Carp Genetic Resources for Aquaculture in Asia

Total Page:16

File Type:pdf, Size:1020Kb

Carp Genetic Resources for Aquaculture in Asia Carp Genetic Resources for Aquaculture in Asia Edited by David J. Penman Modadugu V. Gupta Madan M. Dey formerly known as “ICLARM - The World Fish Center” Carp Genetic Resources for Aquaculture in Asia Edited by David J. Penman Modadugu V. Gupta Madan M. Dey 2005 Published by the WorldFish Center P.O. Box 500 GPO, 10670 Penang, Malaysia Penman, D.J., M.V. Gupta and M.M. Dey (eds.) 2005. Carp Genetic Resources for Aquaculture in Asia. WorldFish Center Technical Report 65, 152 p. Perpustakaan Negara Malaysia. Cataloguing-in-Publication Data Carp genetic resources for aquaculture in Asia / edited by David J. Penman, Modadugu V. Gupta, Madan D. Dey. ISBN 983-2346-35-5 1. Carp fisheries--Asia. 2. Fish-culture--Asia. 3. Aquaculture-- Asia. I. Penman, David J. II. Gupta, Modadugu V. III. Dey, Madan M. 639.37483095 Cover photos by: WorldFish Center photo collection ISBN 983-2346-35-5 WorldFish Center Contribution No. 1727 Printed by Jutaprint WorldFish Center is one of the 15 international research centers of the Consultative Group on International Agricultural Research (CGIAR) that has initiated the public awareness campaign, Future Harvest. ii WorldFish Center | Carp Genetic Resources for Aquaculture in Asia Contents iii Contents PREFACE iv CHAPTER 1 1 Importance of carp genetic resources M. V. Gupta, M. M. Dey and D.J. Penman CHAPTER 2 6 Carp production in Asia: past trends and present status M.M. Dey, F. J. Paraguas, R. Bhatta, F. Alam, W. Miao, S. Piumsombun, S. Koeshandrajana, L.T.C. Dung, and N.V. Sang CHAPTER 3 16 Carp genetic resources 3.1 Carp genetic resources of Bangladesh 16 M.G. Hussain and M.A. Mazid 3.2 Carp genetic resources of China 26 J. Zhu, J. Wang, Y. Gong and J. Chen 3.3 Carp genetic resources of India 39 P.V. G.K. Reddy 3.4 Carp genetic resources of Indonesia 54 L. Emmawati, A. Azizi, M. Sulhi, Subagyo and A. Hardjamulia 3.5 Carp genetic resources of Thailand 63 N. Pongthana 3.6 Carp genetic resources of Vietnam 72 N.C. Dan, T.M. Thien and P.A. Tuan CHAPTER 4 82 Progress in carp genetics research D.J. Penman CHAPTER 5 114 Constraints to increased yields in carp farming: implications for future genetic research M.M. Dey, F. Alam, W. Miao, S. Piumsombun, R. Bhatta, L.T.C. Dung and F.J. Paraguas CHAPTER 6 121 The status of introduced carp species in Asia B.O. Acosta and M.V. Gupta CHAPTER 7 138 Threatened cyprinid species in Asia B.O. Acosta and M.V. Gupta APPENDIX 1 146 Nomenclature of cyprinid species mentioned in this publication from FishBase SPECIES INDEX 148 ii WorldFish Center | Carp Genetic Resources for Aquaculture in Asia Contents iii Preface There are over 1 300 species of cyprinids in Asia, and these are utilized by people for food (capture fisheries and aquaculture) and as ornamental species. For people in many parts of Asia, cyprinids form an integral part of their livelihoods, as subsistence or commercial fishers, hatchery operators, nursery operators, seed traders, ongrowers, middlemen, fish sellers, consumers, or producers of ornamental species. The habitats of many of these species are also increasingly threatened by human activities. It is thus vital that we protect this part of our biodiversity, since it sustains human populations as well as having its own intrinsic value. While there are over 1300 cyprinids species, presently only few of them are used in aquaculture and the potential of many other species in aquaculture is yet to be assessed. Fifteen species are of major aquaculture importance to the countries in Asia and contributed 49 per cent of aquaculture