkagedisequilibriumbetween theADHgenes.Surprisinglytheyhadobservedastrongassociationbetweenalcohol dependenceandSNPsintheADH4gene,lowlevelsofassociationwiththeADH1Aand ADH1BgenesandnosignificantassociationswiththeADH1Cgene. ThestrongestregionofassociationintheADH4genewasfromintron1to19.5kb downstreamofexon9inwhich12SNPswereidentified.Althoughpreviousstudieshave demonstratedtheassociationbetweenrs1800759andalcoholdependence(Iidaetal., 2002;Giundalanietal.,2005),thestudybyEdenbergetal.,(2006)foundnosignificant associations.Howeverthisgeneislocated860bpawayfromtheSNPwiththehighest significantassociation,rs4148886,andismorethanlikelyinstronglinkagedisequilibrium withit. NosignificantassociationswerefoundwiththecodingSNPsofADH1BintheEuropean Americanfamiliesastheallelesoccurredatlowfrequencies.However,significant associationswereobservedwiththreeadjacentSNPsintheADH1Bgenethatoccurred betweenintron1andthepromoterregionthroughto1.5kbupstreamoftheinitiationcodon. AstrongassociationwasobservedforADH1B*3andalcoholismintheAfricanAmerican samplewhichprovidedsupportforaroleofADH1B*3inalcoholismsusceptibility.The studybyEdenbergetal.,(2006)hasprovidedstrongevidenceforaroleofADH4in alcoholismandaweakerroleforADH1AandADH1Binalcoholismsusceptibility. ThisstudyrepresentsthefirstmoleculargeneticanalysisoftheADH4geneinthe developmentofFAS.

23 1.7.6 Aldehydedehydrogenases(ALDH) Acetaldehydeisthemetabolicproductofethanolmetabolismintheliver.Themajor oxidationofacetaldehydeintheliverandotherorgansiscarriedoutbyaldehyde dehydrogenase.AnumberofisoenzymesofALDHencodedbydifferentgenelocihavebeen detectedinhumanorgansandtissueswhichdifferintheirelectrophoreticmobility,kinetic properties,andcellularandtissuedistribution(Agarwal,2001).

1.7.6.1 ALDH2 Thisgeneencodesamitochondrialenzymethatisexpressedinvarioustissuesbutwiththe highestexpressionlevelsoccurringintheliver.Itcontributestoacetaldehydeoxidationdue toitslowK mvalues,thisfacilitatestherapidclearanceofacetaldehyde.Studieshaveshown thatindividualswhoareheterozygousorhomozygousfortheALDH2*2allele,exhibitthe ‘alcoholflushingsyndrome’duetoelevatedlevelsofbloodacetaldehyde.Thisistheresult ofasinglebasemutationinexon12,resultinginaglutamatetolysinesubstitutionwhich rendersthecatalyticpropertiesoftheenzymeinactive(Ramchandanietal.,2001). ALDH2*2homozygosityalone,regardlessofADH1BandADH1Cprotectsagainst alcoholismduetotheaccumulationofacetaldehydeintheblood(Osieretal.,1999).This genealsoexhibitsethnicdifferencesbetweenOrientals,CaucasiansandAfricans.The ALDH2*2alleleisfrequentlyfoundamongAsianindividualsandthereisevidenceto suggestthatitprotectsagainstalcoholism.

1.8 Retinol metabolism VitaminAisessentialthroughoutlifeanditsinfluenceismostcriticalduringpregnancyand childhoodwhencellsproliferateanddifferentiateinresponsetodifferentlevelsofvitaminA orRA.Itisobtainedfromthedietandstoredasretinylesters,theyarethenhydrolysedto retinolandreleasedintothebloodstreamandtransportedboundtoretinolbindingprotein. Cellswhichrequireretinoicacid(RA)takeupretinolandconvertittoRAbytheactionof twotypesofenzymes.Thefirst,retinoldehydrogenase,convertsretinoltoretinaldehydeand thesecondenzyme,dehydrogenase,convertsretinaltoretinoicacidorvitaminA (Maden,2000).VitaminAexertsitsfunctionthroughtheoxidisedmetabolitesofretinol. Lateinthe1930sitwasrecognisedthatmaternaldeficiencyofvitaminAduringpregnancy resultedinfetaldeathandcongenitalmalformations.Wilsonandcoworkerslater 24 documentedthecongenitalabnormalitieswiththemajortissuesaffectedbeingtheheart, oculartissues,urogenitalandrespiratorysystems(Wilsonetal.,1953).Embryonic malformationsalsoresultfromexcessvitaminA.In1954Cohlanidentifiedmalformationsin ratswhentheywereexposedtoexcessvitaminA.Majortargettissuesincludedtheheart, skull,skeleton,CNS,brain,eyesandcranofacialstructures(ascitedinZile,1998).The overlapoftissuesbeingaffectedbyvitaminAdeficiencyorexcesshasindicatedacritical roleforvitaminAinthedevelopmentofmanyorgans(Zile,1998).

1.8.1 Inhibitionofretinoicacidsynthesisbyethanol Althoughalcoholdehydrogenasehastraditionallybeenassociatedwithethanolmetabolism, itdoeshoweveralsofunctioninretinolmetabolism.BothADHandALDHareableto oxidiseretinoltoretinaldehydetoRA.RAregulatesgeneexpressioninseveralbiological processesbybindingtonuclearreceptors.ADHactsasacompetitiveinhibitorofADH catalysedretinoloxidationbecauseitcanuseeitherethanolorretinolasasubstrate(Duester, 2000)(Figure1.3).Duringastateofintoxication,classIADHbecomessaturatedwith ethanol.TheexcessethanolmaystartbindingtootherADHssuchasADH4.Thiswill preventtheretinolfrombindingtotheADH4thusblockingretinoloxidationandresultingin reducedRAlevelsduringembryogenesis.StudieshavealsorevealedthatADH1Cmaybe transcriptionallyregulatedbyRA(Duester,1991).Itisthereforesuggestedthatethanol consumptionmayreduceRAlevelsinthefetus,resultinginbirthdefects(Keir,1991). Yelinetal.,(2005)testedthehypothesisthatthereductionofRAlevelsasaresultof increasedconcentrationofethanol,affectedseveralregulatoryfactors.Theyhadexposed Xenopus embryostoethanolandRAandexaminedtheexpressionofknowntargetsofRA signalling.Thesetargetsincludedthe Hox, chordin, gsc, Cyp26 and Otx2 genes.Thedata revealedthatwhileethanolinducedtheupregulationof gsc ,RAhadanoppositeeffectand downregulatedtheexpressionofthegene.ItwasalsoshownthatRAdownregulatedthe Otx2 and chordin geneswhileethanolupregulatedthesegenes.Theoppositeeffectsof ethanolandRAwerealsoobservedinthe Hox genes.Theseobservationswereconsistent withthemodelthatethanolcompetitivelyinhibitsRAsynthesis,resultinginthereductionof RAlevelsintissues(Yelinetal.,2005).

25 1.8.1.1 ADH4 ADH4isthebestsuitedtotheroleofretinoldehydrogenaseduetoitshighcatalytic efficiencyforretinoloxidation.MolecularmodellingstudieshaveshownthattheADH4 activesiteisquitelargeandcaneasilyaccommodateretinol,indicatingthatitisnotonly adaptedtoaccommodateethanol(Yinetal.,1999).Geneexpressionstudiesinthemouse haveshownthatADH4islessefficientatethanolmetabolismthanitisatretinolmetabolism. ADH4mRNAwasundetectableatdevelopmentalstageE6.5butwasdetectableatlowlevels atE7.5intheprimitivestreakmesodermandathigherlevelsatE8.5.Thesimultaneous expressionofADH4,ALDH1andRALDH2(ALDH1A2)atstageE7.5whenRAisfirst detected,providesacompellingargumentthattheseenzymesaredesignedtofunctioninRA synthesis.TheabilityofethanoltoreducethelevelofRAinmouseembryosatstageE7.5 suggeststhatethanolpreventstheinitiationofretinoidsignallingneededforneuralcrest survival.ThismaybetheresultofethanolinhibitionofRAsynthesiscatalysedbyADH4, thereforemakingcellsthatexpressADH4targetsforthedestructiveeffectsofethanol intoxicationduringearlyembryonicdevelopment(Duester,2001).AlongwithADH4,Class 1ADHwasalsofoundtofunction in vitro asaretinoldehydrogenase.Itislesseffectivethan ADH4becauseitscatalyticefficiencyis10foldloweranddockingstudiesindicatethat retinolhasabetterfitwithADH4thanwithADH1A,ADH1BandADH1C(Duester,2001). 26 ClassI ADH ALDH Ethanol Acetaldehyde Acetate H Competitive RC=O R–C=O ׀ ׀ inhibitor ׀ RC–OH H OH ׀ H ClassIIADH ALDH1A2 Retinol Retinaldehyde Retinoicacid Retinoicacidreceptor Generegulationduringgrowth anddevelopment Figure 1.3: Schematic representation of how ethanol inhibits retinol metabolism via ADH pathway (Duester, 1991)

27 1.8.1.2 ALDH1A2 ALDHsareimportantindetoxificationpathwaysbecausetheirisozymesareusually associatedwithaltereddrugmetabolismanddiseasephenotype(Vasiliouetal.,2000). MembersoftheALDHfamilycatalysetheirreversibleoxidationofretinaldehydetoRA. TwoALDHenzymes,cytosolicALDH1A1andmitochondrialALDH1A2havebeenstudied indetailfortheirinvolvementinretinoloxidation. ALDH1A2. ThisgeneisalsoknownasRALDH2,andisthesecondenzymethatforms retinoicacidwhichisboundtocellularretinolbindingprotein(CRBP),aswellasunbound retinal.cDNAsforALDH1A2havebeenisolatedfrommouse,rat,humanandchicken. ALDH1A2hasbeenwellconservedthroughoutevolutionasshownbyhighaminoacid sequencesimilarity.StudiesfrommouseandratrevealthatALDH1A2isstronglyexpressed inearlyembryonictrunk,forebrainandtestis.Ithastheabilitytooxidiseretinaldehydewith highspecificity.BothALDH1A1andALDH1A2contributeequallytoretinoicacidsynthesis butthereisadifferenceintheiraffinityforthesubstrateretinol.RAaffectsmRNAlevelsfor eachdifferentlyindifferenttissuessuggestingdifferentphysiologicalrolesforeachin generatingRA.KnockoutmiceforALDA1A2havedemonstratedtheimportanceofthis geneinRAsynthesisasresultsshowedthedisruptionofearlyembryonicdevelopment (Vasiliouetal.,2000). ThusforboththeADHandALDHfamilies,theformsmostefficientforretinolmetabolism differfromthosethataremostefficientforethanolmetabolism.ALDH1A2wasalso specificallychosenasacandidategeneforthisstudyduetoitsroleinretinolmetabolism.

28 1.9 Study objectives Theaimofthisstudywastoexaminetheroleofthealcoholdehydrogenasegenesinthe developmentofFAS.SampleswerecollectedfromFASaffectedchildren,theirmothersand healthycontrolsfromtwoColouredpopulationslocatedintheWesternandNorthernCape provinces. Objectives : ToselectpolymorphismswithinthreeADHgenes;ADH1B,ADH1CandADH4andwithin theALDHgene;ALDH1A2. TodesignandoptimisevariousPCRbasedmethodstogenotypetheindividuals. Toassespossibleassociationsbycomparingtheobservedallele,genotypeandhaplotype frequenciesintheFASaffectedchildren,theirmothersandcontrolsforeachregion. Toperformlogisticregressionanalysistoexaminetherelationshipsbetweenthevariables diseasestatusandgeneticvariation. Todolinkagedisequilibriumanalysistoexaminetheextentoflinkagedisequilibrium betweenthemarkersstudied. Tousethehaplotypeanalysis,linkagedisequilibriumanalysisandlogisticregression analysistoexaminethegeneticdiversitybetweenthetwopopulationsfromtheprovinces sampled.

29 Chapter 2 Subjects and Methods

30 2 Subjects and Methods

2.1 Subjects ThisstudywasperformedaspartofalargerstudyinitiatedbyProfDenisViljoen.Through thisstudyIhavehadaccesstosamplescollectedfromtheWesternCapeandNorthernCape. Followinginformedconsent,bloodsampleswerecollectedfromsubjectsfromthetwo regions;WesternCape(Wellington)andtheNorthernCape(DeAar).Bloodsamplesfrom FASaffectedchildren,theirmothersandinsomecasesfathersandsiblingswerecollected.A totalof64FASaffectedchildren,63mothersand190controlsweregenotypedfrom Wellington.Atotalof45FASaffectedchildren,36mothersand112controlswere genotypedfromtheNorthernCape.Allsamplescollectedwereethnicallyandgeographically matched. SampleswerecollectedfromtheColouredcommunityasalcoholabusehasbeenidentified asaserioushealthissue.TheColouredpopulationisuniqueduetotheirgeneticcontributions fromseveralpopulationsincludinggroupsfromEurope,Asia,India,MalayArchipelago, Madagascar,WestAfricaandalsofromindigenousSouthAfricangroups(Botha,1972). Individualswhoparticipatedascontrolsubjectswereaskedabouttheirethnicitytomakesure thatthecasesandcontrolswereappropriatelymatchedforethnicityandgeographicorigins. Samplesfromindividualswhowerenotfromthecommunitiesofinterestwereexcluded fromtheanalysis. ChildrenwerediagnosedwithFASor‘partial’FASbytrainedcliniciansfromthe DepartmentofHumanGeneticsattheNHLS.Theinitialscreeninginvolvedmeasurements forheadcircumference,bodyheightandweight.Ifmeasurementswerebelowthe10 th percentileforgrowth,theywereexaminedbytwoindependentphysicians.Whenboth physicianswereinagreementwiththediagnosis,amaternalinterviewwasconducted.Ifa maternalhistoryofalcoholabuseduringpregnancyhadbeenidentified,a neurodevelopmentalexaminationofthechildwasperformed.Finallyacaseconferencewas heldtodeterminethemostaccuratediagnosis(Viljoenetal.,2001).Allsampleswere collectedfollowingaprotocolapprovalbyEthicscommitteesforresearchonhumansubjects

31 eitherfromUniversityofCapeTownorUniversityofWitwatersrand(AppendixCand AppendixD)

2.1.1 Bloodstorage Avenousbloodsampleof510mlwascollectedafterinformedconsentwasprovided.The bloodwascollectedinpurpletopvacutainertubeswhichcontaintheanticoagulantagent calledethylenediaminetetraaceticacid(EDTA).Sampleswerestoredat20°Cafterwhich thebloodwastransferredinto50mlNUNCtubes(Sterilin)untilDNAextractionswere performed.

2.2 Methods

2.2.1 DNAextractionandstorage SamplesfromtheWesternCapehadpreviouslybeenextractedusingthe‘saltingoutmethod’ (Milleretal.,1988)andwereavailableforthisstudy.AlltheDNAsampleswere resuspendedin1XTEbuffer(AppendixA)andstoredat4°C.SamplesfromtheNorthern Capewereextractedusingacommerciallyavailablekit,Flexigene(Qiagen).These extractionswereperformedbytheFASresearchgroupandIparticipatedintheseextractions. AllDNAsampleswereresuspendedinthebufferprovidedandstoredat4°C.Allworking stocksolutionsweredilutedto100ng/lafterbeingquantifiedusingtheNanodrop® spectrophotometer.

2.2.2 Polymerasechainreaction(PCR) PCRallowsfortheexponentialamplificationoftargetspecificDNAproducts.Asetof primersareusedthatarecomplementarytothetargetsequenceandflankthesegmentof DNAthatistobeamplified.ThetemplateDNAisdenaturedsothattheprimersareallowed toannealtothesinglestrandedtargetsequence.Theannealedprimersarethenextendedwith aheatstableDNApolymerasesuchasDNATaqpolymerase.Repeatedcyclesof denaturation,annealingandextensionresultintheexponentialgrowthofthetargetDNA sequence.Positivecontrols(DNAtemplateswithknowngenotypes)andnegativecontrols (allreagentsbutnoDNAtemplate)wereusedascontrolreactionsforallPCRamplification experiments.AllPCRprimersusedforthisstudyweresynthesisedbyInqaba

32 Biotechnologies(Pretoria,SouthAfrica).ThegeneralPCRprotocolusedwasasfollows;an initialdenaturationstepfor1minuteat95°C,thiswasfollowedby25to30cyclesof: denaturationat95°Cfor30seconds,annealingataprimersetappropriatetemperaturethat variedfrom30secondsto1minuteandanelongationstepat72°Cthatvariedbetween30 secondsand1minute.Thefinalstepwasanotherelongationperiodat72°Cfor5minutes.

2.2.3 Selectionofmarkers ThecandidategenesselectedforthisstudyincludeADH1B,ADH1C,ADH4and ALDH1A2.Thefirstthreegenesfunctioninthefirststepofthemetabolismofalcoholand ADLH1A2functionsinthenonreversiblesecondstep. ADH ALDH EthanolAcetaldehy deAcetate PolymorphismsassociatedwiththeADH1BandADH1Clocihadpreviouslybeengenotyped inthesamplesfromtheWesternCapeandforthepurposeofthisstudywillbetypedinthe newcohortofsamplescollectedfromtheNorthernCape.ADH4andALDH1A2associated polymorphismshavenotbeenstudiedineithertheWesternCapeortheNorthernCapeand willbegenotypedinbothgroups.Theentiredatasetwillbeanalysedtogether.

2.2.3.1 ADH1B TheADH1BalleleswerepreviouslytypedintheWesternCapesamplesasreportedin2001 by(Viljoenetal.,2001)andintheMScthesisof(Tshabalala,2003).Resultsfromthe previousstudiesindicatedthattheADH1B*2allelewasfoundtobesignificantlymore commonlyinthecontrolsthanthecases,suggestingthatitmayconferprotectionagainstthe developmentofFASor,beamarkerforsuchprotection. ADH1Bisapolymorphiclocuscharacterisedbythreealleles,theseare:ADH1B*1, ADH1B*2andADH1B*3whichareinfactthree‘haplotypes’.Sincethereisalargebodyof datareferringtothehaplotypesasalleles,thisterminologywillbeusedinthisdissertation. Thetwopolymorphismsthatcharacterisethehaplotypeoccurinexons3and9.Inexon3at position47,aarginine/histidinesubstitutionresultsinallelesADH1B*1(thecommonallele)

33 andADH1B*2.Inexon9atposition369,cysteineissubstitutedbyarginineandresultsin thecommonalleleADH1B*1andADH1B*3.Restrictionenzymedigestionswereusedto determinetheallelesthatwerepresentateachexon.Positive(digestedPCRproduct)and negativecontrols(undigestedPCRproduct)wererunoneachgelascontrolreactionsforthe digestions.Thealleleswerecombinedintothefinal‘haplotype’whichwasusedtoascribea genotypeattheADH1Blocusforeachindividual(Figure2.3). 1234567 679bp 400bp 279bp

Figure 2.1: An agarose gel image showing a restriction enzyme digest with Msl I at exon 3 of the ADH1B gene. Lane 1 represents the molecular weight ladder, lane 2, 3, 5, 6, 7 are scored as homozygous 1/1 (ADH1B*1/ ADH1B*1) and lane 4 is scored as heterozygous 1/2 (ADH1B*1/ ADH1B*2)

123456789 202bp 132bp 70bp

Figure 2.2: An agarose gel image showing a restriction enzyme digest with Alw N I at exon 9 of the ADH1B gene. Lane 1 is the molecular weight ladder, lanes 2 to 8 are scored as homozygous 1/1 (ADH1B*1/ ADH1B*1) and lane 9 is scored as a heterozygous 1/3 (ADH1B*1/ ADH1B*3).

