Open Dissertationbjbliss.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Dissertationbjbliss.Pdf The Pennsylvania State University The Graduate School Department of Biology INVESTIGATING EVOLUTION OF PLANT DEVELOPMENT IN BASAL ANGIOSPERMS A Dissertation in Biology by Barbara Joanne Bliss 2008 Barbara Joanne Bliss Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2008 The dissertation of Barbara Bliss was reviewed and approved* by the following: Hong Ma Professor of Biology Dissertation Co-Advisor Co-chair of Committee Claude dePamphilis Professor of Biology Dissertation Co-Advisor Co-chair of Committee Paula McSteen Assistant Professor Siela Maximova Research Associate Doug Cavener Professor of Biology Head of the Department of Biology *Signatures are on file in the Graduate School iii ABSTRACT Understanding the evolution of modern plants requires integrating findings from several disciplines, including plant physiology and development, molecular genetics, and genomics. Observations from model and non-model plants are brought together in a phylogenetic framework to derive hypotheses about how plant development evolved to generate the abundant diversity we see today. Testing those hypotheses requires a plant model system with the appropriate phylogenetic perspective: that of a basal lineage. The greatest diversity of plants today is among the angiosperms (flowering plants), a lineage which arose only about 160 million years ago. The most successful of these are the monocot and core eudicot flowering plant lineages, from which current plant model experimental systems are derived. For questions about the evolution of angiosperm development, a plant model from among the basal lineages is required. In addition to phylogenetic perspective, model systems possess features and degrees of availability, representation, and utility not found in other members of the taxa to which they belong. For all organisms, culturing requirements are central determinants of utility, but for studying the evolution of plant development, amenability to studies employing methods of genomics, genetics, molecular and developmental biology are also required. This dissertation describes the search for and selection of a proposed basal angiosperm experimental model, Aristolochia fimbriata, along with the development of initial technologies required for testing hypotheses about the evolution of plant iv development. Culturing, hand pollination, genetic transformation, and in vitro micropropagation and regeneration methods are described herein. Genes involved in flower form and architecture have been particularly important in the evolution of angiosperm diversity. The TCP gene family, so named for its founding members (TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTOR) has been shown to play important roles in evolution of form in both monocots and eudicots. Prior functional and phylogenetic analyses of this gene family revealed clades of TCP genes with two different kinds of gene function. Since then, additional sequence data from basal lineages and new studies providing insight into TCP gene function have become available. Together, these warrant an updated phylogeny and review of this important gene family. Preliminary phylogenetic analyses of the TCP gene family is described as a foundation for conducting future expression and functional analyses. A. fimbriata has floral and vegetative features that will facilitate evaluating the role of TCP genes in evolution of angiosperm form, and advance the use of this species as a basal angiosperm model system. v TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................... ix LIST OF TABLES ....................................................................................................... xii LIST OF ABBREVIATIONS ...................................................................................... xiv ACKNOWLEDGEMENTS ......................................................................................... xvii Chapter 1 Introduction ................................................................................................ 1 Innovations in land plants ..................................................................................... 2 Bryophytes and tracheophytes: Controlling water and gravity ..................... 2 Spermatophytes: Efficient reproduction ........................................................ 6 Angiosperms: “Flowering” plants ................................................................. 8 Angiosperm phylogeny ......................................................................................... 11 Phylogenetic analysis .................................................................................... 11 Selection of sequence data ............................................................................. 12 Basal angiosperms ................................................................................................ 14 Tracheary elements ........................................................................................ 16 Double fertilization ........................................................................................ 17 Flower ............................................................................................................ 18 Floral developmental genetics .............................................................................. 23 Floral organ identity model ........................................................................... 23 Genes involved in floral organ identity ......................................................... 25 Broader applications ...................................................................................... 29 Basal angiosperm model ....................................................................................... 30 Transformation systems ................................................................................. 31 Regeneration systems .................................................................................... 33 Overview of dissertation ....................................................................................... 34 Chapter 2 Aristolochia fimbriata: A proposed experimental model for basal angiosperms .......................................................................................................... 37 Abstract ................................................................................................................. 41 Introduction ........................................................................................................... 42 Results................................................................................................................... 47 Evaluation of potential models in basal angiosperm orders and families ..... 47 Aristolochiaceae candidates considered ........................................................ 50 Physical and life cycle features of Aristolochia fimbriata ............................ 52 A phylogenetic perspective of genome sizes ................................................. 55 Methods for genetics ..................................................................................... 57 Discussion ............................................................................................................. 60 vi Aristolochia fimbriata has many characteristics of a valuable experimental model ................................................................................ 60 Aristolochia fimbriata is well positioned for studies of the evolution of development ........................................................................................... 61 Aristolochia contains highly developed biochemical pathways offering insight into evolution of biochemical synthesis and coevolution with insects ..................................................................................................... 64 Aristolochia can provide insight into development of woodiness ................. 66 Aristolochia can reveal features of the ancestor common to monocots and eudicots ............................................................................................ 67 Growing genomic resources in Aristolochiaceae support further development of model system ................................................................ 68 Conclusion ............................................................................................................ 71 Materials & Methods ............................................................................................ 72 Cultivation ..................................................................................................... 72 Genome sizing ............................................................................................... 73 Phylogenetic analysis .................................................................................... 73 Pollination experiments ................................................................................. 74 Genetic transformation .................................................................................. 75 Genomic PCR analysis .................................................................................. 76 Genetic transformation .................................................................................. 77 Supplemental Material ................................................................................... 77 Acknowledgements ......................................................................................