production in the region in 2001. This publication focuses on cyprinid species that are bred in hatcheries and used in aquaculture and restocking activities. Introduced and threatened species of cyprinids in Asia are also discussed. We are well aware that we have not covered many other cyprinid species that are utilized by people in Asia in various ways: wild species in capture fisheries, self-recruiting species in aquaculture ponds and other water bodies, and aquarist species. The species nomenclature given in this publication follows that of FishBase (http://www.fishbase.org) and further information on the species dealt with here can be found in this database. Lastly, the Editors would like to thank the Asian Development Bank for funding the project that led to this publication, and the many people who provided research results and hard-to-find references that are included here. David J. Penman Modadugu V. Gupta Madan M. Dey Editors iv WorldFish Center | Carp Genetic Resources for Aquaculture in Asia CHAPTER 1 | Importance of Carp Genetic Resources 1 Chapter 1 Importance of Carp Genetic Resources1 Modadugu V. Gupta2, Madan M. Dey2 and David J. Penman3 Fish and fisheries play an important role in the human consumption (FAO 2003). FAO (1999a) economies of developing countries, contributing estimated that by the year 2010, demand for food to animal protein intake, employment generation, fish will have increased by 13.5-18 per cent or to household incomes and foreign exchange about 105-110 million t. Against this demand, earnings. Surveys conducted by the WorldFish production from capture fisheries is declining as Center and FAO show that fish has become an most of the world’s fish stocks have been exploited increasingly important source of protein over the to their maximum potential or over exploited, last decade in most of the developing countries. indicating it might be difficult to increase yields Countries with low per capita gross domestic from capture fisheries in the near future (Williams product tend to have a higher share of fish protein 1996). During the 1950s and 1960s capture fish in their animal protein consumption (Kent 1997). production increased by an average of 6 per cent Studies indicated that demand for fish increases per annum and this declined to 2 per cent during as expenditure/income rises and that higher the 1970s and 1980s, falling almost to zero income groups tend to consume more fish than during the 1990s (FAO 2000). lower income groups. However, the share of fish (as protein) and the share of fish to the total food In contrast to declining growth in capture expenditure are higher among lower income fisheries, aquaculture has been growing at a fast groups, suggesting that lower income groups are rate, by about 5 per cent per year during the the most dependent on fish (Dey et al. 2004; FAO 1950s and 1960s to about 8 per cent during the 1999a; Dey 2000; Dey et al. 2000a; ICLARM 1970s and 1980s and over 10 per cent since 1990 2000). This result is also consistent with the (FAO 2000). Aquaculture production has generalization that although less developed increased from 3.2 per cent of the total fish countries are not the biggest consumers of fish, production in 1950 to 32 per cent in 2000. they are the most dependent on aquatic resources Aquaculture has become the world’s fastest (FAO 1993; Kent 1997; FAO 1999b), indicating growing food-producing sector, with production the importance of fish as a primary source of more than doubling during 1990-2000, from protein among relatively poorer households in 13.1 million t in 1990 to 35.6 million t in 2000 these countries. No wonder it is regarded as “poor (FAO 