34 A C Exon 3 Exon 9 B D 679bp202bp Msl I AlwN I 400bp 279bp 132bp 30bp 279bp ALLELES ALLELES HAPLOTYPE G C ADH1B*1 A C ADH1B*2 G T ADH1B*3 G T not observed

Figure 2.3: An illustration of the scoring of alleles in ADH1B and their combined haplotypes which are referred to as ADH1B alleles in all publications. The alleles present in exons 3 and 9 are scored using PCR with the primers denoted A, B, C, D respectively and the information is combined to determine the final genotype for ADH1B.

35 2.2.3.2 ADH1C Thispolymorphiclocushastwoalleles,whichresultinthepresenceofeitherisoleucineor valineatposition349inexon8.ThecommonalleleisADH1C*1(isoleucine),andtherarer alleleisADH1C*2(valine).Theyaredistinguishedusingarestrictionenzymedigestionwith Ssp Iastherestrictionenzyme(NEB)(Figure2.4). 1234567891011 377bp 274bp 103bp Figure 2.4: An agarose gel image showing a restriction enzyme digest with Ssp I at the ADH1C locus.. Lanes 2, 6, 7 are scored as heterozygous 1/2 (ADH1C*1/ ADH1C*2). Lanes 3, 4, 5, 8, 9, 10 are scored as homozygous 2/2 (ADH1C*2/ ADH1C*2) and lane 11 is scored as homozygous 1/1 (ADH1C*1/ ADH1C*1)

2.2.3.3 ADH4 Thisgenewasselectedasthemaincandidateinthestudyduetoitsroleinboththeethanol andretinolmetabolismpathways.TheSNPslocatedintheADH4genewereselectedfrom dbSNPaccordingtofrequencydataandtheirpotentialfunctionalimpactorpotentialeffect onthepromoteractivity(Edenbergetal.,1999;Iidaetal.,2002).TheSNPsselectedfrom dbSNPincluders1042364whichresultsinanarginine/glysinesubstitution,rs1126671which resultsinvaline/isoluecinesubstitutionandrs1126670,asynonymousaminoacidchangeof proline/prolineandtwothataffectpromoteractivity,rs1800759andADH42(Edenberget al.,1999;Iidaetal.,2002).Forthepurposeofthisstudywewillrefertors1800759as ADH4.8(Figure2.7)andrs1126670asADH4.4(Figure2.5).

36 123456789 250bp 182bp

Figure 2.5: An agarose gel image demonstration a restriction enzyme digest with Mbo I for ADH4.4. Lane 1 is the molecular weight ladder, lanes 2 to 7 and 9 are individuals who are homozygous T/T. Lane 8 is heterozygous G/T.

2.2.3.4 ALDH1A2 Thisgenewaschosenasacandidatebecauseitfunctionsinthesecondpartoftheethanol metabolismpathway.Itisinvolvedintheconversionofacetaldehydetoacetate.Two polymorphicmarkers(namelyrs1061278andrs1837855)wereselectedaccordingto frequencydataandpotentialfunctionalimpact.

2.2.4 Primerdesign PublishedprimersequenceswereusedfortwopolymorphismsintheADH4gene,ADH4.8 andADH4.2(Iidaetal.,2002;Edenbergetal.,1999).Fortheremainderofthe polymorphisms,primersweredesignedusingaprogramcalledPrimerSelect(DNAStar). TheresultingprimersweresubjectedtoaBLASTsearchagainsttheentiregenome (http://genome.ucsc.edu)tomakesurethattheywere100%specifictotheregionofinterest. Primerlengthsvariedfrom25to33basesinlength(Table2.2).

37 2.2.5 Genotyping DifferentPCRbasedmethodswereusedtodeterminetheSNPgenotypes.AllPCR productswereresolvedonagarosegelsbygelelectrophoresis(Table2.1).

2.2.5.1 ARMS Whenperformingtheamplificationrefractorymutationsystem(ARMS)atotalofthree primersareusedforeachreactiontodetectasinglebasechange.Twoprimers,oneeach correspondingtothe‘normal’and‘mutant’allelesandathirdcommonprimerareusedin asinglereaction.NormalandmutantDNAcanbedistinguishedbydemonstrating differentialannealingofeitherthe‘normal’or‘mutant’primerstothenormalormutant DNAsequencerespectively.Theseprimersaredesignedinsuchawaythatasinglebase changeoccursatthe3’endoftheprimer.AsaPCRcontrolmeasure,asecondsetof primersthatannealelsewhereonthegenome(arrowsCinfigure2.6)areusedasan internalcontroltoensurethattheabsenceofabandisnotduetoPCRfailure.Thenormal alleleandmutantalleleareamplifiedinseparatePCRreactions(Figure2.6andFigure 2.7).

N C M X CR C

Figure 2.6: Illustration of the ARMS PCR technique. C represents the primers that will form the internal control band. N is the primer for the normal allele, M is the primer for the mutant allele and CR presents the common reverse primer. X marks the position of the polymorphism being detected (which is part of the primer). Amplification generates two PCR products, depending on the allele present. C/C = control band; N/CR product = band with normal allele; M/CR product= band with mutant allele. Whenthissystemwasinitiallydesigned,itresultedinnonspecificbindingofboththe normalandmutantprimerstothetemplateDNA.Theprimersweresubsequently redesignedbyshorteningtheprimerlengthsandaddingasecondmismatchatthe

38 penultimatebaseatthe3’endoftheprimer.Thisresultedinhigherspecificityforthe PCRreactionandgenotypes(inasubsetofthesamplesconfirmedbyDNAsequencing). 1A1C2A2C3A3C4A4C

Figure 2.7: An agarose gel image showing an ARMS PCR profile for ADH4.8. Amplification is carried out separately for the normal and mutant alleles for each individual. The two PCR products are run on a gel and analysed together to form a genotype for one individual. Amplification of both PCR products indicates a heterozygous genotype while amplification of either the mutant or normal alleles indicates a homozygous genotype.

2.2.5.2 SASA TheSimultaneousAlleleSpecificAmplification(SASA)(DelRioLaFreniereand McGlennen,2001)isanadaptationoftheARMSmethod.Thismethodusesfourprimers inonePCRreactiontherebyallowingforquickergenotyping(Figure2.8).Onesetof primersamplifiesthelocusspecificproductwhichservesastheinternalcontrolband. Thethirdandfourthprimersaretheallelespecificprimers,oneforthe‘normal’allele andoneforthe‘mutant’allele.Asecondmismatchwasinsertedatthepenultimatebase atthe3’endtoensurereductionofnonspecificprimerbinding.The‘mutant’primer togetherwiththereverseprimerofthefirstsetofprimerswillamplifythelocusspecific product.Thewildtypeor‘normal’primertogetherwiththeforwardprimerofthefirstset oflocusspecificprimerswillformaPCRproduct(Figure2.8).Thissystemisdesigned insuchawaythatwhentheprimersanneal,differentsizefragmentsaregeneratedfor eachofthealleles.AllPCRproductswereresolvedonagarosegelsusinggel electrophoresistodeterminetheampliconsizeandcorrespondinggenotype.Althougha greatdealofoptimisationwasperformed,resultswerenotobtainedforthissystemasthe PCRconditionscouldnotbeoptimised.

39 C1 N X M C2

Figure 2.8: An illustration of the SASA method. C1 and C2 represent the primers that will form the locus specific product. N is the forward primer for the normal allele and M is the reverse primer for the mutant allele. X marks the position of the polymorphism being detected. Amplification is performed generating two different sized PCR products allowing for simultaneous detection of the normal and mutant alleles. C1/C2 product= locus specific product; N/C2 product= band with normal allele; M/C1 product=band with mutant allele.

2.2.5.3 RFLP Restrictionenzymedigestionwasusedwhenasinglebasepairchangecreatedor abolishedarestrictionenzymerecognitionsite.ThePCRproductwascutbythe restrictionenzymeresultingindifferentlengthsofproductsdependingonthepresenceor absenceoftherestrictionsite.Therestrictionenzymerecognitionsiteswereidentified usingaprogramcalledMapDraw(DNAStar)orNEBcutter,v2(www.neb.com).The digestionprocedureswereperformedaccordingtothemanufacturer’srecommendations and5unitsofenzymewereusedperreactionforalldigestionsofPCRproducts.All digestionswerecarriedoutattherecommendedtemperaturesfor3hourstoensure completedigestion.AlldigestedPCRproductswereresolvedonagarosegelsto determinethegenotype(Table2.1).

40

Table 2-1: Description of restriction enzyme digestions to detect RFLPs Marker Restriction enzyme (units) Allele sizes Reference ADH1B*2 Msl I(5U) Allele1:679bp Osieretal.2002 Allele2:400bp+279bp ADH1B*3 AlwN I(5U) Allele1:202bpXuetal.1988 Allele2:132bp+70bp ADH1C*1 Ssp I(5U) Allele1:377bp Osieretal.2002 Allele2:274bp+103bp rs1126671 HpyCH4 III(5U) AlleleA:363bp Presentstudy AlleleG:241bp+122bp rs1126670 Mbo I(5U)AlleleT:250bp Presentstudy AlleleG:182bp+68bp rs1061278 Bfa I(5U) AlleleA:366bpPresentstudy AlleleG:166bp+200bp rs1837855 Hpy188 I(5U) AlleleC:440bpPresentstudy AlleleT:215bp+225bp Key:bp=basepairs

41 Table 2-2: Candidate genes with associated DNA polymorphisms and the PCR conditions used for genotyping Gene I.D Polymorphism Method of detection Primer Sequences(5’ to 3’) Tm ADH1B ADH1B*2 G→A RFLP F:attctaaattgtttaattcaag 55°C R:actaacacagaattacgg ADH1B*3 C→T RFLP F:tggactctcacaacaagcat 59°C R:ttgataacatctctgaagag ______ ADH1C ADH1C*1 A→T RFLP F:ttgtttatctgtgattttttttgt 51°C R:cgttactgtagaatacaaag ______ADH4 ADH42 A→C ARMS F:ggtgcttatccttattaataatcagatcaata 59.8°C R(N):tagtggttacatacstscaaattcttttcatgtaactt R(M):tagtggttacatacstscaaattcttttcatgtaactc ADH4.8 A→C ARMS F(N):cagcaacaaaggagaaaagaa 54.5°C F(M):cagcaacaaaggagaaaagtc R:attaatattaactgaacacccttct rs1042364 A→G SASA F:tccctccttggtacattctaa 57.4°C R:tatagactttgtacctgttata F(N):aagatgccaggagcaattca R(M):ggaatactatctgattgaatgtgaac rs1126671 A→G RFLP F:ggctcaatctacaatgat 50.5°C R:gaaattcttagagtgaag ADH4.4 T→G RFLP F:gtcacccctggttcgactt 59.8°C R:atccacctgcacagtcaag ______ ALDH1A2 rs1061278 A→G RFLP F:gcttgcagggagtaaagcaggc 66.2°C R:gggctgctgaatgcactgtcg rs1837855 T→C RFLP F:ctccatggttcatccagcataac 58.6°C R:tccaggaagccttaatactagg Key:F=forward,R=reverse,F(N)=forwardnormal,F(M)=forwardmutant,Tm=PCRannealingtemperature 42 2.2.5.4 Agarose gel electrophoresis Electrophoresisthroughagarosegelsusing1XTBEbuffer,isthestandardmethodused toseparate,identifyandpurifyDNAproducts.Between10–15lofPCRproductor digestedPCRproductwasmixedwithFicolldye(AppendixA)andthenloadedintothe wellsoftheagarosegels.Theappropriatepercentageofagaroseforthegelwaschosen dependingonthesizeofthefragmentsthatneededtobeseparated,e.g.forfragmentsthat aresmallinsize,ahighpercentagegelisusedastheporesizesaresmallerduetothe higherconcentrationofagaroseusedandviceversaforalowpercentagegel.Aconstant voltagewasappliedandamolecularweightladderwasincludedineverygel,eithera 1Kbor1Kb+DNAladder(NEB,AppendixB).Positiveandnegativecontrolswerealso runoneverygelforqualitycontrolpurposes.Onceadequateseparationoccurred,a photographofthegelwastakenasapermanentrecord,usingtheVacutecGel Documentationsystem.

2.2.5.5 DNA sequencing Foreachnewmethodthatwasdesigned,sequencingwasperformedtoconfirm(i)the correctscoringofgenotypesand(ii)thateachsystemwasoptimisedcorrectlyforthe specificdetectionofthealleles.BeforesequencingwasperformedontheABIPrism™ 377DNASequencer,anumberofstepswereperformed. TheselectedPCRproductwascleanedusingtheNucleospinExtractionIIkit.This columncleanupprocedurewasperformedtoremoveanyunboundprimersanddNTPs. ProductsweresubsequentlyresolvedonanagarosegeltoensurethatsufficientPCR productsremainedafterthecolumncleanupprocedure. WhenitwasconfirmedthattherewassufficientPCRproduct,cyclesequencingwas performedtolabelthePCRproductsusingtheBigDyeTerminatorv3.1Cycle Sequencingkit(AppliedBiosystems).Individualdideoxynucleotidesarelabelledwith differentterminatingfluorophoresforeachnucleotide.Differentsizedfragmentsare producedandwhenrunthroughthesequencergelorcapillary,itprovidessequencedata fortheentirelengthofthePCRproduct.

43 Aftercyclesequencing,afinalcolumncleanwasperformedusingtheDyeEx™2.0Spin (Qiagen)protocol.Thisremovesanyunboundcomponentsfromthecyclesequencingkit. Priortoloadingintothewellsoftheverticalpolyacrylamidegel,samplesweredenatured at95°Cfor2minutes.ThePCRproductswereresolvedin1XTBEbufferunderconstant voltageanddatawereanalysedusingtheABIPrism™SequencingAnalysissoftware. Sequencingdatawerecomparedtoareferencesequencetoensurethefidelityofthe fragment.

A B C

Figure 2.9: Electropherograms depicting the allelic variation at position 183bp at the ADH4.4 locus. A: G/G genotype, B: T/T genotype (position 185bp) and C: G/T genotype

A B C

Figure 2.10: Electropherograms depicting the allelic variation at position 99bp for the ADH4.8 locus. A: A/A genotype, B: A/C genotype and C: C/C genotype

44 2.2.5.6 Statistical Analysis Thefollowinganalyseswereperformedbytheauthorusingawebbasedstatistical program( http://www.home.clara.net/sisa/ );calculationofalleleandgenotype frequencies,HWEandassociationsusingcontingencytables.Statisticallysignificant deviationsfromHardyWeinbergequilibriumwereindicatedbyχ2pvalueslessthan 0.05.Contingencytables(usingtheFishersexacttest)comparingtheobservedalleleand genotypefrequencieswereusedtodetectpossibleassociationsbetweendisease susceptibilityandthemarkerofinterest.Alloftheabovewerecheckedbyastatistician. Haplotypeinference,associationstudies,LDcalculationsandregressionanalysiswere donebythestatistician,DrLizevanderMerwe,followingconsultation.Theresultswere discussedwiththestatisticiantoensurethattheywerecorrectlyinterpreted.Alltests werecalculatedusingtheprogram‘R’withthe‘Genetics’package(Rdevelopmentcore team,2005;WarnesandLeisch,2005).Thehaplotypeswerecalculatedusingthepackage ‘Haplostats’(SinwellandSchaid,2005). ThegroupswereexaminedforcompliancetoHardyWeinbergexpectationtodetermine whetherthegroupssampledforthisstudywereinequilibrium,providingevidencefora representativesampleofalargerandomlymatingpopulation.Whentwoalleles,‘A’and ‘a’occur(withfrequencies‘p’and‘q’respectively),p+q=1.HWEpredictsthatthe genotypefrequenciesofAA,Aaandaaarep 2,2pqandq 2.Thistestassessesthepotential samplingerrorsinthegroupsusedforthisstudyaswellaspossiblegenotypingerrors. TheexacttestforHWE,usinggenotypedistributiondataforeachpolymorphicmarker thatwastestedwithineachprovinceandseparatelyfortheFASchildren,mothersand controlswasused.Thismethodispreferredtothestandardχ 2goodnesstofitmodelasit controlsfortypeIerror(Wiggintonetal.,2005). Associationsbetweenthepolymorphicvariantsandthediseasephenotypewereassessed bytheuseoffourstatisticaltests;allelicandgenotypicassociations,inferredhaplotype analysisandlogisticregression.Fortheallelicandgenotypictests,theFisher’sexacttest wasused.TheallelicandgenotypicfrequencieswerecomparedbetweentheFAS

45 affectedchildrenandthecontrolsandbetweenthemothersandcontrolsforeachprovince andapvaluewascalculated.Allpvalueslessthan0.05wereconsideredtobe statisticallysignificant. Fourpolymorphicmarkerswereanalysedtogethertocalculatehaplotypeswiththe markersinthefollowingorderastheywerearrangedinthegenome:ADH1BADH1C ADH4.4ADH4.8.Theexpectationmaximum(EM)algorithmasdescribedbySchaidet al.,(2002)wasusedtoestimatethehaplotypefrequencies.Globaltestsforassociations andhaplotypespecifictestswerecalculated.Thehaplotypespecificscoresallowforthe evaluationofindividualhaplotypeswhentheglobalscoreindicatesastatistically significantfinding. Haplotypedistributionandfrequencieswereexaminedinbothprovinces.Eachhaplotype wasgivenascoreaccordingtothedifferenceinfrequenciesbetweenthecases(either FASaffectedchildrenormothers)andthecontrols.Aglobalsimulationpvalue(Global simp)representsthepvalueforthegroupcomparisonand‘p’representsthepvaluefor eachindividualhaplotype.Foreachprovince,theFASaffectedchildrenwerecompared tothecontrolsandthemotherswerecomparedtothecontrols.Inaddition,ananalysis wasperformedtoexaminethegeneticmakeupofthepopulation.Firstlyallthesamples weregroupedtogether(FASeffectedchildren,mothersandcontrols)andcompared betweenprovincesthentheFASaffectedchildrenwerecomparedtoeachotherbetween theprovinces(FASaffectedchildreninWCvsFASaffectedchildreninNC)andthe sameforthemothersandcontrols. Logisticregressionanalysiswasusedtodeterminetheoddsofbeingacaseoracontrol accordingtotheobservedgenotype.TwomodelswerederivedtocomparetheFAS affectedchildrentothecontrolsandsecondlytocomparethemotherstothecontrols.A thirdmodelwasderivedtoexaminegeneticmakeupbycombiningthecontrolsfrom bothprovinces.Foreachmodelallthetermsorcovariatessuchas‘province’and ‘genotype’wereadded,andinastepwisefashiontermsweredropped.TheAkaike criterion,asimplementedintheRpackage,wasusedtoremovethecovariatesuntilthe