Recommended publications
  • Lepidoptera Argentina - Parte Vii: Papilionidae
    LEPIDOPTERA ARGENTINA Catálogo ilustrado y comentado de las mariposas de Argentina Parte VII: PAPILIONIDAE Fernando César Penco Osvaldo Di Iorio 2014 PLAN GENERAL DE LA OBRA Parte I CASTNIIDAE Parte II COSSIDAE & LIMACODIDAE Parte III TORTRICIDAE Parte IV SEMATURIDAE & URANIIDAE Parte V GEOMETRIDAE Parte VI HESPERIIDAE Parte VII PAPILIONIDAE Parte VIII PIERIDAE Parte IX LYCAENIDAE Parte X RIODINIDAE Parte XI NYMPHALIDAE & LIBYTHEIDAE Parte XII MEGALOPYGIDAE Parte XIII APATELODIDAE, MIMALLONIDAE & LASIOCAMPIDAE Parte XIV SATURNIIDAE Parte XV SPHINGIDAE Parte XVI EREBIDAE: ARCTIINAE & EREBINAE Parte XVII NOTODONTIDAE Parte XVIII NOCTUIDAE Parte XIX TAXONOMIA DE LEPIDOPTERA Parte XX BIBLIOGRAFIA LEPIDOPTERA ARGENTINA Catálogo ilustrado y comentado de las mariposas de Argentina Parte VII: PAPILIONIDAE Fernando César Penco Osvaldo R. Di Iorio 2014 Copyright © 2014 Fernando César Penco Ninguna parte de esta publicación, incluido el diseño de la portada y de las páginas interiores puede ser reproducida, almacenadas o transmitida de ninguna forma ni por ningún medio, sea éste electrónico, mecánico, grabación, fotocopia o cualquier otro sin la previa autorización escrita del autor. LEPIDOPTERA ARGENTINA - PARTE VII: PAPILIONIDAE Autores: Fernando César Penco Area de Biodiversidad, Fundación de Historia Natural Félix de Azara, Departamento de Ciencias Naturales y Antropológicas CEBBAD, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina. E-mail: [email protected] Osvaldo R. Di Iorio Entomología, Departamento de Biodiversidad
    [Show full text]
  • Andressa Caporale De Castro Mecanismos De Indução E
    ANDRESSA CAPORALE DE CASTRO MECANISMOS DE INDUÇÃO E QUEBRA DE DIAPAUSA EM Euryades corethrus (LEPIDOPTERA: PAPILIONIDAE, TROIDINI). Dissertação apresentada ao Programa de Pós- Graduação em Biologia Animal, Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de mestre em Biologia Animal. Área de concentração: Biodiversidade Orientador: Nicolás Oliveira Mega UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Porto Alegre, fevereiro de 2016 MECANISMOS DE INDUÇÃO E QUEBRA DE DIAPAUSA EM Euryades corethrus (LEPIDOPTERA: PAPILIONIDAE, TROIDINI). ANDRESSA CAPORALE DE CASTRO Aprovada em _____ de _____________ de 2016 ____________________________________________ Dr. Lucas Augusto Kaminski ____________________________________________ Dr. Aldo Mellender de Araujo ____________________________________________ Dr. André Victor Lucci Freitas Dedico esse trabalho a todos que, assim como eu, amam borboletas, e que acham que a melhor parte do conhecimento é poder compartilhá-lo. Agradecimentos Esses últimos dois anos não foram fáceis, muitos obstáculos apareceram. A minha sorte é que tive muitas pessoas queridas ao meu lado, me ajudando em diversas áreas da vida. Agradeço a todos que de alguma forma me ajudaram. A Helena, por abrir espaço no laboratório para que pudesse realizar meus experimentos e, além disso, por me iniciar nesse mundo tão fantástico das borboletas. Ao meu orientador, Nicolás, pela assembleia permanente, por me fazer sair da minha zona de conforto e por sempre estar pronto para ajudar. Agradeço a Profa. Paula Araújo pelo empréstimo da BOD para realizar meus experimentos. Ao pessoal do Laboratório de Ecologia de Insetos que faziam com que meus dias fossem mais divertidos e cheios de amizade (Gui, Scalco, Pedrotti, Ju, Lidi, Dinego, Carlota, Rafa, Roni, Fabi).