2003). man’s protein” (Williams 1996). Of the total aquaculture production of 45.7 In Asia, on average, almost 30 per cent of the total million t in 2000, 45 per cent was contributed by animal protein intake is derived from fish. Among freshwater aquaculture. Production increased the Southeast Asian countries, fish protein from 7.9 million t in 1991 to 20.6 million t in provides 45 per cent of the total protein consumed 2000. Asia produces about 91 per cent of the (Prein and Ahmed 2000). Although Japan, the world’s freshwater aquaculture production, with European Union and USA have higher per capita China contributing 74 per cent of this (Fig.1). consumption of fish and fish products, the share Other major producers of freshwater aquaculture of fish protein in terms of the total animal protein are India (9.89 per cent), Bangladesh (2.77 per consumption is far less than that in many cent), Vietnam (1.85 per cent), Indonesia (1.76 developing countries. per cent), Thailand (1.29 per cent) and the Philippines (0.54 per cent). Growth in freshwater World fish production in 1999 was estimated at aquaculture in the last decade among these 130 million t, of which only 97 million t was for countries differs: Vietnam had the highest growth 1 WorldFish Center Contribution No. 1728. 2 WorldFish Center, Jalan Batu Maung, Batu Maung, 11960 Bayan Lepas, Penang, Malaysia. 3 University of Stirling, U.K. iv WorldFish Center | Carp Genetic Resources for Aquaculture in Asia CHAPTER 1 | Importance of Carp Genetic Resources 1 of 14.54 per cent per annum during 1990-2000, production increased from 10.8 million t in 1990 followed by China (13.6 per cent), Bangladesh to 29.48 million t in 2001, while carp production (12.94 per cent), Thailand (9.38 per cent) and increased from 5.07 million t in 1990 to 16.42 Indonesia (5.65 per cent). million t in 2001 (Fig. 1.1). With this remarkable increase in production, Table 1.1. Carp production (million t) from capture fisheries and relatively low prices and limited international culture during 1990-2001 markets, freshwater fish are expected to become Year Production from Production from Total an increasingly important source of animal culture capture (million t) protein, particularly for those in medium and (million t) fisheries(million t) lower income groups in developing countries, 1990 5.07 0.47 5.54 especially in Asia (Dey et al.
Recommended publications
  • Fish, Crustaceans, Molluscs, Etc Capture Production by Species
    440 Fish, crustaceans, molluscs, etc Capture production by species items Asia - Inland waters C-04 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Asie - Eaux continentales (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Asia - Aguas continentales English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 2003 2004 2005 2006 2007 2008 2009 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 16 375 22 345 21 073 17 834 19 313 22 083 17 612 Freshwater breams nei Abramis spp 11 33 27 92 13 11 9 1 Common carp Cyprinus carpio 11 36 617 39 126 39 104 32 466 34 723 46 360 42 166 Tench Tinca tinca 11 935 2 082 1 792 1 953 1 884 1 632 1 482 Crucian carp Carassius carassius 11 4 330 3 538 4 621 3 429 3 865 4 921 3 656 Goldfish Carassius auratus 11 1 1 2 2 3 1 1 Roach Rutilus rutilus 11 149 287 358 420 521 577 535 Kutum Rutilus frisii 11 9 015 7 052 9 649 16 138 17 242 14 885 12 536 Roaches nei Rutilus spp 11 1 450 1 700 1 537 2 088 2 383 4 848 4 211 Common dace Leuciscus leuciscus 11 82 93 87 85 82 71 63 Mud carp Cirrhinus molitorella 11 11 10 8 - - - - Grass carp(=White amur) Ctenopharyngodon idellus 11 1 959 2 458 3 066 3 312 4 417 4 215 4 567 Beardless barb Cyclocheilichthys apogon 11 ..