46 bestfitforeachmodelwasfound(theAkaikecriterionisataminimum)(Venables, 2002).Aglobalpvaluewascalculatedwhichrepresentedhowbestthemodelfittedthe data.Allpvalueslessthan0.05wereconsideredasstatisticallysignificant.Individualp valueswerealsocalculatedforeachcovariateinthemodel.Resultsfromtheseanalyses wereusedtoconfirmanyassociationsfoundintheallelic,genotypicandhaplotype analyses. Markersthatareincloseproximitytodiseasecausingvariantsonachromosomeareco inheritedmoreoftenthanexpectedandthisisdemonstratedbylinkagedisequilibrium.It wasthereforeimportanttoexaminetheextentofLDbetweenthemarkersusedinthis casecontrolassociationstudy.Inassociationstudiesthepolymorphicvariantsthatare testedmaynotnecessarilybethecausativefactorsforsusceptibilityandtherefore associationstudiesrelyonlinkagedisequilibriumtohelpidentifydiseasecausing markers(ZondervanandCardon,2004).LDisinfluencedbyanumberoffactorssuchas recombination,time,naturalselection,mutation,geneticdrift,populationsubstructure (e.g.admixture),populationsizeandmatingpatterns.Thecommonlyusedmeasurement forLDisthedisequilibriumcoefficient D; D=P 11 –p 1q1whereP 11 istheobserved frequencyof1/1haplotype,p 1isthefrequencyofthe‘1’alleleatlocus1andq 1isthe populationfrequencyof‘1’atlocus2(HainesandPericakVancem,1998).The disequilibriumcoefficientcanbedifficulttointerpretbecauseitsmaximumvalueis dependantonallelefrequencies.Twomeasures,correlationcoefficient(r 2)and Lewontin’s D’havebeenstandardisedtoliebetween1and1areoftenusedinsteadofD (HainesandPericakVance,1998) . Table2.3:TheequationsforthemeasuresofLDfortwoalleles,AandB,atdifferentloci Correlationcoefficient r2= D/{(Pr(A)[1Pr(A)]Pr(B)[1Pr(B)]} Lewontin’s D D’=D/min{Pr(A)[1Pr(B),Pr(B)[1Pr(A)]}if D>0 D/min{Pr(A)Pr(B),[1Pr(A)][1Pr(B)]}if D<0 Key:Pr(A)=frequencyofAallele;Pr(B)=frequencyofBallele

47 Ifbothr 2and D’arezerothennoallelicassociationexists,andtheyfallbetween1and 1,thustheirmaximumvaluesarenotdependantonallelefrequencies. LinkagedisequilibriumwasusedtostudythegeneticcompositionofthetwoColoured populationsthatwerestudiedbyexaminingthepatternsofLDbetweenthetwocontrol groupsintheWesternandNorthernCape Posttestpowerbasedonallelicfrequencieswastoprovideinsightintothelikelihoodthat theobservedresultswouldbereplicatedinanothersimilarsizedstudy. Whenstudyingcomplexdiseases,thechanceofdetectingfalsepositivesexistsand increaseswiththenumberofpolymorphismsexamined.Thereforeconsiderationshould begiventocorrectingformultipletesting.However,usingtestssuchastheBonferroni testwhichisconsideredtobeveryconservativerunstheriskofloosinganysignificant associationsfound.Chanceassociationsmayalsobedetectedifthecorrectionmethods arenotstringentenoughorwiththeuseofteststhatassumeindependence.Itmustbe notedthatdifferentpolymorphismswithinageneordifferentgenesmaynotbe independent.Apossiblesolutiontotheseproblemsistousethefalsediscoveryrateand sequentialanalysis(Romeroetal.,2002).Inthisstudywechosenottocorrectfor multipletestingastheSNPswerenonrandomlyselected.

48

Chapter 3

Results

49 3 Results Todetectassociationsnumerousstatisticalanalyseswereperformed,theseincludedallele andgenotypeassociationtests,calculatinghaplotypesandstudyingtheirdistribution amongstthegroupsandbetweenpopulations.Logisticregressionanalysiswasperformed toexaminetherelationshipbetweenvariablessuchasdiseasestatus,geneticvariation, geographicoriginandlinkagedisequilibrium.Theresultsarepresentedandanalysedin thefollowingsections.

3.1 Genotype and allele frequencies GenotypesdeterminedatpolymorphiclociintheADH1B,ADH1CandADH4genes weregeneratedasdescribedinthemethodssection.ADH1B,ADH1CandADH4 genotypingwasperformedinthesamplesfromFASaffectedchildrenreferredtoas‘FAS children’,inthemothersoftheFASaffectedchildren,referredtoas‘Mothers’and finallyinrandomethnicallyandgeographicallymatchedcontrolsreferredtoas ‘Controls’.Theallelefrequenciesweredeterminedbysimplegenecounting.Abrief commentontheobservationsofeachlocusfollows.Genotypeandallelecountsand frequenciesareshowninTables3.13.4. ADH1B (Table 3.1) :ThecommonalleleinallgroupsfrombothregionswasADH1B*1 occurringatfrequenciesofover0.90,withtheexceptionofthecontrolgroupinthe WesternCapewhereitoccurredatafrequencyof0.85.AllelesADH1B*2and ADH1B*3wererelativelyrare(11%intheWCcontrols)butshowedsomedifferences i.e.(geographicoriginsandstudygroups).IntheNorthernCape,ADH1B*2wasnot observedintheFASaffectedchildrenandwasonlyobservedonceinthemothers.Inthe WesternCapethehighestfrequencywasobservedinthecontrols.Thegenotypes ADH1B(2/2),(2/3)and(3/3)werenotobservedinanyofthegroupsexaminedinthe NorthernCape,howevertheywereobservedinthecontrolsfromtheWesternCape, althoughtherewereveryfewindividualswiththosegenotypes. ADH1C (Table 3.2) :ThecommonalleleatthislocuswasADH1C*1,occurringathigh frequenciesinallgroups,rangingfrom0.77intheNorthernCapecontrolsto0.86inthe

50 mothersintheNorthernCape.ThemostcommongenotypewasADH1C(1/1)withthe leastfrequentbeingADH1C(2/2).Thelatterwasnotobservedinthemothersfromthe NorthernCapeandwasonlyobservedonceintheWesternCape. ADH4 (Table 3.3) :Genotypingwasperformedwithtwopolymorphicvariantsassociated withintheADH4locus;ADH4.4(rs1126670)andADH4.8(rs1800759).Thethird marker,rs1226710,provedtobeuninformativewithalltheindividualshomozygousfor thecommonallele.ThemostcommongenotypeatADH4.4wasT/T,occurringathigh frequenciesinallthreegroupsexaminedfromboththeprovinces.Therarestgenotypein allthreegroupswasG/G.ThetwoallelesoftheADH4.8polymorphismoccurredat frequenciesof~0.50andasaresult,thecommongenotypewasA/Cinallgroupsfrom bothregions.IntheWesternCape,theA/AgenotypewasmorecommonintheFAS affectedchildrenandtheirmothersthanthecontrolswhileintheNorthernCape,theA/A genotypewasmorecommoninthecontrolsthantheFASaffectedchildrenormothers. ALDH1A2:Bothpolymorphicmarkerstestedprovedtobeuninformativeandwerenot includedintheanalyses.

51 Table 3-1: Allele and genotype frequencies for ADH1B in the study groups from the Western and Northern Cape provinces. The frequency of genotypes and alleles are represented by f and the observed number of individuals is shown by n. Province FAS children Mothers Controls WesternCape Genotype f n f n f n 1/1 0.83 48 0.84 49 0.74 132 1/2 0.09 5 0.074 0.18 32 1/3 0.09 5 0.09 5 0.059 2/2 0 0 0.012 2/3 0 0 0.023 3/3 0 0 0.011 Total 58 58 179

Allele 1 0.91 106 0.92 107 0.85 305 2 0.04 5 0.03 4 0.11 39 3 0.04 5 0.04 5 0.04 14 Total 116 116 358 ______ NorthernCape Genotype 1/1 0.91 41 0.89 32 0.92 102 1/2 0 0.031 0.055 1/3 0.09 4 0.08 3 0.04 4 2/2 0 0 0 2/3 0 0 0 3/3 0 0 0 Total 45 36 111

Allele 1 0.96 86 0.94 68 0.96 213 2 0 0.01 1 0.02 5 3 0.04 4 0.04 3 0.02 4 Total 90 72 222

52 Table 3-2: Allele and genotype frequencies for ADH1C in the study groups from the Western and Northern Cape provinces. The frequency of genotypes and alleles are represented by f and the observed number of individuals is shown by n. Province FAS children Mothers Controls WesternCape Genotype f n f n f n 1/1 0.67 39 0.60 34 0.57 102 1/2 0.29 17 0.39 22 0.41 73 2/2 0.032 0.01 1 0.02 3 Total 58 57 178

Allele 1 0.82 95 0.79 90 0.78 277 2 0.18 21 0.21 24 0.22 79 Total 116 114 356 ______ NorthernCape Genotype f n f n f n 1/1 0.70 31 0.72 26 0.59 66 1/2 0.25 11 0.28 10 0.37 41 2/2 0.05 2 0 0 0.04 5 Total 44 36 112

Allele 1 0.83 73 0.86 62 0.77 173 2 0.17 15 0.14 10 0.23 51 Total 88 72 224

53 Table 3-3: Allele and genotype frequencies for rs1126670 (ADH4.4) in the study groups from the Western and Northern Cape provinces. The frequency of genotypes and alleles are represented by f and the observed number of individuals is shown by n. Province FAS children Mothers Controls WesternCape Genotype f n f n f n G/G 0.02 1 0.04 2 0.01 1 T/G 0.27 14 0.31 15 0.2541 T/T 0.71 37 0.65 32 0.75 124 Total 52 49 166

Allele G 0.15 16 0.19 19 0.13 43 T 0.85 88 0.81 79 0.87 289 Total 104 98 332 ______ NorthernCape Genotype f n f n f n G/G 0.02 1 0.03 1 0.02 2 T/G 0.198 0.21 7 0.26 28 T/T 0.79 33 0.76 25 0.72 77 Total 42 33 107

Allele G 0.12 10 0.14 9 0.15 32 T 0.88 74 0.86 57 0.85 182 Total 84 66 214

54 Table 3-4: Allele and genotype frequencies for ADH4.8 (rs1800759) in the study groups from the Western and Northern Cape. The frequency of genotypes and alleles are represented by f and the observed number of individuals is shown by n. Province FAS children Mothers Controls WesternCape Genotype f n f n f n A/A 0.26 8 0.38 12 0.16 25 A/C 0.58 18 0.47 15 0.48 74 C/C 0.16 5 0.16 5 0.36 56 Total 31 32 155

Allele A 0.55 34 0.61 39 0.40 124 C 0.45 28 0.39 25 0.60 186 Total 62 64 310 ______NorthernCape Genotype f n f n f n A/A 0.16 7 0.14 5 0.26 29 A/C 0.64 28 0.65 22 0.50 56 C/C 0.20 9 0.217 0.24 27 Total 44 34 112

Allele A 0.48 42 0.47 32 0.51 114 C 0.52 46 0.53 36 0.49 110 Total 88 68 224

55 3.2 Hardy-Weinberg equilibrium (HWE) AtlociADH1B,ADH4.4andADH4.8,allgenotypefrequencieswerefoundtobein HWE.ThegenotypesatADH1CintheWesternCapecontrols(p=0.0153)werefoundto deviatefromHWE.Nopvaluecouldbegeneratedusingthe‘R’programfortheFAS affectedchildrensamplesfromtheNorthernCapegroupsinceonlytwoofthepossible sixgenotypeswereobserved. IfasampleisnotinHWE,itmaysuggestoneofthefollowing:(a)genotypingerror,(b) asamplewhichpoorlyrepresentsthepopulationsor(c)achancefinding.Toaddressthe firstissue,alldatawerereexaminedforgenotypingerrors(andweresubsequentlyshown tobecorrectwhenanalysedindependentlybyanotherresearcher).Sinceonlygenotypes attheADH1ClocusdeviatedfromHWE,itdoesnotsuggestthatthesamplescollectedis notrepresentativeofthepopulationintheWesternCape.

Table 3-5: Hardy-Weinberg equilibrium analysis p-values shown for all the polymorphisms tested in the Western and Northern Cape for each group (FAS children, Mothers and Controls) Marker FAS children Mothers Controls Western Cape ADH1B 1 1 0.4367 ADH1C 1 0.4243 0.0153 ADH4.4 1 1 0.3156 ADH4.8 0.4764 1 1 ______ Northern Cape ADH1B N/A 1 1 ADH1C 0.5845 1 0.7926 ADH4.4 0.4543 0.4665 1 ADH4.8 0.1285 0.1655 1 Key: bold =p<0.05

56 3.3 Tests for associations with susceptibility for FAS AlleleandgenotypefrequenciesoftheFASaffectedchildrenandtheirmotherswere usedtotestforassociationbetweenFASandthealcoholmetabolismgeneloci(Table 3.6).

3.3.1 Alleleandgenotypeassociations ThepolymorphismsforADH1BandADH1ChadpreviouslybeenstudiedintheWestern Caperegionandtheseresultswerepublishedin2001(Viljoenetal.,2001).Anadditional fourteenFASaffectedchildrenand13motherswereaddedtotheWesternCapecohort andthedatawerereanalysed. TheallelefrequenciesobservedatADH1Bconfirmedasignificantassociation(p=0.038) inthemothersoftheWesternCapebutdidnotreachsignificance(p=0.089)whenthe FASaffectedchildrenwerecomparedtothecontrols.Theposttestpowerfordetectinga significantdifference,giventhesamplesize,wasonly57%.Allele1(ADH1B*1) occurredin92%ofthemotherscomparedto85%inthecontrols.Allele2(ADH1B*2) occurredin4%ofthemothersandin11%ofthecontrolsandallele3(ADH1B*3) occurredatthesamefrequency(4%)inbothgroups.Itwasinferredthatallele2was likelytobeamarkerforprotectionasitwassignificantlymorecommoninthecontrol thanthemothers.TheallelecomparisonatADH1BbetweentheFASaffectedchildren andthecontrolsintheWesternCapealmostreachedsignificance(p=0.089).Thelackof significance,comparedtothepublishedresults,maybeattributedtothesingleadditional allele2observedintheFASchildren. ADH1Bgenotypecomparisonsdidnotrevealsignificantassociations.TheADH1B(1/1) genotypewasthemostcommongenotypeamongstallthegroupsinbothprovinceswith the1/2,2/2and2/3genotypesbeinglesscommon(Table3.2). NosignificantassociationswerefoundforADH1Cwhenanalysingthegenotypesorthe alleles.ThecommongenotypeforADH1CwasADH1C(1/1)occurringathigh

57 frequenciesintheFASaffectedchildren,theirmothersandcontrolsinboththeWestern andNorthernCaperegions.TheleastcommongenotypewasADH1C(2/2)inallthree groups,howeveritwasnotobservedinthemothersfromtheNorthernCaperegion. Twopolymorphicmarkers(ADH4.4andADH4.8)weregenotypedattheADH4locus. Allelicassociationstudiesweresignificantforthesecondlocus,ADH4.8,intheWestern CapeforboththeFASchildren(p=0.035)andtheirmothers(p=0.002)whencompared tothecontrols.Thealleleresponsiblefortheassociationwasthe‘A’alleleasitwas significantlymorecommonintheFASaffectedchildrenandtheirmothersthanthe controls(55%,61%and40%,respectively).Interestingly,whengenotypeswere comparedasignificantassociationwasonlyfoundinthemothers(p=0.010forthe genotypeC/C),althoughtheFASchildrendidshowborderlinesignificance(p=0.061).It isworthnotingthatintheWesternCapetheA/AgenotypewasmorecommonintheFAS childrenandmotherscomparedtothecontrols(26%,38%and16%,respectively)while theC/CgenotypewasmorecommoninthecontrolsthanintheFASchildrenand mothers(36%,16%and16%respectively).Thesetrendswerenotobservedinthe NorthernCape.TheposttestpowerfordetectingassociationswiththeADH4.8locus washigherintheWesternCape(44%and75%)whencomparedtotheNorthernCape (6%and6%).

3.3.2 Haplotypeanalysis WhencomparingthemotherstothecontrolsintheWesternCape(Table3.7),theglobal simulationpvaluealmostreachedsignificance(p=0.065)indicatingthattheremightbea significantdifferencebetweenthemothersandthecontrols.Themostcommonhaplotype was 11TC occurringin39%ofthecontrolsand30%inthemothers.Individualswitha 21TC haplotypeweremorelikelytobecontrols(p=0.010)andindividualswitha 11TA or 11GA haplotypeweremorelikelytobecases(p=0.043andp=0.035,respectively). IntheNorthernCape,themotherswerenotsignificantlydifferentfromthecontrols(as indicatedbythenonsignificantglobalsimulationpvalue,p=0.788)).Nohaplotypes showedsignificantdifferencesinthisgroup.Whenthemotherswerecomparedtoeach otherbetweenthetwoprovincestheglobalsimulationpvaluewas0.398indicatingthat themothers’genotypesweresimilarineachoftheprovinces(Table3.9).

58 TheresultsforthecomparisonofFASaffectedchildrenandcontrolswithineach provinceshowednosignificantdifferenceineithertheNorthernorWesternCaperegions (p=0.806andp=0.450)(Table3.8).Themostcommonhaplotypewas 11TC occurring withafrequencyof38%intheFASaffectedchildreninNorthernCapeand33%inthe WesternCapeFASaffectedchildren.IntheWesternCapeindividualswith 21TC haplotypeweremorelikelytobecontrols(p=0.033)andindividualswith 11TA were morelikelytobeaFASaffectedindividual(p=0.015)occurringwithafrequencyof 31%comparedto19%inthecontrols.

3.3.2.1 WC vs NC Interestingdifferenceswereobservedwhencomparingthethreestudygroupswithinthe provinces(Table3.9).Theresultsshowthatthecontrolsweresignificantlydifferentto eachother(p=0.0019).TheFASaffectedchildrenandthemothersinthedifferent provinceswerenotsignificantlydifferenttoeachother(p=0.339andp=0.398 respectively).Thecomparisonofcontrolsbetweentheprovincesresultedinahighly significantresult(p=0.0019)suggestingthattherearesignificantgeneticdifferences betweentheColouredpopulationsinthetwoprovinces.Toelucidatethegeneticmakeup ofthetwopopulationssampled,allthreesamplegroupswerecombinedandcompared betweentheprovinces.TheresultsshowthatthetwoColouredpopulationsseemtobe geneticallydifferent(p=0.0067).Theseresultsguidedusnottopoolthesamplesofthe twoprovincesastheyappearedtohavesignificantlydifferenthistoriesandstructures. Theresultsofthehaplotypeanalysishowever,showedthateventhoughtheColoured populationsintheprovincesappearedtodifferfromeachother,thegenotypesofthe FASaffectedchildrenandmothersweresimilarintheWesternandNorthernCape regions.