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • European Journal of Biomedical and Pharmaceutical Sciences
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341894994 A Review on Pharmacological Activities of Aristolochia Species Article · June 2020 CITATIONS READS 6 328 3 authors: Subbiah Latha Palanisamy Selvamani Anna University, Chennai Anna University, BIT Campus, Tiruchirappalli 107 PUBLICATIONS 510 CITATIONS 125 PUBLICATIONS 634 CITATIONS SEE PROFILE SEE PROFILE Dhivya Sundaram Anna University of Technology, Tiruchirappalli 6 PUBLICATIONS 13 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Natural Polymers View project All content following this page was uploaded by Palanisamy Selvamani on 15 July 2020. The user has requested enhancement of the downloaded file. ejbps, 2015, Volume 2, Issue 5, 160-167. Review Article SJIF Impact Factor 2.062 ISSN 2349-8870 Latha et al. European European Journal Journal of Biomedical of Biomedical and Pharmac eutical Sciences Volume: 2 AND Issue: 5 Pharmaceutical sciences 160-167 http://www.ejbps.com Year: 2015 A REVIEW ON PHARMACOLOGICAL ACTIVITIES OF ARISTOLOCHIA SPECIES S. Latha*, P. Selvamani, P. S. Dhivya and R. Benaseer Begam Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli– 24, Tamil Nadu, India. Article Received on 27/07/2015 Article Revised on 18/08/2015 Article Accepted on 09/09/2015 *Correspondence for ABSTRACT Author Aristolochia is a significant genus in the family of Aristolochiaceae. S. Latha The genus Aristolochia includes about 400 species of herbaceous Department of perennials, under shrubs or shrubs bearing essential oils and is Pharmaceutical Technology, Anna University, BIT extensive across Tropical Asia, Africa and South America. Campus, Tiruchirappalli–24, Aristolochia species has been used widely in the traditional Chinese Tamil Nadu, India.
    [Show full text]
  • Expression of Gynoecium Patterning Transcription Factors in Aristolochia
    Peréz‑Mesa et al. EvoDevo (2020) 11:4 https://doi.org/10.1186/s13227‑020‑00149‑8 EvoDevo RESEARCH Open Access Expression of gynoecium patterning transcription factors in Aristolochia fmbriata (Aristolochiaceae) and their contribution to gynostemium development Pablo Peréz‑Mesa1, Clara Inés Ortíz‑Ramírez2, Favio González3, Cristina Ferrándiz2 and Natalia Pabón‑Mora1* Abstract Background: In Aristolochia (Aristolochiaceae) fowers, the congenital fusion of the anthers and the commissural, stigmatic lobes forms a gynostemium. Although the molecular bases associated to the apical–basal gynoecium pat‑ terning have been described in eudicots, comparative expression studies of the style and stigma regulatory genes have never been performed in early divergent angiosperms possessing a gynostemium. Results: In this study, we assess the expression of fve genes typically involved in gynoecium development in Aris- tolochia fmbriata. We found that all fve genes (AfmCRC , AfmSPT, AfmNGA, AfmHEC1 and AfmHEC3) are expressed in the ovary, the placenta, the ovules and the transmitting tract. In addition, only AfmHEC3, AfmNGA and AfmSPT are temporarily expressed during the initiation of the stigma, while none of the genes studied is maintained during the elaboration of the stigmatic surfaces in the gynostemium. Conclusions: Expression patterns suggest that CRC , HEC, NGA and SPT homologs establish ovary and style identity in Aristolochia fmbriata. Only NGA,HEC3 and SPT genes may play a role in the early diferentiation of the stigmatic lobes, but none of the genes studied seems to control late stigma diferentiation in the gynostemium. The data gathered so far raises the possibility that such transient expression early on provides sufcient signal for late stigma diferentia‑ tion or that unidentifed late identity genes are controlling stigma development in the gynostemium.