    [Show full text]
  • The Israeli Journal of Aquaculture – Bamidgeh Xx(X), 20Xx, X-Xx
    The Open Access Israeli Journal of Aquaculture – Bamidgeh As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions. This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible. Editor-in-Chief Published under auspices of Dan Mires The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), Editorial Board University of HawaiɄɄɄi at Mānoa Library & Rina Chakrabarti Aqua Research Lab, Dept. of Zoology, University of HawaiɄɄɄi at Mānoa University of Delhi, India Aquaculture Program Angelo Colorni National Center for Mariculture, IOLR in association with Eilat, Israel AquacultureHub http://www.aquaculturehub.org Daniel Golani The Hebrew University of Jerusalem Jerusalem, Israel Hillel Gordin Kibbutz Yotveta, Arava, Israel Sheenan Harpaz Agricultural Research Organization Beit Dagan, Gideon Hulata Agricultural Research Organization Beit Dagan, George Wm. Kissil National Center for Mariculture, IOLR, Eilat, Israel Ingrid Lupatsch Swansea University, Singleton Park, Swansea, UK Spencer Malecha Dept. of Human Nutrition, Food & Animal Sciences, CTAHR, University of Hawaii Constantinos Hellenic Center for Marine Research, ISSN 0792 - 156X Mylonas Crete, Greece Amos Tandler National Center for Mariculture, IOLR Israeli Journal of Aquaculture - BAMIGDEH.
    [Show full text]
  • Chanodichthys Recurviceps (A Fish, No Common Name) Ecological Risk Screening Summary
    Chanodichthys recurviceps (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2016 Web Version, 6/18/2018 Photo: H. T. Cheng. Licensed under CC BY-NC. Available: http://naturewatch.org.nz/taxa/187285-Culter-recurviceps. (November 2016). 1 Native Range and Status in the United States Native Range From Zhao and Cui (2011): “Known from Zhu Jiang River (Pearl River) in Guangdong and Guanxi Provinces, and Hainan Province in China.” Status in the United States This species has not been reported in the United States. 1 Means of Introductions in the United States This species has not been reported in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2016): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Culter Basilewsky, 1855 Species Culter recurviceps (Richardson, 1846)” From Eschmeyer et al. (2016): “recurviceps, Leuciscus Richardson [J.] 1846:295 [Report of the British Association for the Advancement of Science 15th meeting [1845] […]] Canton, China. No types known. Based solely on an illustration by Reeves (see Whitehead 1970:210, Pl. 17a […]). •Valid as Erythroculter recurviceps (Richardson 1846) -- (Lu in Pan et al. 1991:93 […]). •Questionably the same as Culter alburnus Basilewsky 1855 -- (Bogutskaya & Naseka 1996:24 […], Naseka 1998:75 […]). •Valid as Culter recurviceps (Richardson 1846) -- (Luo & Chen in Chen et al. 1998:188 […], Zhang et al. 2016:59 […]). •Valid as Chanodichthys recurviceps (Richardson 1846) -- (Kottelat 2013:87 […]).
    [Show full text]
  • Population Dynamics of the Naleh Fish Barbonymus Sp. (Pisces: Cyprinidae) in Nagan River Waters, Aceh Province, Indonesia
    Volume 12, Number 3,August 2019 ISSN 1995-6673 JJBS Pages 361 - 366 Jordan Journal of Biological Sciences Population Dynamics of the Naleh Fish Barbonymus sp. (Pisces: Cyprinidae) in Nagan River Waters, Aceh Province, Indonesia Agung S. Batubara2, Deni Efizon3, Roza Elvyra4 Syamsul Rizal1,2 and Zainal A. 1,2* Muchlisin 1Faculty of Marine and Fisheries; 2Doctoral Program in Mathematics and Sciences Application (DMAS), Graduate Program, Universitas Syiah Kuala, Banda Aceh; 3Faculty of Fisheries and Marine Sciences, 4Faculty of Sciences, Universitas Riau, Pekanbaru, Indonesia. Received September 14, 2018; Revised November 2, 2018; Accepted November 8, 2018 Abstract The Naleh fish Barbonymus sp. is among the popular commercial fresh water fishes found in Indonesia; however, the population has drastically declined over the past decade. Necessarily, a conservation program needs to be established to gather information on the population dynamics to overcome this problem. The objective of this study is to analyze the population dynamics of the Naleh fish in Nagan River. The survey was conducted from January to December, 2016. In totality, three sampling locations were selected based on information from local fishermen. The Naleh fish was sampled using gillnets (mesh size 0.5 and 1.0 inches) and casting nets (mesh size 1.5 and 2.0 inches). A total of 761 fish samples were collected for the study. The von Bertalanffy (von Bertalanffy growth function) growth parameters were utilized to analyse the population dynamics of Barbonymus sp., using FISAT II (FAO-ICLARM Stock Assessment Tools-II). The results show the following population dynamics: Asymptotic length (L∞) was 160.07mm, coefficient of growth (K) = 0.73 -1 -1 -1 year , growth performance index (Ø) = 4.27 year , time at which length equals zero (t0) = -0.022 year , growth and age (Lt) -1 -1 = 2.55 year , and optimum length of catch (Lopt ) = 89.9mm.