59 Table 3-6: Case-control associations with individual polymorphic loci associated with the ADH1B, ADH1C and ADH4 genes and the p-values for the allelic and genotypic association tests. Bold represents all significant results. Marker FAS-affected children vs Controls Mothers vs Controls Allele Genotype Allele Genotype Western Cape ADH1B 0.089 0.346 0.038 0.071 ADH1C 0.432 0.201 0.897 0.947 ADH4.4 0.515 0.477 0.140 0.098 ADH4.8 0.035 0.061 0.002 0.010 ______ Northern Cape ADH1B 0.171 0.211 0.584 0.577 ADH1C 0.286 0.374 0.132 0.270 ADH4.4 0.581 0.563 1.000 0.698 ADH4.8 0.706 0.299 0.678 0.278 Key: bold =p<0.05

60 Table 3-7: Haplotype analysis showing the estimated haplotype frequencies ( f) in the controls and cases (FAS children or mothers) and the likelihood of association (p) in the Western Cape Coloured population Haplotype Global sim p Hap score control ƒ case ƒ p FAS vs Controls 0.450 21TC 2.135 0.088 0.033 0.033 12TC 1.314 0.111 0.040 0.098 11TC 0.117 0.376 0.332 0.899 12TA 0.095 0.045 0.084 0.919 12GA 0.098 0.052 0.007 0.929 21TA 0.135 0.010 0.000 0.908 31TA 0.417 0.033 0.044 0.687 11GC 0.573 0.009 NA 0.632 11GA 0.905 0.065 0.093 0.376 11TA 2.302 0.193 0.311 0.015 ______ Mothers vs Controls 0.065 21TC 2.586 0.088 0.000 0.010 11TC 1.073 0.376 0.298 0.303 12TC 0.929 0.111 0.086 0.354 12GA 0.296 0.052 0.048 0.785 31TA 0.537 0.033 0.045 0.617 12TA 0.612 0.045 0.063 0.558 11TA 2.153 0.193 0.284 0.043 11GA 2.185 0.065 0.140 0.035 Key:Hapscore=haplotypescore, f=frequency,NA=notavailable, bold =p<0.05

61 Table 3-8: Haplotype analysis showing the estimated haplotype frequencies ( f) in the controls and cases (FAS children or mothers) and the likelihood of association (p) in the Northern Cape Coloured population. Haplotype Global sim p Hap score control ƒ case ƒ p FAS vs Controls 0.806 12GA 1.428 0.040 0.003 0.141 11GA 0.667 0.085 0.063 0.491 12TA 0.245 0.069 0.079 0.825 12TC 0.243 0.096 0.089 0.816 11TA 0.085 0.297 0.287 0.930 11TC 0.969 0.352 0.389 0.323 31TA 1.097 0.016 0.038 0.223 ______ Mothers vs Controls 0.788 12TC 1.060 0.096 0.038 0.288 12TA 0.894 0.069 0.100 0.392 12GA 0.830 0.040 NA 0.376 11TA 0.601 0.297 0.196 0.559 21TC 0.446 0.022 NA 0.931 11GA 0.346 0.085 0.111 0.726 31TA 1.186 0.016 0.041 0.279 11TC 1.374 0.352 0.479 0.152 Key:Hapscore=haplotypescore, f=frequency,NA=notavailable, bold =p<0.05

62 Table 3-9: Haplotypes analysis between the provinces for the FAS-affected children, mothers and controls Haplotype Global sim p Hap score WC ƒ NC ƒ p All samples 0.0067 21TC 3.768 0.062 0.016 0.000 21TA 2.087 0.011 0.000 0.033 12GA 0.844 0.051 0.031 0.399 31TA 0.829 0.036 0.025 0.412 12TC 0.518 0.101 0.086 0.602 11GA 0.085 0.081 0.079 0.933 11GC 0.550 0.013 0.016 0.420 12GC 0.855 NA 0.011 0.420 11TC 0.923 0.357 0.378 0.357 12TA 0.954 0.047 0.070 0.346 11TA 2.170 0.226 0.285 0.032 ______ Controls 0.0019 21TC 3.431 0.088 0.022 0.000 31TA 1.046 0.033 0.016 0.284 12TC 0.649 0.111 0.096 0.516 11TC 0.316 0.376 0.352 0.756 12GA 0.087 0.052 0.040 0.933 11GA 0.799 0.065 0.085 0.420 12TA 1.236 0.045 0.069 0.218 12GC 1.689 0.020 0.056 11TA 2.772 0.193 0.297 0.005 ______ FAS 0.339 12GA 1.545 0.007 0.003 0.131 11GA 0.372 0.093 0.093 0.063 11TA 0.150 0.311 0.287 0.894 31TA 0.015 0.044 0.038 1.000 12TA 0.273 0.084 0.079 0.789 12TC 0.654 0.040 0.089 0.529 11TC 0.876 0.332 0.389 0.392 11GC 0.890 NA 0.046 0.375 ______ Mothers 0.398 12GA 1.073 0.048 NA 0.301 12TC 0.791 0.086 0.038 0.446 11GA 0.756 0.140 0.111 0.434 12TA 0.502 0.063 0.100 0.621 11TA 0.425 0.284 0.196 0.677 31TA 0.105 0.045 0.041 0.840 11TC 2.305 0.298 0.470 0.022 Key:Hapscore=haplotypescore, f=frequency,NA=notavailable,WC=WesternCape,NC=Northern Cape, bold =p<0.05

63 3.3.3 Logisticregression Threelogisticregressionmodelsweregenerated;twotoassesssignificantassociations betweenthepolymorphismsstudied,geographicregionanddiseaseoutcomeandathird modeltoexaminethegeneticdifferencesbetweenthesamplesfromthetwogeographic regions(Table3.10). Inthefirstmodel,thegenotypedatafortheprovinceswerepooledandtheFASaffected childrenwerecomparedtothecontrols.Thismodelcontainedthecovariatesofprovince andthemarkerADH4.8.ThebaselinegenotypeforthismodelwasADH4.8(A/A)and thebaselineprovinceNorthernCapeandalltheindividualpvalueswerebasedonthe baselines.ThismodeldemonstratesthatanindividualfromtheWesternCapehasreduced probabilityofbeingacase(p=0.018).Theresultsalsoindicatedthatanindividualwith eithergenotypeA/CorC/Chasanincreasedprobabilityofbeingacontrolorareduced chanceofbeingaffected,comparedwiththeA/Agenotype. Thesecondmodelcomparedthemotherstothecontrolsandhighlightedthedifferencein patternsobservedintheWesternandNorthernCaperegions.Thismodelalsohighlighted theinteractionofADH4.8ineachprovince.IndividualsintheNorthernCapewitha ADH4.8(A/C)orADH4.8(C/C)genotypehaveanincreasedprobabilityofbeingamother ofaFASchild.HoweverintheWesternCapeindividualswiththeA/CandC/C genotypeshaveareducedchanceofbeingacaseandthosewiththeA/Agenotypehave anincreasedprobabilityofbeingacase. Toassesswhetherthetwopopulationsgroupsweresimilartoeachother,inordertopool thedatatoincreasethepower,athirdmodelwasgeneratedusingonlythecontrolsfrom bothprovinces.Whencomparingthecontrolsbetweenthetworegions,themodel revealedthatindividualswithADH1B(2/2),ADH1B(2/3)andADH1B(3/3)genotypes weremorelikelytooccurintheWesternCape.Thismodelsuggestedasignificant geneticdifferencebetweentheColouredpopulationsoftheNorthernandWesternCape regions.Thiswasalsoobservedinthehaplotypeanalysisandasaresultofthegenetic

64 diversitybetweenthetworegions,thesamplescouldnotbecombinedtocreatealarger samplesize.

Table 3-10: Logistic regression analysis on genotype probabilities in FAS-affected children vs Controls, mothers of children with FAS vs Contols and NC vs WC (Controls only) Model Covariate estimate std error p value FAS-affected children vs Controls Global sim p 0.011 Intercept 1.005 0.312 0.0010 WC 0.636 0.268 0.0180 ADH4.8(A/C) 0.636 0.342 0.0180 ADH4.8(C/C) 0.409 0.415 0.3250 ______ Mothers vs Controls Global sim p 0.016 Intercept 1.758 0.484 0.0000 ADH4.8(A/C) 0.824 0.546 0.1310 ADH4.8(C/C) 0.408 0.644 0.5260 ADH4.8(A/A)WC 1.024 0.598 0.0870 ADH4.8(A/C)WC 0.662 0.379 0.0810 ADH4.8(C/C)WC 1.066 0.631 0.0910 ______ NC vs WC(controls) Global sim p 0.001 Intercept 0.2580 0.132 0.0505 ADH1B(1/2) 1.5980 0.499 0.0013 ADH1B(1/3) 0.5530 0.615 0.3680 ADH1B(2/2) 15.3081029.121 0.9880 ADH1B(2/3) 15.308840.274 0.9850 ADH1B(3/3) 15.3081455.398 0.9910 Key: bold =p<0.05

65 3.4 Linkage disequilibrium (LD) Inthisstudy,LDwasexaminedinthecontrolsindependentlyforeachprovinceandthen combined.ThisresultedintheobservationofinterestingpatternsofLD.Whenreferring tothefigures,allredblocksindicatehighlinkagedisequilibrium(asindicatedbythe correspondingpvalue),orangeindicatesmoderatelinkagedisequilibriumandlight brownindicateslowornolinkagedisequilibrium.ThemeasuresofLD(ascalculatedin theRpackage);DandD’andrareshownineachblockrespectively. Whenallthecontrolswerecombined,ADH1BhadthestrongestLDwithADH4.4anda highLDwithADH1C(Figure3.1).ADH4.4andADH4.8werealsoinverystrongLD witheachother.IntheWesternCapecohort,LDpatternsweresimilartothoseobserved whenallthecontrolsampleswerecombined(Figure3.2).ItwasshownthatADH1Bwas instrongLDwithADH4.4,andinmoderatetohighLDwithADH1C,andADH4.4and ADH4.8wereinstrongLD.However,thepatternsofLDobservedintheNorthernCape cohortdifferedslightlyfromthatintheWesternCapecohort(Figure3.3).ADH1Bwas inhighLDwithADH1CbutADH4.4andADH4.8wereinstrongLDwitheachother. Generally,LDbetweenADH1BandADH1CandbetweenADH4.4andADH4.8is higherthantheLDbetweenADH1CandADH4.4.Thiswasexpectedsinceagreater physicaldistanceoccursbetweenADH1CandADH4.4.Theobserveddifferencesin patternsofLDbetweentheprovincessuggestthattheremightbedifferencesin populationhistoriesforthetwogroups.ThesedifferencescontributetotheLDpatterns observedwhenthetwogroupsarecombinedThisissupportedbyhaplotypeandlogistic regressionanalysis.

66

Figure 3.1: LD estimates for all the controls.

Figure 3.2: LD estimates for the controls from the Western Cape

67 Figure 3.3: LD estimates for controls from the Northern Cape

68 Chapter 4

Discussion

69 4 Discussion Inthisstudyweadoptedthecandidategenecasecontrolstudydesignapproachand focusedourattentiononthealcoholdehydrogenasegenessincetheyplayavitalrolein firstpassmetabolismofalcohol.SeveralpolymorphicvariantsoftheADH1B,ADH1C andADH4geneshavebeenexaminedintwoColouredpopulationsfromtheWesternand NorthernCaperegions.Thesetwopopulationgroupswerechosenastheincidenceof FAShasbeenfoundtobethehighestintheworld. ItisknownthatFASisaresultoffetalexposuretoalcohol.Althoughnoindividual mechanismhasbeenidentifiedasthemaincausefortheresultingdamage,studieshave shownthatalcoholisabletoaffectthefetusbythreepossibleroutes.Itcanaffectthe fetusdirectlyorthroughtheexposuretometabolitessuchasacetaldehydeoralcoholcan inhibitretinoicacid(RA)synthesis.ByexaminingtheADHgenesinthetwoColoured communities,thisprojectsoughtouttodeterminewhethertheyplayanimportantrolein thediseasepathogenesis.

4.1 The ADH1B and ADH1C genes and their role in the susceptibility to FAS

4.1.1 ADH1B IntheSouthAfricanWesternCapeColouredpopulationtheADH1B*2allelehasbeen associatedwithaprotectiveeffectagainstthedevelopmentofFASi.e.itoccurredata significantlyhigherfrequencyinthecontrolpopulationthanthesamplegroupofmothers (Viljoenetal.,2001).However,inthepresentstudy(representinganextensionthereof), nosignificantassociationswereobservedintheFASaffectedchildrensamplesfromthe WesternCape,perhapsduetotheinclusionoftheadditionalFASaffectedchildren.This observationcouldbeduetothesmallsamplesizeandlowpower.Theanalysisofthe ADH1Bgenotypes(inthepresentstudy)resultedinaweaklysignificantassociation.The groupofmothersfromtheWesternCapehadasignificantassociationbetween ADH1B*2andtheprotectionagainstthedevelopmentofFAS,whichwasconsistentwith theobservationsfromthepreviousstudybyViljoenetal.,(2001).Interestingly,no

70 significantassociationswereobservedforallelicorgenotypicassociationanalysisinthe NorthernCapeColouredsample. Haplotypeanalysisperformedtoexaminetheinteractionofthepolymorphismsdescribed inthisstudyrevealedthattheallelesofADH1BandADH4playedaroleindisease susceptibility.IndividualswithboththeADH1B*2alleleandthe‘C’alleleofADH4.8 haveagreaterprobabilityofbeinginthecontrolgroupintheWesternCaperegion(Table 3.7).Thissuggeststhatthepresenceofthesetwoallelesinahaplotypeconferssome protectionagainstthedevelopmentofFAS.ThepresenceoftheADH1B*1alleleandthe ‘A’alleleofADH4.8inahaplotypeshowedanincreasedriskofbeingacaseasithada highhaplotypescoreof2.772(p=0.005).Thisisaninterestingfindingasitsuggeststhat theinteractionbetweenthesetwolociorvariantsinstrongLDwiththem,mayincrease theriskofbeingaffectedwiththediseaseorbeingamotherofaFASaffectedchild.

4.1.2 ADH1C TheADH1Cgenehasbeenfoundtobeassociatedwithaneffectthatisprotectiveagainst alcoholismonlybecauseofitsstrongdisequilibriumwithADH1B*2.Thiswas demonstratedinahaplotypebasedanalysisbetweenTaiwaneseChinesealcoholicand nonalcoholicindividuals.Theassociationwithalcoholismwasduetoanallelicvariation attheADH1B*2site.TheobservationthattheADH1C*1allelewasdecreasedinthe alcoholicTaiwaneseChineseindividualsrelativetothecontrolindividualswasthoughtto bearesultofthestronglinkagedisequilibriumwiththeADH1B*2allele(Osieretal., 1999).

TheADH1C*1allelewhichencodesanenzymewithahighV max resultsinefficient alcoholmetabolism.Anindividualwithanefficientalcoholmetabolisingenzymemaybe likelytoconsumemorealcoholandaccumulatemoremetabolitestherebyincreasingthe riskofFAS.Itwasthereforesurprisingnottofindanysignificantassociationswiththis locusandFASinourstudycohort.LDanalysisrevealedthattherewasstrongerLD betweenADH4.4andADH1CthanADH1BandADH1CintheWesternandNorthern Caperegions.

71 TheonlysignificantfindingwasthatthecontrolfrequenciesdidnotmeetwithHWE expectationintheWesternCaperegion.Thiscouldbeduetopopulationstratification, selectionbias,skewedornonrepresentativesamplingandchance.Alltheresultswere independentlyscoredforgenotypeassignmentandduplicatesampletestingsuggeststhat genotypingerrorsareanunlikelyexplanation.Itisprobablyachanceobservationgiven thatwitha5%significancelevel,onewouldexpectdeviationfromHWproportionsin oneoutofevery20markerstested.FromthesestudiesitseemsunlikelythatADH1C playsasignificantroleinFASsusceptibilityintheWesternandNorthernCape provinces.

4.2 The role of ADH4 in the pathogenesis of FAS ADH4playsaroleintwoimportantphysiologicalprocesses;alcoholmetabolismandRA synthesis.AmodelproposedbyDuester(1991)hypothesisesthatalcoholinterfereswith RAsynthesisviatheADHpathway.TheresultingRAdeficiencymaycontributetothe developmentofFASsincethesymptomsofRAdeficiencyoverlapwiththoseofFAS. Supportingevidenceforthiscomesfromkineticstudieswhichshowthatwhen concentrationsofalcoholinthebloodstreamarehigh,alcoholcompetitivelyinhibits retinolfrombindingtoADH4andreducesthelevelsoflocalretinoicacid.RAiscritical forembryogenesisandorganogenesis(Yinetal.,2003). Theallelicassociationtestsidentifiedthe‘A’alleleatADH4.8(rs1800759)asa susceptibilityfactorasitoccurredmorecommonlyintheFASaffectedchildrensamples andthemother’ssamplesthaninthecontrolsamples(p=0.035andp=0.002 respectively).Atthegenotypiclevel,theA/Agenotypewasmorecommoninthemothers andtheC/Cgenotypewasmorecommoninthecontrols(p=0.010).Thisgenotype differencewasonlymarginallysignificantintheFASaffectedchildren(p=0.061).The implicationsoftheseresultsinthemotherscomparedtotheFASaffectedchildrenwillbe discussedinsection4.3.