    [Show full text]
  • Morphological Nature of Floral Cup in Lauraceae
    l~Yoc. Indian Acad. Sci., Vol. 88 B, Part iI, Number 4, July 1979, pp. 277-281, @ printed in India. Morphological nature of floral cup in Lauraceae S PAL School of Plant Morphology, Meerut College, Meerut 250 001 MS received 19 June 1978 Abstract. On the basis of anatomical criteria the floral cup of Lauraceae can be regarded as appendicular, as the traces entering into the floral cup are morphologi- cally compound, differentiated into tepal and stamen traces at higher levels. The ontogenetic studies also support this contention. The term Perigynous hypanthium is retained for the floral cup of Lauraceae as it is formed as a result of intercalary growth occurring underneath the region of perianth and androecium. Keywords. Lauraceae; floral cup; morphological nature; appendicular; peri- gynous hypanthium. 1. Introduction The family Lauraceae has received comparatively little attention from earlier workers because of difficulty in procuring the material. So far very little work has been done on the floral anatomy of this family (Reece 1939 ; Sastri 1952 ; Pal 1974). There has been considerable difference of opinion regarding the nature of floral cup in angiosperms. The present work was initiated to study the morphological nature of the floral cup. 2. Materials and methods The present investigation embodies the results of observations on 21 species of the Lauraceae. The material of Machilus duthiei King ex Hook.f., M. odoratissima Nees, Persea gratissima Gaertn.f., Phoebe cooperiana Kanjilal and Das, P. goal- parensis Hutch., P. hainesiana Brandis, Alseodaphne keenanii Gamble, A. owdeni Parker, Cinnamomum camphora Nees and Eberm, C. cecidodaphne Meissn., C. tamala Nees and Eberm, C.
    [Show full text]
  • Background Document: Roc: Aristolochic Acids ; 2010
    FINAL Report on Carcinogens Background Document for Aristolochic Acids September 2, 2008 U.S. Department of Health and Human Services Public Health Services National Toxicology Program Research Triangle Park, NC 27709 This Page Intentionally Left Blank RoC Background Document for Aristolochic Acids FOREWORD 1 The Report on Carcinogens (RoC) is prepared in response to Section 301 of the Public 2 Health Service Act as amended. The RoC contains a list of identified substances (i) that 3 either are known to be human carcinogens or are reasonably be anticipated to be human 4 carcinogens and (ii) to which a significant number of persons residing in the United 5 States are exposed. The Secretary, Department of Health and Human Services (HHS), has 6 delegated responsibility for preparation of the RoC to the National Toxicology Program 7 (NTP), which prepares the report with assistance from other Federal health and 8 regulatory agencies and nongovernmental institutions. 9 Nominations for (1) listing a new substance, (2) reclassifying the listing status for a 10 substance already listed, or (3) removing a substance already listed in the RoC are 11 reviewed in a multi-step, scientific review process with multiple opportunities for public 12 comment. The scientific peer-review groups evaluate and make independent 13 recommendations for each nomination according to specific RoC listing criteria. This 14 background document was prepared to assist in the review of aristolochic acids. The 15 scientific information used to prepare Sections 3 through 5 of this document must come 16 from publicly available, peer-reviewed sources. Information in Sections 1 and 2, 17 including chemical and physical properties, analytical methods, production, use, and 18 occurrence may come from published and/or unpublished sources.
    [Show full text]
  • The Laurel Or Bay Forests of the Canary Islands
    California Avocado Society 1989 Yearbook 73:145-147 The Laurel or Bay Forests of the Canary Islands C.A. Schroeder Department of Biology, University of California, Los Angeles The Canary Islands, located about 800 miles southwest of the Strait of Gibraltar, are operated under the government of Spain. There are five islands which extend from 15 °W to 18 °W longitude and between 29° and 28° North latitude. The climate is Mediterranean. The two eastern islands, Fuerteventura and Lanzarote, are affected by the Sahara Desert of the mainland; hence they are relatively barren and very arid. The northeast trade winds bring moisture from the sea to the western islands of Hierro, Gomera, La Palma, Tenerife, and Gran Canaria. The southern ends of these islands are in rain shadows, hence are dry, while the northern parts support a more luxuriant vegetation. The Canary Islands were prominent in the explorations of Christopher Columbus, who stopped at Gomera to outfit and supply his fleet prior to sailing "off the map" to the New World in 1492. Return voyages by Columbus and other early explorers were via the Canary Islands, hence many plants from the New World were first established at these points in the Old World. It is suspected that possibly some of the oldest potato germplasm still exists in these islands. Man exploited the islands by growing sugar cane, and later Mesembryanthemum crystallinum for the extraction of soda, cochineal cactus, tomatoes, potatoes, and finally bananas. The banana industry is slowly giving way to floral crops such as strelitzia, carnations, chrysanthemums, and several new exotic fruits such as avocado, mango, papaya, and carambola.