    [Show full text]
  • Genetic Resources for Aquaculture: Status and Trends
    109 Genetic resources for aquaculture: status and trends Roger S.V. Pullin 7A Legaspi Park View, 134 Legaspi Street, Consultant, Philippines 1. SUMMARY Aquaculture, the farming of aquatic plants and animals, has grown consistently since 1970, when it provided only 3.9 percent of world fish supply. In 2004, global production of farmed fish (mainly crustaceans, molluscs and finfish) was over 45 million tonnes, comprising about 32 percent of total world fish supply, while the total production of farmed seaweeds for food and extraction of chemicals, was about 13.9 million t. Aquaculture also provides increasing proportions of the world’s supply of ornamental aquatic organisms. Over 90 percent of aquaculture takes place in developing countries, where it has high importance for poor people in terms of nutrition and livelihoods and where further responsible development of aquaculture, integrated with other natural resource use, has high potential for future growth. Based upon statistics submitted to FAO by its member States, about 84 percent of farmed fish production comes from Asia, with 67 percent coming from the Peoples’ Republic of China. However, aquaculture is increasing in importance in all developing regions and is expected to provide about 50 percent of world food fish supply within the next 20 years. The future of aquaculture will depend in large measure upon the effective management of the genetic resources for farmed aquatic plants (PGR) and farmed fish (FiGR), as well as those for the organisms that provide their food and ecosystem services. Fish farms are agroecosystems and aquatic genetic resources for aquaculture on farms are part of agrobiodiversity.
    [Show full text]
  • A Manual for Commercial Production of the Tiger Barb, ~C~T Etnlnmmi
    saeAU-8-97-002 C3 A Manual for Commercial Production of the Tiger Barb, ~c~t etnlnmmI. A T p y P i d T k Sp By: Clyde S. Tamaru, Ph.D. Brian Cole, M.S. Richard Bailey, B.A. Christopher Brown, Ph.o. Center for Tropical and Subtropical Aquaculture Publication Number 129 Commercial Production of Tiger 8arbs ACKNOWLEDGEMENTS This manual is a combined effort of three institutions, United States Department of Agriculture Center for Tropical and Subtropical Aquaculture CTSA!, and University of Hawaii Sea Grant Extension Service SGES! and Aquaculture Development Program ADP!, Department of Land and Natural Resources, State of Hawaii. Financial support for this project was provided by the Center for Tropical and Subtropical Aquaculture through grants from the US Department of Agriculture USDA grant numbers 93-38500-8583 and 94-38500-0065!. Production of the manual is also funded in part by a grant from the National Oceanic and Atmospheric Administration, project kA/AS-1 which is sponsored by the University of Hawaii Sea Grant College Program, School of Ocean Earth Science and Technology SOEST!, under institutional Grant No. NA36RG0507 from NOAA Office of Sea Grant, Department of Commerce, UNIHI-SEAGRANT-TR-96-01. Support for the production of the manual was also provided by the Aquaculture Development Program, Department of Land and Natural Resources, State of Hawaii, as part of their Aquaculture Extension Project with University of Hawaii Sea Grant Extension, Service Contract Nos. 9325 and 9638. The views expressed herein are those of the authors and do not necessarily reflect the views of USDA or any of its sub-agencies.