72 LogisticregressionanalysisrevealedthatADH4.8wasapossiblesusceptibilitymarker butthatitseffectwaspopulationspecific.TheC/Cgenotypewasmorecommoninthe mothersandtheFASaffectedchildren(Table3.4)fromtheWesternCapeonly.However thiswasnotastatisticallysignificantfinding.FurthersupportforADH4.8asapossible susceptibilitymarkerwasprovidedbyhaplotypeanalysis(section4.11).Thehaplotype analysissuggestedthatthe‘C’allelemayconferapossibleprotectiveeffectwhilethe‘A’ allelewasmorecommonintheFASchildrenandtheirmothers,possiblyplayingarolein increasingtheriskofdevelopingFAS. PreviousstudiesexaminingtheallelesofADH4.8haveshownthatthefrequenciesvary betweendifferentpopulations.Thefrequencydistributionobservedinourstudyofthe WesternCapepopulationwasmostsimilartothatdescribedby(Luoetal.,2005)inthe EuropeanAmericanpopulationtheysampled.TheallelefrequenciesintheAfrican AmericanpopulationwerequitedifferenttothoseintheEuropeanAmericanswiththe ‘A’allelebeingthemostcommon.Thestudyby(Guindalinietal.,2005)showedallele distributionssimilartothoseobservedintheAfricanAmericanswiththemostcommon allelebeingthe‘A’allele(Table4.1).Bothstudiesby(Guindalinietal.,2005)and(Luo etal.,2005)foundthatthe‘A’allelewasassociatedwithanincreasedriskofdeveloping alcoholism. PreviousstudieshaveidentifiedtheallelicvariantsofADH4.8asbeingresponsiblefor thechangeintheADH4promoteractivity.Thepresenceofthe‘C’allelehasbeenshown todecreasethepromoteractivitywhilethepresenceofthe‘A’alleleincreasesthe promoteractivity(Edenbergetal.,1999).Aninterestingobservationcanbemadefrom thehaplotypeanalysis.TheADH1B*1alleletogetherwiththe‘A’allelefromADH4.8 wasfoundtoincreasetheprobabilityofbeingaFASaffectedchildoramotherofaFAS affectedchildwhiletheADH1B*2alleletogetherwiththe‘C’allelewasshowntoconfer protectionagainstdevelopingthedisease. Ahypothesiscanbeproposedfromtheseobservationsthatmayprovidesupportforthe modelproposedbyDuester(1999).ThismodelproposesthatadiversionoffetalADH

73 activityawayfromretinolmetabolismmayleadtotheloweringofretinoicacidlevelsin tissues.ThisisduetotheADHenzymesbeinginvolvedinalcoholmetabolismduring alcoholintoxicationbecauseoftheirhighk mforalcoholratherthanretinol.Asaresult theseenzymeswillnotbeavailableforretinolmetabolism.Thusahighmaternaldoseof alcoholinanindividualwhohasarelativelylowrateofalcoholmetabolismmayleadto prolongedinhibitoryeffectonRAsynthesisedbythefetusfornormaldevelopment TheADH1B*1allelewhichresultsinasloweralcoholclearancerate(Takeshitaetal., 1996)andthereforeresultsinanincreasedamountofalcoholinthebloodstream,was foundtobeassociatedwiththe‘A’alleleofADH4.8whichcausesincreasedpromoter activity.Duetotheincreasedpromoteractivity,thelevelofADH4proteinincreasesand maybindtosomeoftheexcessalcoholcirculatinginthebloodstream.Thismay competitivelyinhibitretinolfrombindingtotheADH4proteinasproposedbythe Duester(1991).Iftheexcessalcohollevelsareofsuchamagnitudethateveninthe presenceofincreasedlevelsofADH4theyblockretinolbinding,thelocalretinoicacid levelsmaydecreaseandthismayincreasesusceptibilitytoFASasretinoicacidis requiredfornormalembryogenesisanditisthoughtthatdecreasedlevelsofRAmay contributetothedevelopmentofFAS.Thismayexplainwhythesetwoalleleswere associatedwithanincreasedriskofbeingaFASaffectedchildorbeingamotherofa FASaffectedchild. TheADH1B*2allelehasafasteralcoholclearancerate(Takeshitaetal.,1996)andhas beenassociatedwiththe‘C’alleleofADH4.8.The‘C’alleleresultsindecreased promoteractivity.DuetothefasteralcoholmetabolismrateatADH1B,theexcess alcoholismetabolisedrapidlythusallowingretinolsynthesistooccuroptimallyasthe excessalcoholwillnotinhibititfrombindingtoADH4.Thisissuggestiveofamaternal protectiveeffect. Theresultoffastalcoholmetabolismistherapidaccumulationofacetaldehyde.This metaboliteisabletopassthroughtheplacentaintothefetusandmayhaveatoxiceffect onthefetus(Chaudhuri,2000).Thebuildupofacetaldehydealsoresultsinadverse

74 symptomsthatshouldpreventfurtherdrinkingbutitseffectsgounnoticedduetothe extremebingedrinkingpatternsoccurringinthesecommunities.Theresultsfromthis studyindicatethatacetaldehydemaynotplayasignificantroleasonewouldexpect.The datasuggestedthathavingafasteralcoholclearancerateduetotheinteractionbetween ADH1BandADH4mayhaveaprotectiveeffectagainstFAS.

75 Table 4-1: Published allele and genotype frequencies from various studies for three polymorphic variants in the ADH4 genes compared to the observed frequencies in the two Coloured samples.

Marker European Americans a African Americans a Caucasian b African Brazilian b Western Cape c Northern Cape c n f n f n f n f n f n f ADH4.8 (rs1800759) A/A 44 0.145 33 0.688 14 0.200 7 0.318 25 0.160 29 0.260 A/C 154 0.507 15 0.313 53 0.760 14 0.636 74 0.480 56 0.500 C/C 106 0.349 0 0.000 3 0.04 1 0.045 56 0.360 27 0.240 A 242 0.398 81 0.844 81 0.578 28 0.636 124 0.400 114 0.510 C 366 0.602 15 0.156 59 0.421 16 0.363 186 0.600 110 0.490 ______ ADH4.4 (rs1126670) C/C 24 0.077 1 0.021 1 0.010 2 0.020 A/C 145 0.468 14 0.298 41 0.250 28 0.2 60 A/A 141 0.455 32 0.681 124 0.750 77 0.72 0 C 193 0.311 16 0.170 43 0.130 32 0.150 A 427 0.689 78 0.830 289 0.870 182 0.850 ______ rs1126671 A/A 24 0.078 1 0.021 0 0 0 0 A/G 147 0.476 15 0.313 2 0.014 1 0. 009 G/G 138 0.447 32 0.667 132 0.985 103 0.990 A 195 0.316 17 0.177 2 0.007 1 0.0 04 G 423 0.684 79 0.823 266 0.992 207 0.995 Key:a=Luoetal.2005,b=Guindalanietal.2005,c=currentstudy

76 4.3 The impact of the maternal and fetal genotypes on disease outcome Prenatalalcoholexposureresultsinaspectrumofdisordersofwhich,FASisatthe extremeend.Studieshaveshownthatnotallchildrenborntomotherswhodrinkduring theirpregnanciesarebornwithFAS.Somechildrenareunharmedwhileothersmayhave partialcharacteristicsofFAS.Thisraisesthequestionastowhetherthematernalorfetal genotypesoracombinationofboth,playaroleinthediseaseoutcome.Inthisstudywe examinedtheFASaffectedchildrenandtheirmotherstodeterminewhethertheir genotypesdoplayaroleindiseasepathogenesis. ThemarkerADH4.8(rs1800759)bestdemonstratedtheimpactofthematernalandfetal genotypesonthediseaseoutcome.Themothershadahigherfrequencyofthe‘A’allele comparedtotheFASaffectedchildren(61%vs55%).The‘A’allelehasbeenshownto increasetheactivityoftheADH4promoteractivity.TheFASaffectedchildrenhada higherfrequencyofthe‘C’allelecomparedtothemothers(45%vs39%)andthisallele hasalowerpromoteractivity.GenotypicassociationtestsrevealedthattheA/Agenotype wassignificantlydifferentbetweenthemothersandthecontrols(p=0.010).This suggeststhatmotherswithafasteralcoholmetabolismrateareatanincreasedriskof havingachildwithFAS.Thiscouldbeduetofactorssuchastheexposureto acetaldehydeasaresultofthefastalcoholmetabolismorthecompetitiveinhibition betweenalcoholandretinol,preventingretinolfrombindingtoADH4andresultingin reducedretinoicacidsynthesis.Evidencetosupportthishypothesiscanbedrawnfroma studyconductedby(Bhallaetal.,2005).ADHactivitywasmeasuredintheliverand intestinesinratsthatwereprenatallyexposedtoalcohol.ThestudyfoundthattheADH activitieswerelowinthepupswhichaccountedforthehighconcentrationofalcoholin thetissues.SincenoADHactivityhasbeendetectedintheplacentaandADHactivity seemstobelowinthefetus,itsuggeststhatthematernalmetabolicpathwayislargely responsiblefortheremovalofcirculatingalcoholfromtheblood(Bhallaetal.,2005). However,whenexaminingtheADH1Blocus,wefoundthatADH1B*2wasprotectivein themothersfromtheWesternCape.Thisalleleisknowntometabolisealcoholfaster

77 (Takeshitaetal.,1996)andthisfasterclearanceratewouldpreventthefetusfrombeing exposedtotoomuchalcohol. ThisfindingcontradictstheobservationsmadeforADH4.8whichshowedthatfaster alcoholmetabolismincreasedtheriskofhavingachildwithFAS.Althoughtheseresults seemtocontradicteachother,theeffectofADH4.8ondiseaseoutcomeappearstobe greaterthanADH1Bduetothepoweratwhichtheassociationsweredetected.Thepost testpowerrevealedthattheresultsforADH4.8hada75%chanceofbeingreplicatedin anotherstudyindicatingthatthesefindingsweremorethanlikelytoberealfindingsand notaspuriousassociation.

4.4 Genetic diversity of the Western and Northern Coloured populations Oneofthebiggestconfoundingfactorsinstudyingcomplexdiseasesispopulation stratification.Associationstudiesareusuallyperformedinsamplesofunrelated individualstoidentifysusceptibilityloci.Spuriousassociationsmayariseduetothe differencesinallelefrequenciesifthecasesandcontrolsarenotappropriatelymatched byethnicity(Risch,2000).Toovercomethisprobleminthecurrentstudy,thecasesand controlswereethnicallyandgeographicallymatched.Itisthoughtbysomeresearchers thattheuseofadmixedpopulationswouldallowfortheeasierdetectionofdisease causingvariants.However,inthepresentstudythisiscomplicatedbythefactthat admixtureisanongoingprocess.TheSouthAfricanColouredpopulationfallswithinthe continuousgeneflow(CGF)modelofadmixture(HalderandShriver,2003).Thismodel statesthatadmixtureisoccurringineachgenerationatasteadyrate.Asaresultlinkage disequilibriumisincreasedbetweenmarkersonthesamechromosomeanditisthought thatthelinkagedisequilibriummaybehelpfulinidentifyingpossiblediseasemarkers. Toexaminethegeneticmakeupinthetworegions,haplotypeanalysis,logistic regressionandlinkagedisequilibriumanalysiswereperformed.Averyimportantand perhapsnotentirelysurprisingfindingfromthisstudywasthegeneticdiversityobserved betweenthetwoSouthAfricanColouredpopulationsresidentintheNorthernand

78 WesternCaperegions.Duetothegeneticdiversityobservedbetweenthetworegions, eachdatasetgeneratedwasanalysedseparately. Throughhaplotypeanalysis,wefoundthattheWesternandNorthernCapecontrolswere significantlydifferenttoeachother(p=0.0019).Furthersupportwasprovidedby logisticregressionwhichrevealedthatthepresenceorabsenceofthreeADH1B genotypes;ADH1B(2/2),ADH1B(2/3)andADH1B(3/3)distinguishedthetwoprovince cohortsfromeachother(thesegenotypeswereonlyobservedintheWesternCape controls).Finallylinkagedisequilibriumtestingrevealeddifferentpatternsbetweenthe twopopulations.Publishedstudiesonalcoholicandnonalcoholicindividualsfromthree Taiwanesepopulations(n=61andn=87foralcoholicsamplesandcontrolsrespectively) andTaiwaneseChinesepopulations(n=128andn=135foralcoholicsamplesand controlsrespectively)haveshownthatADH1BisinstrongLDwithADH1Chowever therewaslowLDbetweenADH4andtheADH1genecluster(Osieretal.,1999).In 1987,Murrayetal.showedthatLDexistedbetweentwopolymorphicsites( StuI and XbaI )ontheADH1CgeneinasampleofEuropeanAmericans.LDhasalsobeen examinedbetweenADH1B,ADH1C,ADH4andADH5insamplesofmixedEuropean AmericansandSwedes(EdmanandMaret,1992).TheresearchersfoundstrongLD betweenADH1BandADH1CandbetweenADH4andADH5.LowLDwasobserved betweentheClassIgenesandeithertheADH4orADH5genes.MorerecentlyOsieret al.,(1999)examinedLDinADH1B,ADH1CandADH7genesin40populations.Six polymorphicsiteswereexaminedintheClassIgenefamilyandoneintheADH7gene. Inallthepopulationsstudied,significantLDoccurredwithintheClassIgenessites. PairwiseLDalsooccurredbetweenADH7andsomesitesintheADH1genecluster. HoweverintheSouthAfricanColouredpopulationitwasfoundthatADH1Bwasin strongerLDwithADH4.4thanADH1C.ThisfindingshowsthattheSouthAfrican Colouredcommunityisgeneticallydifferenttootherpopulationsthroughouttheworld. IntheWesternCape,LDshowedthatADH1BhadhighestLDwithADH4.4andinthe NorthernCape,ADH1CwasinhighLDwithADH4.4.Thisdemonstratesthecontrasting resultsobtainedforthetwoprovinces.

79 ThefindingthattheWesternCapeandNorthernCapeColouredpeoplearedifferentto eachotherwasnotsurprisingasapreviousstudyexaminingYchromosomevariation alsoshowedsignificantgeneticdiversitybetweengroupsofSouthAfricanColoureds (Motlidile,2004).IndividualsfromthreedifferentColouredcommunitieswithinSouth Africawerestudied;CapeMalay,CapeColouredfromtheWesternCapeandaColoured communityfromJohannesburg.ThestudyshowedthattheCapeColouredcommunity wasmostsimilartotheJohannesburgColouredcommunityandboththesedifferedfrom theCapeMalaygroup.TheCapeMalaycommunitywasshowntohaveahigherY chromosomecontributionfromAsia(46%)comparedtothehigherAfricanpaternal contributionsintheCapeColouredandJohannesburgColouredgroups(Motlidile,2004). ThesefindingssupporthistoricaldataonthemovementofpeopleintotheWesternCape. SettlementintheWesternCapedatesasfarbackas1652whensomeofthefirst Europeansettlersarrivedtoformasupplybasefortravellers.Asaconsequenceofthis colonisationandtheneedforcheaplabour,slaveswerebroughtinfromAsia,India,East andWestAfrica(Botha,1972).TheColouredpopulationseachhaveauniquegenetic backgroundduetodifferinggeneticcontributionsfromtheEuropeans,Asians,Africans andlocalindigenousgroupsthatsettledintheWesternCape. TheColouredcommunitieswerechosenforthisstudybecausetheyhavethehighestrates inFASintheworld.Wehadhopedtocombinethetwodatasetsgeneratedfromthetwo provincessampledtocreatealargersamplesize.Duetothediversegeneticcontributions fromthevariousparentalpopulations,thedatasetscouldnotbepooled.Animportant criterioninevaluatingacasecontrolstudyistheabilitytoreplicatetheresults.Although wefailedtoreplicatesomesignificantresultsintheNorthernCapeprovince,allthe appropriatemeasuresweretakentoattempttocontrolforpopulationstratification.Even thoughthepopulationswerefoundtohavedifferentgeneticbackgrounds,whenthe mothersandtheFASaffectedchildrenwerecomparedtoeachotherbetweenthetwo provinces,haplotypeanalysisrevealedthattherewerenosignificantdifferencesbetween thesetwogroups.Thisinitselfisaveryimportantfindingasitsuggestsasimilargenetic

80 backgroundwithinthesetwogroupsthatmayreflectacommonroleindisease susceptibility.

4.5 ADH and brain development ThemostseveresymptomofFASispoorneurologicaldevelopment.Alcoholcanaffect thedevelopingbraineitherdirectlyorindirectly,causingregionsofthebrainthatdeal withcognitiveskills,motorskills,memory,learninganddecisionmakingtobeseverely affected. Directalcoholexposurecausesabnormalitiesintheserotonin/glutamateneurotransmitter system,theprematureconversionofglialcellsintoastrocytesandcelldeathviaapoptosis andnecrosis.Freeradicals,whichareproducedasaresultofalcoholmetabolismcause oxidativestress.Theoccurrenceofexcessfreeradicalsincreasesthetoxicitylevelsinthe cellwhichcaninduceapoptosis(GoodlettandHorn,2001).TheCNSisalsovulnerable todamagebyalcoholbecausethecellslocatedtherehaveaverylowthresholdfor alcohol(WelchCarre,2005). CouldtheADHgenesregulatetheamountofalcoholexposuretothebrain?The distributionofADHhasbeenstudiedinthebrainandneitherADH1norADH4,the enzymeslargelyresponsibleforalcoholmetabolism,havebeenfoundtobeexpressedin humanbraintissue.HoweverADH3hasbeenfoundintheregionsofthebrainthatare severelyaffectedbyalcoholexposuresuchasthehippocampus,cerebellumandcorpus callosum.IthasbeenproposedthatADH3mightplayaroleinalcoholmetabolismin thesetissues(Galteretal.,2003).Inrecentyears,analternativepathwayhasbeen proposedforbrainethanoloxidisingpropertiesthatinvolvestheenzymecatalase.Itis thoughtthatbraincatalaseoxidisesethanolthroughitsperoxidaticactivity(Quertemont etal.,2005). TheADHgenesinvolvedinretinoidsignallingviatheADHpathwayhavenotbeen detectedinthebrainimplyingthatretinoicacidsynthesisoccursviaothersecondary pathways.Thereisincreasingevidencethatretinoidsignallingplaysanimportantrolein

81 thefunctionoftheadultbrain.Detectionofretinoidcomponentsinthebrainsuggestthat retinoicacidcanbysynthesisedincertainregionsofthebrain(LaneandBailey,2005). Animalmodelshavealsobeenusedtodemonstratethattheretinoicacidpresentinbrain tissuecanactivategeneexpressioninthesesameareas. AsnoneoftheADHlociwestudiedappeartobepresentinthebrainitwouldappearthat anysusceptibleorprotectiveeffectinbraindevelopmentwouldbearesultoflowering levelsofbloodalcoholthatreachthebrainduringdevelopment.

4.6 Limitations of the study Amajorlimitationofthisstudyisthesmallsamplesize.Thisstudydemonstratedthatthe samplesfromtheWesternandNorthernCaperegionscouldnotbepooledandtherefore largernumbersofsamplesneedtobecollectedfromeachparticularregion.Numerous factorscontributetothedifficultiesincollectingsamples,theseinclude;accesstothe ruralareas,childrenleftinthecareofguardiansduetoearlymortalityofmothers,lackof telephones,highmobilitywithinandoutoftheregionsinsearchofemployment.Itisalso difficulttocollectinformationandbloodsamplesorcheekswabsduetothesensitive natureofthedisease.Thereisariskoffamiliesbeingostracisedfromtheircommunities becauseofthestigmaassociatedwithFAS. ThecontrolswererandomlyselectedindividualscollectedfromthetwoColoured communitiesandtheirunknownFASstatuscouldbeconsideredaconfoundingfactorin thisstudy. ManyofthestatisticallysignificantassociationsfoundintheWesternCapewerenot detectedintheNorthernCape.Thesamplesizeneedstobeincreasedineachregionto determineifthesedifferencesareduetolowpowerindetectingassociationsorarereal differences. Theextentofadmixtureneedstobestudiedingreatdetailtodetecttowhichextent differentparentalpopulationshavecontributedtothepopulations.Apossiblefuture

82 directionforthisprojectistousefamilybasedassociationstudydesignssuchasthe transmissiondisequilibriumtest(TDT).Thesestrategieshavebecomecommoninthe studyofcomplexdiseasesastheyavoidspuriousassociationsrelatedtopopulation stratification.Anotherstrategybeingusedtoassesspopulationstratificationistheuseof polymorphicmarkersthatarenotlinkedtothecandidategenesassociatedwiththe disease.Anabsenceofanassociationwillprovideevidencethatanyassociationfoundin thecasesandcontrolsisnotspurious(SilvermanandPalmer,2000).Familystudiespose certaindisadvantagessuchastheneedtogenotypemoreindividuals(affectedsiblingand twoparents),locateallthemembersofthefamilyandinparticulartolocatethefathers. Intheinstanceswherefathersareabsent,thesiblingswillbeused.Thisstudydesignwill beusedinfuturestudiestosupporttheresultsfromthecurrentassociationstudy.Great effortisbeingmadetocollectthelargenumbersofsamplesthatarerequiredfromthese communities. Inthisstudy,wedidnotcorrectformultipletesting.Thechancesoffindingspurious associationswhenstudyingcomplexdiseasesisalwayshighwhenexamininglarge numbersofpolymorphismsinacomplexdisease.Toovercomethisproblemstringent testssuchastheBonferronicorrectionhavebeenused.However,theuseofsuch correctionsoftenmeansthelossofgenuineassociations.Itisthoughtbysome researchersthatfindingspuriousassociationswhenstudyingapolymorphismthathas functionalsignificancetothediseaseinquestion,isgreatlyreduced(DalyandDay, 2001).OurmostsignificantfindinginthisstudyinvolvedtheADH4.8(rs1800759) polymorphismwhichhasbeenshowntoaffectpromoteractivity.

83 4.7 Future directions TheADH4genelocushasbeenidentifiedasapossiblesusceptibilitylocusinvolvedin thepathogenesisofFAS.WiththecompletionofPhaseIoftheHapMapproject (Altshuleretal.,2005)itisnowpossibletoselectotherinformativeSNPsintheADH4 genethatmightbeassociatedwiththedevelopmentofFAS.HapMapaimstocreatea databasecontainingcommonhumansequencevariation.Thedatabasewillcontain informationoncommonSNPsandinformationonLDthroughoutthegenome.One advantageofthisistheabilitytoselecttagSNPsforassociationstudies.Theuseofsuch informativemarkersreducesredundancyandminimisesthelossofinformation.However itneedstobeestablishedwhetherthepopulationswestudyexhibitsimilarLDand haplotypeblockstothoseusedtogeneratethedataforHapMap. TheSASAmethoddevelopedtodetectSNPrs1042363fromtheADH4gene,needstobe optimisedtotestwhetheritplaysaroleinthediseaseasitwasshownpreviouslytobe associatedwithalcoholanddrugdependence.Duetothelackofrobustnessoftechnique inourhands,thismethodcouldnotbeoptimised.Ithasbeenshowntobeveryspecific methodfordetectinggenotypesandwillminimisethetimetakengeneratingresultsas comparedtotheARMSmethod. Asmentionedpreviously,familybasedassociationstudiesmayhelptoovercomethe effectofpopulationstratification.Samplesarecurrentlybeingcollectedforthispartof thestudy. SignificantassociationshavebeenfoundwithADH4andothergenesinvolvedinthe retinalpathwaythatmayplayaroleinFASetiology.OnesuchgeneisALDH1A2(also knownasRALDH2),needstobegenotypedinthecurrentcohortofsamples.

84 4.8 Conclusion SouthAfricahasthehighestincidenceofFASintheworld(40per1000affectedchildren intheColouredcommunityoftheWestern(Viljoenetal.,2001)anditposesamajor healthrisk.Theidentificationofthegeneticfactorsthatplaceafetusatriskofthe harmfuleffectsofprenatalalcoholexposureandtheelucidationofthemechanismby whichalcoholcausesitstoxiceffectsmaygiveresearchersabetterunderstandingofthe disease. ThedatafromthisstudyhasledtotheproposalofamodelinvolvingADH1BandADH4 inthedevelopmentofFAS.WhentheADH1B*2alleleoccurswiththe‘C’alleleof ADH4.8,itresultsinaprotectiveeffectoractsasamarkerofdecreasedrisk.This suggeststhatindividualswithafasteralcoholmetabolismviatheADH1Bgenemaybe protectedfromdevelopingFAS.WhenADH1B*1occurredwiththe‘A’alleleof ADH4.8,thisincreasedtheriskofbeingaffectedwithFAS.Inthisinstance,theexcess alcoholduetothesloweralcoholclearanceratemaycompetitivelyinhibitretinolfrom bindingtoADH4,thusresultinginreducedlevelsofretinoicacidsynthesis.Theseresults providesupportforamodelproposedbyDuester(1991)suggestingthattheetiologyof FASisduetothecompetitionofalcoholandretinolforADH4leadingtoincreasedor decreasedlevelsofRA. Ourresultsindicatethatmotherswithafasteralcoholmetabolismwereatanincreased riskofhavingachildwithFAS.Inthefetus,itwasshownthataslowermetabolism protectedthefetusfromdevelopingFAS.Thereissomecontradictionbetweentheroles ofADH1BandADH4,whereonefunctionsdifferentlytheotherisquantitatively increased,itisdifficulttotellwhichgeneplaysamoreimportantrole.Howeveronecan assumethattheinteractionbetweenADH1BandADH4playsanimportantrolein diseaseetiology. Aninterestingoutcomeofthisstudywastheobserveddiversegeneticbackgroundsofthe twoColouredgroupssampled.Significantassociationswerenotalwaysreplicated

85 betweenthegroupspossiblyasaresultofthisdiversity,indicatingthatsusceptibilityor protectivefactorsmayvaryinthesegeneticallydistinctpopulations. ThisstudyhasprovidedevidencethatADH4islikelytoplayanimportantroleinthe pathogenesisofFASduetothehighlysignificantassociationsthatwerefoundinthe ColouredgroupofsamplesfromtheWesternCapeprovince.

86 5 References Cited Abel,E.L.(1995)AnupdateonincidenceofFAS:FASisnotanequalopportunitybirth defect. Neurotoxicol Teratol 17: 43743.

Abel,E.L.(1998)FetalalcoholAbuseSyndrome.PlenumPress,NewYork.

Abel,E.L.andSokol,R.J.(1986)Fetalalcoholsyndromeisnowleadingcauseofmental retardation. Lancet 2: 1222.

Agarwal,D.P.(2001)Geneticpolymorphismsofalcoholmetabolizingenzymes. Pathol Biol (Paris) 49: 7039.

Altshuler,D.,Brooks,L.D.,Chakravarti,A.,Collins,F.S.,Daly,M.J.,andDonnelly,P. (2005)Ahaplotypemapofthehumangenome. Nature 437: 1299320. Notes:CORPORATENAME:InternationalHapMapConsortium.

Armstrong,E.M.(1998)Diagnosingmoraldisorder:thediscoveryandevolutionoffetal alcoholsyndrome. Soc Sci Med 47: 202542.

Astley,S.J.andClarren,S.K.(2000)Diagnosingthefullspectrumoffetalalcohol exposedindividuals:introducingthe4digitdiagnosticcode. Alcohol Alcohol 35: 40010.

Baraona,E.,Yokoyama,A.,Ishii,H.,HernandezMunoz,R.,Takagi,T.,Tsuchiya,M., andLieber,C.S.(1991)Lackofalcoholdehydrogenaseisoenzymeactivitiesinthe stomachofJapanesesubjects. Life Sci 49: 192934.

Bhalla,S.,Kaur,K.,Mahmood,A.,andMahmood,S.(2005)Postnataldevelopmentof alcoholdehydrogenaseinliverandintestineofratsexposedtoethanolinutero. Indian J Med Res 121: 3945.

Borras,E.,Coutelle,C.,Rosell,A.,FernandezMuixi,F.,Broch,M.,Crosas,B.etal. (2000)Geneticpolymorphismofalcoholdehydrogenaseineuropeans:theADH2*2 alleledecreasestheriskforalcoholismandisassociatedwithADH3*1. Hepatology 31: 9849.

87 Botha,M.C.(1972)Bloodgroupgenefrequencies.Anindicationofthegenetic constitutionofpopulationsamplesinCapeTown. Am J Roentgenol Radium Ther Nucl Med 115: Suppl:127.

Burd,L.,CotsonasHassler,T.M.,Martsolf,J.T.,andKerbeshian,J.(2003)Recognition andmanagementoffetalalcoholsyndrome. Neurotoxicol Teratol 25: 6818.

Carlson,C.S.,Eberle,M.A.,Kruglyak,L.,andNickerson,D.A.(2004)Mappingcomplex diseaselociinwholegenomeassociationstudies. Nature 429: 44652.

Chaudhuri,J.D.(2000)Alcoholandthedevelopingfetusareview. Med Sci Monit 6: 103141.

Chen,C.C.,Lu,R.B.,Chen,Y.C.,Wang,M.F.,Chang,Y.C.,Li,T.K.,andYin,S.J. (1999)Interactionbetweenthefunctionalpolymorphismsofthealcoholmetabolism genesinprotectionagainstalcoholism. Am J Hum Genet 65: 795807.

CohenKerem,R.andKoren,G.(2003)Antioxidantsandfetalprotectionagainstethanol teratogenicity.I.Reviewoftheexperimentaldataandimplicationstohumans. Neurotoxicol Teratol 25: 19.

Crain,L.S.,Fitzmaurice,N.E.,andMondry,C.(1983)Naildysplasiaandfetalalcohol syndrome.Casereportofaheteropaternalsibship.Am J Dis Child 137: 106972.

Crome,I.B.andGlass,Y.(2000)TheDOPsystem:amanifestationofsocialexclusion.A personalcommentaryon'AlcoholconsumptionamongstSouthAfricanfarmworkers:a postapartheidchallenge,byL.London1999'. Drug Alcohol Depend 59: 2078.

Croxford,J.andViljoen,D.(1999)Alcoholconsumptionbypregnantwomeninthe WesternCape. S Afr Med J 89: 9625.

Cudd,T.A.(2005)Animalmodelsystemsforthestudyofalcoholteratology. Exp Biol Med (Maywood) 230: 38993.

Daly,A.K.andDay,C.P.(2001)Candidategenecasecontrolassociationstudies:

88 advantagesandpotentialpitfalls. Br J Clin Pharmacol 52: 48999.

DelRioLaFreniere,S.A.andMcGlennen,R.C.(2001)Simultaneousallelespecific amplification:astrategyusingmodifiedprimertemplatemismatchesforSNPdetection applicationtoprothrombin20210A(factorII)andfactorVLeiden(1691A)gene . Mol Diagn 6: 2019.

Duester,G.(1991)Ahypotheticalmechanismforfetalalcoholsyndromeinvolving ethanolinhibitionofretinoicacidsynthesisatthealcoholdehydrogenasestep. Alcohol Clin Exp Res 15: 56872.

Duester,G.(1999)Functionofalcoholdehydrogenaseandaldehydedehydrogenasegene familiesinretinoidsignaling. Adv Exp Med Biol 463: 3119.

Duester,G.(2000)FamiliesofretinoiddehydrogenasesregulatingvitaminAfunction: productionofvisualpigmentandretinoicacid. Eur J Biochem 267: 431524.

Duester,G.(2001)Geneticdissectionofretinoiddehydrogenases. Chem Biol Interact 130-132: 46980.

Edenberg,H.J.,Jerome,R.E.,andLi,M.(1999)Polymorphismofthehumanalcohol dehydrogenase4(ADH4)promoteraffectsgeneexpression. Pharmacogenetics 9: 2530.

Edenberg,H.J.,Xuei,X.,Chen,H.J.,Tian,H.,Wetherill,L.F.,Dick,D.M.etal.(2006) Associationofalcoholdehydrogenasegeneswithalcoholdependence:acomprehensive analysis. Hum Mol Genet 15: 153949.

Edman,K.andMaret,W.(1992)Alcoholdehydrogenasegenes:restrictionfragment lengthpolymorphismsforADH4(piADH)andADH5(chiADH)andconstructionof haplotypesamongdifferentADHclasses. Hum Genet 90: 395401.

Egeland,G.M.,PerhamHester,K.A.,Gessner,B.D.,Ingle,D.,Berner,J.E.,and Middaugh,J.P.(1998)FetalalcoholsyndromeinAlaska,1977through1992:an administrativeprevalencederivedfrommultipledatasources. Am J Public Health 88: 7816.

89 Eriksson,C.J.,Fukunaga,T.,Sarkola,T.,Chen,W.J.,Chen,C.C.,Ju,J.M.etal.(2001) Functionalrelevanceofhumanadhpolymorphism. Alcohol Clin Exp Res 25: 157S163S.

Estonius,M.,Svensson,S.,andHoog,J.O.(1996)Alcoholdehydrogenaseinhuman tissues:localisationoftranscriptscodingforfiveclassesoftheenzyme. FEBS Lett 397: 33842.

Galter,D.,Carmine,A.,Buervenich,S.,Duester,G.,andOlson,L.(2003)Distributionof classI,IIIandIValcoholdehydrogenasemRNAsintheadultrat,mouseandhuman brain. Eur J Biochem 270: 131626.

Goodlett,C.R.andHorn,K.H.(2001)Mechanismsofalcoholinduceddamagetothe developingnervoussystem. Alcohol Res Health 25: 17584.

Guindalini,C.,Scivoletto,S.,Ferreira,R.G.,Breen,G.,Zilberman,M.,Peluso,M.A.,and Zatz,M.(2005)Associationofgeneticvariantsinalcoholdehydrogenase4withalcohol dependenceinBrazilianpatients. Am J Psychiatry 162: 10057.

Halder,I.andShriver,M.D.(2003)Measuringandusingadmixturetostudythegenetics ofcomplexdiseases. Hum Genomics 1: 5262.

Haines,J.L.,PericakVance,M.A.(1998)Approachestogenemappingincomplex humandiseases.WileyLiss,NewYork

Hoyme,H.E.,May,P.A.,Kalberg,W.O.,Kodituwakku,P.,Gossage,J.P.,Trujillo,P.M. etal.(2005)Apracticalclinicalapproachtodiagnosisoffetalalcoholspectrum disorders:clarificationofthe1996instituteofmedicinecriteria. Pediatrics 115: 3947.

Iida,A.,Saito,S.,Sekine,A.,Kondo,K.,Mishima,C.,Kitamura,Y.etal.(2002) Thirteensinglenucleotidepolymorphisms(SNPs)inthealcoholdehydrogenase4 (ADH4)genelocus. J Hum Genet 47: 746.

Jones,K.L.andSmith,D.W.(1973)Recognitionofthefetalalcoholsyndromeinearly infancy. Lancet 2: 9991001.

90 Keir,W.J.(1991)Inhibitionofretinoicacidsynthesisanditsimplicationsinfetalalcohol syndrome. Alcohol Clin Exp Res 15: 5604.

Kimura,K.A.,Chiu,J.,Reynolds,J.N.,andBrien,J.F.(1999)Effectofchronicprenatal ethanolexposureonnitricoxidesynthaseIandIIIproteinsinthehippocampusofthe neartermfetalguineapig. Neurotoxicol Teratol 21: 2519.

Lane,M.A.andBailey,S.J.(2005)Roleofretinoidsignallingintheadultbrain. Prog Neurobiol 75: 27593.

Larkby,C.andDay,N.(1997)Theeffectsofprenatalalcoholexposure. Alcohol Health Res World 21: 1928.

Lieber,C.S.(2000)Alcoholandtheliver:metabolismofalcoholanditsroleinhepatic andextrahepaticdiseases. Mt Sinai J Med 67: 8494.

Luo,X.,Kranzler,H.R.,Zuo,L.,Lappalainen,J.,Yang,B.Z.,andGelernter,J.(2005) ADH4GeneVariationisAssociatedwithAlcoholDependenceandDrugDependencein EuropeanAmericans:ResultsfromHWDTestsandCaseControlAssociationStudies. Neuropsychopharmacology .

Maden,M.(2000)Theroleofretinoicacidinembryonicandpostembryonic development. Proc Nutr Soc 59: 6573.

May,P.A.,Brooke,L.,Gossage,J.P.,Croxford,J.,Adnams,C.,Jones,K.L.etal.(2000) EpidemiologyoffetalalcoholsyndromeinaSouthAfricancommunityintheWestern CapeProvince. Am J Public Health 90: 190512.

May,P.A.,Gossage,J.P.,Marais,A.S.,Adnams,C.M.,Hoyme,H.E.,Jones,K.L.etal. (2007)TheepidemiologyoffetalalcoholsyndromeandpartialFASinaSouthAfrican community. Drug Alcohol Depend 88: 25971.

McCarver,D.G.,Thomasson,H.R.,Martier,S.S.,Sokol,R.J.,andLi,T.(1997)Alcohol dehydrogenase2*3alleleprotectsagainstalcoholrelatedbirthdefectsamongAfrican Americans. J Pharmacol Exp Ther 283: 1095101.

91 Menegola,E.,Broccia,M.L.,DiRenzo,F.,andGiavini,E.(2001)Acetaldehydeinvitro exposureandapoptosis:apossiblemechanismofteratogenesis. Alcohol 23: 359.

MichaelisEKandMichaelisMLCellularandmolecularbasesofalcohol’steratogenic effects. Alcohol Health and Research World 18: 1722.

Miller,S.A.,Dykes,D.D.,andPolesky,H.F.(1988)Asimplesaltingoutprocedurefor extractingDNAfromhumannucleatedcells. Nucleic Acids Res 16: 1215.

Motlidile,T.(2004)YchromosomevariationintheColouredCommunityofSouth Africa.MastersThesis,UniversityofWitwatersrand.

Muramatsu,T.,Wang,Z.C.,Fang,Y.R.,Hu,K.B.,Yan,H.,Yamada,K.etal.(1995) AlcoholandaldehydedehydrogenasegenotypesanddrinkingbehaviorofChineseliving inShanghai. Hum Genet 96: 1514.

Norberg,A.,Jones,A.W.,Hahn,R.G.,andGabrielsson,J.L.(2003)Roleofvariabilityin explainingethanolpharmacokinetics:researchandforensicapplications. Clin Pharmacokinet 42: 131.

Ogurtsov,P.P.,Garmash,I.V.,Miandina,G.I.,Guschin,A.E.,Itkes,A.V.,andMoiseev, V.S.(2001)AlcoholdehydrogenaseADH21andADH22allelicisoformsintheRussian populationcorrelatewithtypeofalcoholicdisease. Addict Biol 6: 377383.