    [Show full text]
  • Beta Diversity Patterns of Fish and Conservation Implications in The
    A peer-reviewed open-access journal ZooKeys 817: 73–93 (2019)Beta diversity patterns of fish and conservation implications in... 73 doi: 10.3897/zookeys.817.29337 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China Jiajun Qin1,*, Xiongjun Liu2,3,*, Yang Xu1, Xiaoping Wu1,2,3, Shan Ouyang1 1 School of Life Sciences, Nanchang University, Nanchang 330031, China 2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engi- neering, Nanchang University, Nanchang 330031, China 3 School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China Corresponding author: Shan Ouyang ([email protected]); Xiaoping Wu ([email protected]) Academic editor: M.E. Bichuette | Received 27 August 2018 | Accepted 20 December 2018 | Published 15 January 2019 http://zoobank.org/9691CDA3-F24B-4CE6-BBE9-88195385A2E3 Citation: Qin J, Liu X, Xu Y, Wu X, Ouyang S (2019) Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China. ZooKeys 817: 73–93. https://doi.org/10.3897/zookeys.817.29337 Abstract The Luoxiao Mountains play an important role in maintaining and supplementing the fish diversity of the Yangtze River Basin, which is also a biodiversity hotspot in China. However, fish biodiversity has declined rapidly in this area as the result of human activities and the consequent environmental changes. Beta diversity was a key concept for understanding the ecosystem function and biodiversity conservation. Beta diversity patterns are evaluated and important information provided for protection and management of fish biodiversity in the Luoxiao Mountains.
    [Show full text]
  • Composition and Abundance of Drifting Fish Eggs on the Upper Reaches of Xijiang
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.904110; this version posted January 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Composition and Abundance of Drifting Fish Eggs on the Upper Reaches of Xijiang 2 River, China, after the Formation of the Cascade Reservoirs 3 4 Short title: Composition and Abundance of Drifting Fish Eggs in the Upper Reaches of a 5 River after Dam Formation 6 Gao Minghui1, Wu Zhiqiang2, 3, Tan Xichang4, Huang Liangliang3, Huang Haibo3 and Liu Hao3 7 8 1 College of Life Science and Technology, Guangxi University, Nanning 350000, Guangxi, 9 China 10 2 School of Marine Sciences, Guangxi University, Nanning 350000, Guangxi, China 11 3 College of Environmental Science and Engineering, Guilin University of Technology, Guilin 12 541000, Guangxi, China. 13 4 ZhuJiang Water Conservancy Bureau, Ministry of Water Resources, Guangzhou 510000, 14 Guangdong, China 15 16 Corresponding Author: 17 Wu Zhiqiang 18 Yanshan Town, Guilin, Guangxi 54100, China 19 Email address: [email protected] 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.904110; this version posted January 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Hypophthalmichthys Molitrix and H. Nobilis)
    carpsAB_covers 6/30/15 9:33 AM Page 1 BIGHEADED CARPS (Hypophthalmichthys molitrix and H. nobilis) An Annotated Bibliography on Literature Composed from 1970 to 2014 Extension Service Forest and Wildlife Research Center The information given here is for educational purposes only. References to commercial products, trade names, or suppliers are made with the understanding that no endorsement is implied and that no discrimination against other products or suppliers is intended. Copyright 2015 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi State University Extension Service. By Andrew Smith, Extension Associate Biologist, MSU Center for Resolving Human-Wildlife Conflicts. We are an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, Compiled by Andrew L. Smith national origin, disability status, protected veteran status, or any other characteristic protected by law. Edited by Steve Miranda, PhD, and Wes Neal, PhD Publication 2890 Extension Service of Mississippi State University, cooperating with U.S. Department of Agriculture. Published in furtherance of Acts of Congress, May 8 and June 30, 1914. GARY B. JACKSON, Director (500-06-15) carpsAB_covers 6/30/15 9:33 AM Page 3 Bigheaded Carps (Hypophthalmichthys molitrix and H. nobilis): An Annotated Bibliography on Literature Composed from 1970 to 2014 Compiled by Andrew L. Smith Mississippi State University Extension Service Center for Resolving Human-Wildlife Conflicts Department of Wildlife, Fisheries, and Aquaculture Forest and Wildlife Research Center Edited by Steve Miranda, PhD Wes Neal, PhD Andrew L.