Olney,J.W.(2004)Fetalalcoholsyndromeatthecellularlevel. Addict Biol 9: 13749; discussion151.

Osier,M.,Pakstis,A.J.,Kidd,J.R.,Lee,J.F.,Yin,S.J.,Ko,H.C.etal.(1999)Linkage disequilibriumattheADH2andADH3lociandriskofalcoholism. Am J Hum Genet 64: 114757.

Osier,M.V.,Pakstis,A.J.,Soodyall,H.,Comas,D.,Goldman,D.,Odunsi,A.etal. (2002)AglobalperspectiveongeneticvariationattheADHgenesrevealsunusual patternsoflinkagedisequilibriumanddiversity. Am J Hum Genet 71: 8499.

92 Palmer,R.H.,Oullette,E.M.,Warner,L.,andLeichtman,S.R.(1974)Congenital malformationsinoffspringofachronicalcoholicmother. Pediatrics 53: 4904.

Ponnappa,B.C.andRubin,E.(2000)Modelingalcohol'seffectsonorgansinanimal models. Alcohol Res Health 24: 93104.

Quertemont,E.,Tambour,S.,andTirelli,E.(2005)Theroleofacetaldehydeinthe neurobehavioraleffectsofethanol:acomprehensivereviewofanimalstudies. Prog Neurobiol 75: 24774.

Ramchandani,V.A.,Bosron,W.F.,andLi,T.K.(2001)Researchadvancesinethanol metabolism. Pathol Biol (Paris) 49: 67682.

Risch,N.J.(2000)Searchingforgeneticdeterminantsinthenewmillennium. Nature 405: 84756.

Romero,R.,Kuivaniemi,H.,Tromp,G.,andOlson,J.(2002)Thedesign,execution,and interpretationofgeneticassociationstudiestodeciphercomplexdiseases. Am J Obstet Gynecol 187: 1299312.

Sampson,P.D.,Streissguth,A.P.,Bookstein,F.L.,Little,R.E.,Clarren,S.K.,Dehaene,P. etal.(1997)Incidenceoffetalalcoholsyndromeandprevalenceofalcoholrelated neurodevelopmentaldisorder. Teratology 56: 31726.

Schenker,S.,Becker,H.C.,Randall,C.L.,Phillips,D.K.,Baskin,G.S.,andHenderson, G.I.(1990)Fetalalcoholsyndrome:currentstatusofpathogenesis. Alcohol Clin Exp Res 14: 63547.

Schork,N.J.(1997)Geneticsofcomplexdisease:approaches,problems,andsolutions. Am J Respir Crit Care Med 156: S1039.

Silverman,E.K.andPalmer,L.J.(2000)Casecontrolassociationstudiesforthegenetics ofcomplexrespiratorydiseases. Am J Respir Cell Mol Biol 22: 6458.

Smith,S.M.(1997)Alcoholinducedcelldeathintheembryo. Alcohol Health Res World

93 21: 28797.

Sokol,R.J.,Miller,S.I.,andReed,G.(1980)Alcoholabuseduringpregnancy:an epidemiologicstudy. Alcohol Clin Exp Res 4: 13545.

Stoler,J.M.,Ryan,L.M.,andHolmes,L.B.(2002)Alcoholdehydrogenase2genotypes, maternalalcoholuse,andinfantoutcome. J Pediatr 141: 7805.

Streissguth,A.P.,Aase,J.M.,Clarren,S.K.,Randels,S.P.,LaDue,R.A.,andSmith,D.F. (1991)Fetalalcoholsyndromeinadolescentsandadults. JAMA 265: 19617.

Streissguth,A.P.andDehaene,P.(1993)Fetalalcoholsyndromeintwinsofalcoholic mothers:concordanceofdiagnosisandIQ. Am J Med Genet 47: 85761.

Streissguth,A.P.,LandesmanDwyer,S.,Martin,J.C.,andSmith,D.W.(1980) Teratogeniceffectsofalcoholinhumansandlaboratoryanimals. Science 209: 35361.

Sulik,K.K.,Johnston,M.C.,andWebb,M.A.(1981)Fetalalcoholsyndrome: embryogenesisinamousemodel. Science 214: 9368.

Takeshita,T.,Mao,X.Q.,andMorimoto,K.(1996)Thecontributionofpolymorphismin thealcoholdehydrogenasebetasubunittoalcoholsensitivityinaJapanesepopulation. Hum Genet 97: 40913.

Tshabalala,M(2003)AssesmentofcandidategenesforFetalAlcoholSyndrome. MastersThesis,UniversityofWitwatersrand.

Vasiliou,V.,Pappa,A.,andPetersen,D.R.(2000)Roleofaldehydedehydrogenasesin endogenousandxenobioticmetabolism. Chem Biol Interact 129: 119.

Venables,W.N.andRipley,B.D.ModernAppliedStatisticswithS,4thedition.2002. Springer.

Viljoen,D.,Croxford,J.,Gossage,J.P.,Kodituwakku,P.W.,andMay,P.A.(2002) CharacteristicsofmothersofchildrenwithfetalalcoholsyndromeintheWesternCape ProvinceofSouthAfrica:acasecontrolstudy. J Stud Alcohol 63: 617.

94 Viljoen,D.L.,Carr,L.G.,Foroud,T.M.,Brooke,L.,Ramsay,M.,andLi,T.K.(2001) Alcoholdehydrogenase2*2alleleisassociatedwithdecreasedprevalenceoffetal alcoholsyndromeinthemixedancestrypopulationoftheWesternCapeProvince,South Africa. Alcohol Clin Exp Res 25: 171922.

Warren,K.R.andLi,T.K.(2005)Geneticpolymorphisms:impactontheriskoffetal alcoholspectrumdisorders. Birth Defects Res A Clin Mol Teratol 73: 195203.

Weinberg,N.Z.(1997)Cognitiveandbehaviouraldeficitsassociatedwithparental alcoholuse. J Am Acad Child Adolesc Psychiatry 36: 117786.

WelchCarre,E.(2005)Theneurodevelopmentalconsequencesofprenatalalcohol exposure. Adv Neonatal Care 5: 21729.

Wigginton,J.E.,Cutler,D.J.,andAbecasis,G.R.(2005)AnoteonexacttestsofHardy Weinbergequilibrium. Am J Hum Genet 76: 88793.

Wilson,J.G.,Roth,C.B.,andWarkany,J.(1953)Ananalysisofthesyndromeof malformationsinducedbymaternalvitaminAdeficiency.Effectsofrestorationof vitaminAatvarioustimesduringgestation. Am J Anat 92: 189217.

Yelin,R.,Schyr,R.B.,Kot,H.,Zins,S.,Frumkin,A.,Pillemer,G.,andFainsod,A. (2005)Ethanolexposureaffectsgeneexpressionintheembryonicorganizerandreduces retinoicacidlevels. Dev Biol 279: 193204.

Yin,S.J.,Chou,C.F.,Lai,C.L.,Lee,S.L.,andHan,C.L.(2003)HumanclassIValcohol dehydrogenase:kineticmechanism,functionalrolesandmedicalrelevance. Chem Biol Interact 143-144: 21927.

Yin,S.J.,Han,C.L.,Lee,A.I.,andWu,C.W.(1999)Humanalcoholdehydrogenase family.Functionalclassification,ethanol/retinolmetabolism,andmedicalimplications. Adv Exp Med Biol 463: 26574.

Yokoyama,A.andOmori,T.(2003)Geneticpolymorphismsofalcoholandaldehyde dehydrogenasesandriskforesophagealandheadandneckcancers. Jpn J Clin Oncol 33:

95 11121.

Zile,M.H.(1998)VitaminAandembryonicdevelopment:anoverview. J Nutr 128: 455S458S.

Zondervan,K.T.andCardon,L.R.(2004)Thecomplexinterplayamongfactorsthat influenceallelicassociation. Nat Rev Genet 5: 89100.

96 5.1 Electronic references GregoryWarnesandFriedrichLeisch(2005).Genetics:Population Genetics.Rpackageversion1.1.4. http://www.Rproject.org JasonP.SinnwellandDanielJ.Schaid(2005).Haplostats: Statistical Analysis of Haplotypes with Traits and Covariates when Linkage Phase is Ambiguous.Rpackageversion1.2.2 http://mayoresearch.mayo.edu/mayo/research/biostat/schaid.cfm RDevelopmentCoreTeam(2005).R:Alanguageandenvironmentfor statisticalcomputing.RFoundationforStatisticalComputing, Vienna,Austria.ISBN3900051070,URL http://www.Rproject.org . www.neb.com was used to determine the restriction enzymes that were used for the RFLPanalysis http://genome.ucsc.edu wasusedtoperformaBLASTfortheprimersequencesagainst thegenome www.gene.ucl.ac.uk/nomenclature was used to determine the correct ADH gene nomenclature http://www.home.clara.net/sisa/ was used to calculate allele and genotype frequencies, HWEandassociationsbetweenmarkersofinterestanddiseasestatus

97 6 Appendix A: Solutions 1% Alconox solution

1gAlconoxper100mldH 2O 0.5M EDTA (pH 8.0)

93.6g EDTAinto400mldH 2O pHto8.0withNaOHpellets

Maketo500mlwithdH 2O Autoclave 10X dNTPs 125l dATP(10mMstock) 125l dCTP(10mMstock) 125l dGTP(10mMstock) 125l dTTP(10mMstock)

500lddH 2O Ficoll loading dye 50g sucrose 10ml 0.5MEDTA 0.1g 0.1%bromophenolblue 10g 10%Ficoll makeuptoafinalvolumeof100mlwithdH 20 Saturated NaCl

100ml autoclaveddH 2O Slowlyadd40gNaCluntilsaturated. LetNaClprecipitateoutbeforeusingbygentlyagitating

98 Sucrose-Triton X lysing buffer 20ml 1MTrisHCL 10ml 1mMgcl2 20ml TritonX100

Makeupto2lwithdH 2O Autoclave Add109.5gsucroseperlitrejustbeforeuseandkeepchilled 0.1M Spermidine 0.5g Spermidine

20ml dH 2O Aliquotinto1mlEppendorftubes Storeat20°C T20E5 10ml 1MTrisHCL(pH8.0) 5ml 0.5MEDTA(pH8.0)

Makeuptofinalvolumeof500mlwithdH 2O Autoclave 1M Tris-HCL(pH 8.0)

60.55g Trisin400mldH 2O pHusingconcentratedHCL

Makeuptofinalvolumeof500mlwithdH 2O Molecular weight marker 10.9l 1kbladder 5l ficolldye 84l 1XTEbuffer

99 Polyacrylamide gel master mix for sequencing 36g Urea 10ml 10XTBEbuffer 10.6ml 40%BISacrylamide

50ml ddH 2O Filterandstoreinthedarkat4°C Polyacrylamide gel mix 30ml Gelmastermix 150l 10%APSsolution 18l TEMED 10X TBE buffer 108g Tris 55g BoricAcid 7.44g EDTA

Makeuptofinalvolumeof1lwithdH 2O Autoclave

100 7 Appendix B: Molecular weight markers

101 8 Appendix C: Ethics approval for the Western Cape study

102 9 Appendix D: Ethics approval for the Northern Cape study

103 10 Appendix E: Complete genotype dataset for the Western and Northern Cape

ID Status ADH1B ADH1C ADH4.4 ADH4.8 prov NPF 001 FAS 1/1 1/2 T/T A/C NC NPF 002 M 1/1 1/2 T/T C/C NC NPF 009 M 1/1 1/1 T/T C/C NC NPF 010 FAS 1/1 1/1 T/T A/C NC NPF 012 M 1/1 1/1 T/T NC NPF 013 FAS 1/1 NC NPF 015 M 1/1 1/2 T/T A/C NC NPF 017 FAS 1/1 1/1 T/T A/C NC NPF 018 FAS 1/1 1/2 T/T A/C NC NPF 019 M 1/1 1/1 T/T C/C NC NPF 020 M 1/1 1/2 G/T A/A NC NPF 022 FAS 1/1 1/1 G/T A/C NC NPF 024 FAS 1/1 1/1 T/T A/C NC NPF 025 M 1/1 1/1 T/T A/C NC NPF 026 FAS 1/1 1/1 T/T A/C NC NPF 027 M 1/1 1/1 T/T A/A NC NPF 028 FAS 1/3 1/1 T/T A/C NC NPF 029 M 1/3 1/2 A/A NC NPF 031 FAS 1/1 1/1 T/T A/C NC NPF 032 M 1/1 1/1 T/T A/C NC NPF 033 M 1/1 1/1 T/T A/C NC NPF 034 FAS 1/1 1/1 T/T A/C NC NPF 035 M 1/1 1/1 G/T A/C NC NPF 036 FAS 1/1 1/1 G/T C/C NC NPF 038 FAS 1/1 1/1 G/T A/C NC NPF 039 M 1/1 1/1 T/T A/A NC NPF 040 M 1/1 1/1 T/T C/C NC NPF 042 FAS 1/1 1/1 T/T C/C NC NPF 043 M 1/1 1/1 NC NPF 044 FAS 1/1 1/1 G/T A/A NC NPF 045 FAS 1/1 2/2 C/C NC NPF 046 M 1/1 1/2 A/C NC NPF 047 FAS 1/1 1/2 T/T C/C NC NPF 048 M 1/1 1/1 T/T C/C NC NPF 049 FAS 1/3 1/1 T/T A/C NC NPF 050 M 1/3 1/1 T/T A/C NC NPF 052 M 1/1 1/1 T/T A/C NC NPF 053 FAS 1/1 1/1 T/T A/A NC NPF 054 FAS 1/3 1/1 G/T A/C NC NPF 055 M 1/1 1/1 G/G A/C NC NPF 057 M 1/1 1/1 G/T A/C NC NPF 059 FAS 1/1 1/1 G/G A/C NC NPF 060 FAS 1/3 1/1 T/T A/C NC NPF 061 M 1/3 1/1 T/T A/C NC NPF 062 FAS 1/1 1/1 T/T C/C NC

104 NPF 063 M 1/1 1/1 G/T A/C NC NPF 064 M 1/1 1/1 G/T A/C NC NPF 065 FAS 1/1 2/2 T/T C/C NC NPF 066 FAS 1/1 1/1 T/T A/C NC NPF 067 M 1/1 1/2 T/T A/C NC NPF 069 FAS 1/1 1/1 T/T A/C NC NPF 070 M 1/1 1/1 T/T A/C NC NPF 071 M 1/1 1/1 T/T C/C NC NPF 072 FAS 1/1 1/1 T/T A/C NC NPF 074 M 1/1 1/1 T/T A/C NC NPF 078 FAS 1/1 1/1 T/T A/C NC NPF 080 M 1/2 1/1 T/T A/C NC NPF 082 FAS 1/1 1/1 T/T A/C NC NPF 083 FAS 1/1 1/1 T/T C/C NC NPF 085 FAS 1/1 1/2 G/T A/C NC NPF 086 FAS 1/1 1/1 T/T A/A NC NPF 089 FAS 1/1 1/1 T/T A/C NC NPF 090 M 1/1 1/2 T/T A/C NC NPF 091 FAS 1/1 1/2 T/T C/C NC NPF 092 M 1/1 1/2 T/T C/C NC NPF 093 FAS 1/1 1/1 T/T C/C NC NPF 094 FAS 1/1 1/1 G/T A/C NC NPF 095 FAS 1/1 2/2 T/T A/A NC NPF 096 M 1/1 1/2 T/T A/C NC NPF 098 FAS 1/1 1/2 T/T A/C NC NPF 099 FAS 1/1 1/2 T/T A/C NC NPF 102 FAS 1/1 1/1 T/T A/A NC NPF 104 FAS 1/1 1/1 A/C NC NPF 105 M 1/1 1/1 T/T A/C NC NPF 106 FAS 1/1 1/2 T/T A/A NC NPF 107 M 1/1 1/2 T/T A/C NC NPF 108 FAS 1/1 1/2 T/T A/C NC NPF 109 M 1/1 1/2 G/T A/A NC NPF 110 FAS 1/1 1/2 G/T A/A NC NPF 111 M 1/1 1/1 G/T A/C NC NPF 112 FAS 1/1 1/1 T/T A/C NC NPC 001 control 1/1 1/2 T/T C/C NC NPC 003 control 1/1 2/2 G/T A/A NC NPC 004 control 1/2 1/1 G/T A/C NC NPC 005 control 1/1 1/1 C/C NC NPC 006 control 1/1 1/2 G/T A/C NC NPC 007 control 1/1 1/1 G/T A/C NC NPC 008 control 1/1 1/1 T/T C/C NC NPC 009 control 1/1 1/2 T/T A/C NC NPC 010 control 1/1 1/2 T/T C/C NC NPC 011 control 1/1 1/2 A/C NC NPC 012 control 1/3 1/1 A/C NC NPC 013 control 1/1 1/2 T/T A/C NC

105 NPC 014 control 1/1 1/2 T/T C/C NC NPC 015 control 1/1 1/2 T/T A/A NC NPC 017 control 1/2 1/1 T/T C/C NC NPC 018 control 1/1 1/1 T/T A/A NC NPC 019 control 1/1 1/2 T/T A/C NC NPC 021 control 1/1 1/1 T/T C/C NC NPC 022 control 1/1 1/1 G/T A/A NC NPC 023 control 1/1 1/2 T/T C/C NC NPC 024 control 1/1 1/1 G/T A/A NC NPC 025 control 1/1 1/2 G/T A/C NC NPC 026 control 1/1 1/1 T/T C/C NC NPC 027 control 1/1 1/1 T/T A/C NC NPC 028 control 1/1 1/1 T/T A/C NC NPC 029 control 1/1 1/2 T/T C/C NC NPC 030 control 1/1 1/2 T/T C/C NC NPC 031 control 1/2 1/1 T/T A/C NC NPC 032 control 1/1 1/1 T/T A/C NC NPC 033 control 1/1 1/1 T/T A/C NC NPC 034 control 1/1 1/1 T/T C/C NC NPC 035 control 1/1 1/1 T/T C/C NC NPC 036 control 1/1 1/2 T/T A/C NC NPC 037 control 1/1 2/2 G/G A/C NC NPC 038 control 1/1 1/1 T/T A/C NC NPC 039 control 1/1 1/2 T/T A/C NC NPC 040 control 1/1 1/1 T/T A/C NC NPC 041 control 1/2 1/2 T/T C/C NC NPC 042 control 1/1 1/2 T/T A/C NC NPC 043 control 1/2 T/T A/A NC NPC 044 control 1/1 1/2 G/T A/C NC NPC 045 control 1/1 2/2 T/T A/A NC NPC 046 control 1/1 1/2 T/T A/A NC NPC 048 control 1/1 1/1 T/T C/C NC NPC 049 control 1/1 1/1 T/T A/A NC NPC 050 control 1/1 1/2 T/T A/C NC NPC 051 control 1/1 1/1 G/T A/A NC NPC 052 control 1/1 1/1 T/T A/C NC NPC 053 control 1/1 1/1 T/T A/A NC NPC 054 control 1/1 1/2 G/T A/C NC NPC 055 control 1/1 1/2 T/T A/C NC NPC 056 control 1/1 1/2 T/T A/C NC NPC 057 control 1/1 1/1 T/T C/C NC NPC 058 control 1/1 1/2 T/T C/C NC NPC 059 control 1/1 1/2 G/T A/C NC NPC 060 control 1/1 1/1 T/T A/C NC NPC 061 control 1/1 1/1 G/T A/C NC NPC 062 control 1/1 2/2 G/T C/C NC NPC 063 control 1/2 1/1 T/T A/C NC NPC 064 control 1/1 1/1 T/T C/C NC

106 NPC 065 control 1/1 1/1 T/T C/C NC NPC 066 control 1/3 1/1 T/T A/A NC NPC 067 control 1/1 1/1 G/T A/C NC NPC 068 control 1/1 1/2 A/C NC NPC 069 control 1/1 1/2 T/T C/C NC NPC 070 control 1/1 1/1 T/T A/C NC NPC 071 control 1/1 1/2 T/T A/C NC NPC 072 control 1/1 1/1 T/T A/A NC NPC 073 control 1/1 1/1 T/T A/C NC NPC 074 control 1/1 1/2 A/A NC NPC 075 control 1/1 1/2 T/T C/C NC NPC 077 control 1/1 1/1 T/T A/A NC NPC 079 control 1/1 1/1 G/T A/A NC NPC 080 control 1/1 1/1 T/T A/C NC NPC 081 control 1/3 1/2 G/T A/A NC NPC 082 control 1/1 1/1 T/T C/C NC NPC 083 control 1/1 1/1 T/T C/C NC NPC 084 control 1/1 1/1 A/C NC NPC 085 control 1/1 1/1 T/T A/C NC NPC 086 control 1/1 1/2 G/T A/C NC NPC 087 control 1/3 1/1 T/T A/C NC NPC 088 control 1/1 1/2 G/T A/A NC NPC 089 control 1/1 1/1 T/T A/C NC NPC 090 control 1/1 1/1 T/T A/C NC NPC 091 control 1/1 1/2 G/T A/A NC NPC 092 control 1/1 1/1 T/T A/C NC NPC 093 control 1/1 1/1 T/T A/C NC NPC 094 control 1/1 1/2 G/T C/C NC NPC 095 control 1/1 1/1 G/T A/A NC NPC 096 control 1/1 1/2 T/T A/C NC NPC 097 control 1/1 1/1 T/T A/C NC NPC 098 control 1/1 1/1 T/T C/C NC NPC 099 control 1/1 1/1 G/T A/C NC NPC 100 control 1/1 1/1 T/T A/A NC NPC 101 control 1/1 1/1 G/T A/A NC NPC 102 control 1/1 1/1 G/T A/C NC NPC 103 control 1/1 1/1 G/T A/C NC NPC 104 control 1/1 1/1 T/T A/C NC NPC 105 control 1/1 1/2 T/T A/C NC NPC 106 control 1/1 1/1 T/T A/A NC NPC 107 control 1/1 1/1 T/T A/C NC NPC 108 control 1/1 2/2 G/T A/C NC NPC 110 control 1/1 1/2 G/G A/A NC NPC 111 control 1/1 1/2 A/C NC NPC 112 control 1/1 1/1 T/T A/C NC NPC 113 control 1/1 1/1 T/T C/C NC NPC 114 control 1/1 1/1 T/T A/A NC NPC 115 control 1/1 1/1 G/T A/A NC

107 NPC 116 control 1/1 2/2 G/T A/A NC NPC 117 control 1/1 1/1 T/T A/C NC NPC 118 control 1/1 1/1 G/T A/A NC NPC 119 control 1/1 1/2 T/T A/A NC 1.1 M 1/1 1/2 WC 1.2 FAS 1/3 1/1 WC 2.1 M 1/1 1/2 WC 2.2 FAS 1/2 1/1 WC 3.1 M 1/1 1/1 WC 3.2 FAS 1/1 1/1 WC 4.1 M 1/1 1/1 WC 4.2 FAS 1/1 1/1 WC 5.1 M 1/1 1/1 WC 5.2 FAS 1/1 1/2 WC 6.1 M 1/1 1/1 WC 6.2 FAS 1/1 1/1 WC 7M M 1/1 1/2 A/A WC 7.2C FAS 1/1 1/1 G/T A/A WC 8.1M M 1/1 1/1 C/C WC 8C FAS 1/3 1/1 A/C WC 9.1 M 1/1 1/2 WC 9.2 FAS 1/1 1/2 WC 10M M 1/3 1/1 T/T A/A WC 1OC FAS 1/3 1/1 WC 12.1 M 1/1 1/1 WC 12.2 FAS 1/1 1/1 WC 13.1M M 1/1 1/1 G/T A/C WC 13.2C FAS T/T WC 14.1M M 1/1 1/1 G/T A/A WC 14C FAS 1/1 1/1 T/T WC 15M M 1/1 1/2 T/T A/A WC 15.2C FAS 1/1 1/1 A/C WC 16.1M M 1/1 1/1 G/T WC 16.2C FAS 1/1 1/2 T/T A/A WC 17M M 1/1 1/1 T/T WC 17C FAS 1/1 1/1 T/T WC 18M M T/T A/A WC 18C FAS 1/3 1/2 T/T A/A WC 19M M 1/1 1/2 C/C WC 19C FAS 1/1 1/2 T/T A/C WC 20M M 1/1 1/1 T/T A/C WC 20C FAS 1/1 1/1 T/T WC 23M M 1/1 1/2 G/T WC 23C FAS 1/1 2/2 G/T A/C WC 24M M 1/1 1/1 G/T WC 24C FAS 1/1 1/2 G/T A/A WC 25M M 1/1 1/2 A/A WC 25C FAS 1/1 1/1 G/T A/A WC

108 26M M 1/1 1/1 T/T WC 26C FAS 1/1 1/1 T/T WC 31M M 1/1 1/2 G/G WC 31.2C FAS 1/1 1/2 G/G A/C WC 32.1M M T/T WC 32.2 FAS 1/2 1/2 T/T A/C WC 34M M 1/1 1/1 T/T A/C WC 34C FAS 1/1 1/1 T/T A/C WC 35M M 1/1 1/1 T/T A/C WC 35C FAS 1/1 1/1 T/T C/C WC 36M M 1/1 1/2 T/T A/C WC 36C FAS 1/1 1/2 G/T A/C WC 37M M 1/1 1/2 T/T WC 37C FAS 1/1 1/1 T/T A/A WC 38M M 1/1 1/1 A/A WC 38C FAS 1/1 1/1 WC 39.1 M 1/1 1/1 T/T WC 39C FAS 1/1 1/2 G/T WC 40M M 1/1 1/1 T/T A/A WC 40C FAS 1/1 1/1 WC 41M M 1/2 1/2 WC 41C FAS 1/1 1/2 WC 42M M 1/1 1/1 T/T A/C WC 42C FAS 1/1 1/1 T/T A/C WC 43M M 1/1 1/1 T/T WC 43C FAS 1/1 1/1 G/T WC 44.1 M 1/1 1/2 C/C WC 44.2c FAS 1/1 1/2 T/T A/C WC 45.1 M 1/1 1/1 WC 45C FAS 1/1 1/1 WC 46M M 1/1 1/2 WC 46C FAS 1/1 1/1 T/T WC 47M M 1/1 1/1 T/T WC 47C FAS 1/3 1/1 T/T WC 48.1 M 1/2 1/2 T/T WC 48C FAS 1/1 1/1 G/T A/A WC 49.1M M 1/2 1/1 T/T WC 49.2 FAS 1/2 1/1 G/T A/A WC 50M M 1/1 1/2 T/T C/C WC 50C FAS 1/1 1/1 T/T A/C WC 51M M 1/3 1/1 A/C WC 51C FAS 1/1 1/1 T/T A/C WC 53.1 M WC 53.2 FAS T/T A/C WC 55.1 M 1/1 T/T WC 55.4 FAS T/T A/C WC 57.1 M T/T WC 57.3 FAS T/T WC

109 58.1 M T/T A/C WC 58.3 FAS T/T WC 59.1 M 1/2 1/1 T/T A/C WC 59.4 FAS 1/2 1/1 T/T A/C WC 60.1 M 1/1 1/2 T/T A/C WC 60.3 FAS 1/2 1/1 T/T C/C WC 61.1 M 1/1 1/2 C/C WC 61.2 FAS 1/1 1/2 T/T C/C WC 63.3 M 1/1 1/1 WC 63.4 FAS 1/1 1/1 T/T A/C WC 64.1 M 1/1 1/1 G/T WC 64.4 FAS 1/1 1/1 G/T WC 66.1 M 1/1 1/2 T/T WC 66.2 FAS 1/1 1/2 G/T WC 67.1 M 1/1 1/2 G/T WC 67.4 FAS 1/1 1/1 G/T WC 68.1 M 1/3 1/1 T/T A/C WC 68.2 FAS 1/1 1/1 T/T A/C WC 69.1 M 1/3 1/1 G/T WC 69.3 FAS 1/1 1/1 G/T A/C WC 70.1 M 1/1 1/1 T/T A/A WC 70.3 FAS 1/1 1/1 A/C WC 71.1 M 1/1 1/1 G/T WC 71.2 FAS 1/1 1/1 WC 72.1 M 1/3 1/1 T/T WC 72.3 FAS 1/1 1/2 C/C WC 73.1 M 1/1 1/2 G/T WC 73.2 FAS 1/1 2/2 WC 74.1 M 1/1 1/2 T/T A/A WC 74.3 FAS 1/1 1/1 T/T WC 75.1 M 1/1 2/2 T/T A/C WC 75.2 FAS 1/1 1/2 T/T WC 76.1 M 1/1 1/1 T/T A/C WC 76.2 FAS 1/1 1/2 G/T WC 76.3 FAS T/T WC 100 control 1/2 1/2 T/T C/C WC 101 control 1/1 1/2 G/T WC 102 control 1/2 1/1 WC 103 control 1/1 1/2 WC 104 control 1/1 1/2 WC 105 control 1/1 1/1 WC 106 control 1/1 1/1 WC 107 control 1/1 1/1 WC 108 control 1/1 1/1 WC 109 control 1/1 1/1 WC 110 control 1/2 1/2 WC 111 control 1/1 1/2 T/T C/C WC 112 control 1/2 1/1 T/T WC

110 113 control 1/1 WC 114 control 1/1 1/1 WC 115 control 1/1 1/1 WC 116 control 1/3 1/1 T/T WC 117 control 1/1 1/2 G/T WC 118 control 1/1 1/1 G/T WC 119 control 1/1 1/1 WC 120 control 1/2 1/2 T/T WC 121 control 1/1 1/1 T/T A/C WC 122 control 1/2 1/2 T/T WC 123 control 1/1 1/1 G/T WC 124 control 1/1 1/1 T/T A/A WC 125 control 1/1 1/1 T/T A/C WC 126 control 1/1 1/1 WC 127 control 1/1 2/2 T/T A/C WC 128 control 1/1 1/2 T/T C/C WC 129 control 1/1 1/1 T/T WC 130 control 1/2 1/1 T/T A/C WC 131 control 1/1 1/1 T/T A/A WC 132 control 1/1 1/2 G/T A/A WC 133 control 1/1 1/1 T/T WC 134 control 1/1 1/1 T/T A/C WC 135 control 1/1 1/1 G/T C/C WC 136 control 1/1 1/2 G/T A/C WC 137 control 1/1 1/2 T/T A/C WC 138 control 1/2 1/1 T/T A/C WC 139 control 1/1 1/2 T/T C/C WC 140 control 1/1 1/1 T/T A/C WC 141 control 1/1 1/1 G/T A/C WC 142 control 1/3 1/1 T/T A/C WC 143 control 1/1 1/1 T/T A/C WC 144 control 1/1 1/1 T/T A/A WC 145 control 1/1 1/1 T/T C/C WC 146 control 1/1 1/2 T/T C/C WC 147 control 1/1 1/2 G/T A/C WC 148 control 1/1 1/2 T/T A/A WC 149 control 1/1 1/1 G/T A/C WC 150 control 1/3 1/1 T/T A/A WC 151 control 1/1 1/2 T/T WC 152 control 1/1 1/1 T/T A/C WC 153 control 1/1 1/1 T/T A/A WC 154 control 1/2 1/1 T/T C/C WC 155 control 1/1 1/1 T/T C/C WC 156 control 1/1 1/1 T/T A/C WC 157 control 1/1 1/2 T/T A/A WC 158 control 1/2 1/1 G/T A/C WC 159 control 1/1 1/2 G/T A/C WC 160 control 1/1 1/2 G/T A/C WC

111 161 control 1/1 1/2 G/T A/C WC 162 control 1/1 1/2 T/T A/C WC 163 control 1/1 1/1 T/T C/C WC 164 control 1/1 1/1 T/T C/C WC 165 control G/T A/C WC 167 control T/T A/C WC 168 control T/T A/C WC 169 control T/T C/C WC 200 control 1/2 1/1 WC 201 control 1/1 1/1 WC 202 control 1/1 1/1 WC 203 control 1/1 1/2 T/T C/C WC 204 control 1/2 1/2 C/C WC 205 control 1/1 2/2 T/T C/C WC 206 control 1/1 1/1 T/T C/C WC 207 control 1/1 1/1 T/T A/A WC 208 control 1/2 1/1 T/T C/C WC 209 control 1/1 1/2 T/T A/C WC 210 control 1/2 1/2 T/T A/C WC 211 control 1/1 1/2 G/T A/A WC 212 control 1/1 1/2 T/T C/C WC 213 control 1/1 1/2 T/T A/C WC 214 control 1/1 1/2 T/T A/C WC 215 control 1/1 1/2 G/T A/C WC 216 control 1/1 1/1 T/T C/C WC 217 control 1/1 1/2 T/T A/C WC 218 control 1/1 1/1 WC 219 control 1/3 1/1 WC 220 control 1/1 1/2 G/T A/C WC 221 control 1/1 1/1 T/T C/C WC 222 control 1/2 1/1 T/T A/C WC 223 control 1/1 1/1 G/T A/C WC 224 control 1/1 1/2 T/T A/A WC 225 control 1/2 1/2 T/T C/C WC 226 control 1/1 1/1 T/T C/C WC 227 control 1/2 1/2 T/T C/C WC 228 control 2/3 1/1 T/T A/C WC 229 control 1/3 1/1 T/T A/C WC 230 control 1/1 1/1 T/T A/C WC 231 control 1/3 1/1 T/T A/C WC 232 control 1/1 1/1 WC 233 control 1/1 1/2 T/T C/C WC 234 control 3/3 1/1 T/T A/A WC 235 control 1/1 1/2 G/T A/C WC 236 control 1/1 1/2 WC 237 control 1/2 1/1 G/T C/C WC 238 control 1/1 1/1 T/T C/C WC 239 control 1/1 1/2 G/T A/C WC

112 240 control 1/1 1/2 G/T A/C WC 241 control 1/1 1/2 G/T A/C WC 242 control 1/1 1/1 G/T A/A WC 243 control 2/2 1/1 T/T C/C WC 244 control 1/1 1/1 T/T C/C WC 245 control 1/1 1/1 G/T A/C WC 246 control 1/1 1/1 G/T A/C WC 247 control 1/1 1/1 T/T C/C WC 248 control 1/1 1/2 T/T C/C WC 249 control 1/2 1/2 T/T A/C WC 250 control 1/1 1/1 T/T A/C WC 251 control 1/1 1/1 T/T C/C WC 252 control 1/1 1/2 T/T C/C WC 253 control 1/1 1/2 G/T A/C WC 254 control 1/1 1/2 T/T C/C WC 255 control 1/1 1/2 T/T A/C WC 256 control 1/1 1/2 T/T C/C WC 257 control 1/1 1/2 T/T C/C WC 258 control 1/2 1/2 WC 259 control 1/1 1/2 T/T C/C WC 260 control 1/1 1/1 T/T C/C WC 261 control 1/1 1/1 T/T C/C WC 262 control 1/1 1/2 G/T A/C WC 263 control 1/2 1/2 T/T C/C WC 264 control 2/2 1/1 T/T C/C WC 265 control 1/3 1/1 T/T A/C WC 266 control 1/1 1/1 T/T A/C WC 267 control 1/2 1/1 T/T WC 268 control 1/2 1/1 T/T C/C WC 269 control 1/1 1/1 G/T WC 270 control 2/3 1/2 T/T C/C WC 271 control 1/1 1/2 T/T C/C WC 272 control 1/1 1/1 G/T A/C WC 273 control 1/1 1/1 G/T A/C WC 274 control 1/2 1/2 T/T A/A WC 275 control 1/1 1/1 T/T A/C WC 276 control 1/1 1/1 T/T A/C WC 277 control 1/3 1/1 T/T A/A WC 278 control 1/1 1/1 T/T C/C WC 279 control 1/2 1/1 T/T A/C WC 280 control 1/1 1/2 T/T C/C WC 281 control 1/1 1/2 G/T A/C WC 282 control 1/1 1/1 T/T A/A WC 283 control 1/1 1/2 T/T A/C WC 284 control 1/1 1/1 A/C WC 285 control 1/1 1/1 T/T C/C WC 286 control 1/2 1/1 T/T A/C WC 287 control 1/1 1/1 T/T C/C WC

113 288 control 1/1 1/1 T/T A/C WC 289 control 1/2 1/1 T/T C/C WC 290 control 1/1 1/1 G/T A/C WC 291 control 1/1 1/2 G/T A/A WC 292 control 1/1 1/2 T/T A/C WC 293 control 1/2 1/1 T/T A/C WC 294 control 1/1 1/1 G/T A/A WC 295 control 1/1 1/2 T/T A/A WC 296 control 1/1 1/2 G/T A/A WC 297 control 1/1 1/2 G/T A/C WC 298 control 1/1 1/2 T/T A/A WC 299 control 1/1 2/2 T/T C/C WC 300 control 1/2 1/2 T/T C/C WC 301 control 1/1 1/2 G/G A/A WC 302 control 1/1 1/2 G/T A/C WC 303 control 1/2 1/1 T/T C/C WC 304 control 1/1 1/1 T/T A/C WC 305 control 1/2 1/1 T/T C/C WC 306 control 1/2 1/1 T/T A/A WC 307 control 1/3 1/2 T/T A/A WC 308 control 2/3 1/1 T/T C/C WC 309 control 1/1 1/2 T/T A/C WC 310 control 1/1 1/1 T/T C/C WC 311 control 1/1 1/1 T/T A/C WC 312 control 1/1 1/2 G/T A/C WC 313 control 1/1 1/1 T/T C/C WC 315 control T/T A/C WC 316 control T/T C/C WC 317 control G/T A/C WC 318 control T/T A/C WC 319 control T/T A/A WC 320 control T/T A/C WC 321 control T/T A/C WC Key:C=child;M=mother;WC=WesternCape;NC=NorthernCape

114