    [Show full text]
  • Occasional Papers of the Museum of Zoology University of Michigan Ann Arbor.Michigan
    OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN ANN ARBOR.MICHIGAN THE CYPRINID DERMOSPHENOTIC AND THE SUBFAMILY RASBORINAE The Cyprinidac, the largest family of fishes, do not lend themselves readily to subfamily classification (Sagemehl, 1891; Regan, 1911 ; Ramaswami, 195513). Nevertheless, it is desirable to divide the family in some way, if only to facilitate investiga- tion. Since Gunther's (1868) basic review of the cyprinids the emphasis in classification has shifted from divisions that are rcadily differentiable to groupings intended to be more nearly phylogenetic. In the course of this change a subfamily classifica- tion has gradually been evolved. Among the most notable contributions to the development of present subfamily concepts are those of Berg (1912), Nikolsky (1954), and Banarescu (e-g. 1968a). The present paper is an attempt to clarify the nature and relationships of one cyprinid subfamily-the Rasborinae. (The group was termed Danioinae by Banarescu, 1968a. Nomen- claturally, Rasborina and Danionina were first used as "family group" names by Giinther; to my knowledge the first authors to include both Rasbora and Danio in a single subfamily with a name bascd on one of these genera were Weber and de Beaufort, 1916, who used Rasborinae.) In many cyprinids, as in most characins, the infraorbital bones form an interconnected series of laminar plates around the lower border of the eye, from the lacrimal in front to the dermo- sphenotic postcrodorsally. This series bears the infraorbital sensory canal, which is usually continued into the cranium above the dcrmosphenotic. The infraorbital chain of laminar plates is generally anchored in position relative to the skull anteriorly and 2 Gosline OCC.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Cirrhinus Mrigala (Hamilton, 1822)
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Cultured Aquatic Species Information Programme Cirrhinus mrigala (Hamilton, 1822) I. Identity V. Status And Trends a. Biological Features VI. Main Issues b. Images Gallery a. Responsible Aquaculture Practices II. Profile VII. References a. Historical Background a. Related Links b. Main Producer Countries c. Habitat And Biology III. Production a. Production Cycle b. Production Systems c. Diseases And Control Measures IV. Statistics a. Production Statistics b. Market And Trade Identity Cirrhinus mrigala Hamilton, 1822 [Cyprinidae] FAO Names: En - Mrigal carp, Fr - , Es - Biological features Body bilaterally symmetrical and streamlined, its depth about equal to length of head; body with cycloid scales, head without scales; snout blunt, often with pores; mouth broad, transverse; upper lip entire and not continuous with lower lip, lower lip most indistinct; single pair of short rostral barbels; pharyngeal teeth in three rows, 5.4.2/2.4.5 pattern; lower jaw with a small post-symphysial knob or tubercle; origin of dorsal fin nearer to end of snout than base of caudal; dorsal fin as high as body with 12 or 13 branched rays; last unbranched ray of dorsal fin non-osseous and non-serrated; pectoral fins shorter than head; caudal fin deeply forked; anal fin not extending to caudal fin; lateral line with 40-45 scales; lateral transverse scale rows 6-7/5½-6 between lateral line and pelvic fin base; usually dark grey above, silvery beneath; dorsal fin greyish; pectoral, pelvic and anal fins orange-tipped (especially during breeding season).
    [Show full text]