    [Show full text]
  • To La Serena What Severe and Brown Earth, Sun-Soaked, Barren, Poor, and Torn by a Thousand Stone Needles. Softened by Pastures W
    To La Serena What severe and brown earth, sun-soaked, barren, poor, and torn by a thousand stone needles. Softened by pastures where the bells lend their voice to the sheep. Earth watched over by castles already void, of dry battlements, lichen and wild-fig covered, silent witness of the passage of time. Naked earth of trees and undergrowth, of mountain crags, dark and ashen, of a dying greyish green cut out against the sky like a Chinese shadow. And however, so beautiful. In spring the breeze carries the scent of labdanum and heath to the plain, and the rosemary prays to its god, the Sun, giving to the air a magic aura of sanctity, as if bathing it in incense. Winter sows the earth with torrents, ponds, streams leaping and sparkling, their banks carpeted with the tiniest flowers whose names only botanists know. Spring dries the soul of La Serena and shrouds it with flowers, crowning it with beauty, then to clothe it in fields of golden hay combed by the east wind in summer. Everything in La Serena is ephemeral, as a lily petal left on the altar, as the winged soul of a butterfly, as the tears of a child. Only the holm oak, brown like earth, remain in time, year after year, standing, silent, with their gray trunks, their hardy leaves, their gnarled strong and haggard branches. 305 306 Generalities 307 308 Generalities 1. INTRODUCTION Following the 1996 Cork (Ireland) Declaration “ A Living Rural Environment ”, rural development has become a key cross-sectoral goal of a major part of European Com - munity policies.
    [Show full text]
  • Great Ragweed Ambrosia Trifida Asteraceae—Aster Family by Tom Reaume © 2011 Nature Manitoba Grant
    Great Ragweed Ambrosia trifida Asteraceae—Aster family by Tom Reaume © 2011 Nature Manitoba Grant: n annual wildflower 0.5–3 (–6.4) m tall by 60–120+ cm wide from a taproot 5–30 cm long by 1–2 cm wide; side Aroots 2–25 cm long by 0.5–3 mm thick; in moist disturbed open sites, flood plains, roadsides, orchards and pastures; monoecious. l FLOWER HEADS green, blooming July–November; inflo- rescence of numerous unisexual heads, the terminal male heads above the clustered, less obvious female heads; floral branches from the base or only above, 5–105+ cm long, reduced above, ascending, scabrous, some rebranching near Great Ragweed 1–2 m tall in bloom along the bank of tips; peduncles (of male heads) hairy, 2–10 mm long, rarely Omand’s Creek in Winnipeg, Manitoba divided, spreading; male heads in erect to nodding racemes 3–27 cm long by 1.5–3 cm wide, the terminal raceme the lon- gest; involucral bracts green, fused, forming a cuplike hood 3–7 mm long and wide by 2–4 mm deep, slightly hairy above near the apex, often with 1–3 dark nerves, margins erose; male flower male florets 20–55+ per head, unopened florets 1.8–2.2 mm heads long by c. 1.3 mm wide; perianth 5-lobed (6-), lobe tips blunt, each c. 0.7 mm wide, opaque, with 5 or 6 dark lines, united Two meter tall near the base, glabrous, slightly transparent revealing the an- plant with its thers inside; stamens 5, some partially exserted; anthers c.
    [Show full text]
  • Piperaceae) Revealed by Molecules
    Annals of Botany 99: 1231–1238, 2007 doi:10.1093/aob/mcm063, available online at www.aob.oxfordjournals.org From Forgotten Taxon to a Missing Link? The Position of the Genus Verhuellia (Piperaceae) Revealed by Molecules S. WANKE1 , L. VANDERSCHAEVE2 ,G.MATHIEU2 ,C.NEINHUIS1 , P. GOETGHEBEUR2 and M. S. SAMAIN2,* 1Technische Universita¨t Dresden, Institut fu¨r Botanik, D-01062 Dresden, Germany and 2Ghent University, Department of Biology, Research Group Spermatophytes, B-9000 Ghent, Belgium Downloaded from https://academic.oup.com/aob/article/99/6/1231/2769300 by guest on 28 September 2021 Received: 6 December 2006 Returned for revision: 22 January 2007 Accepted: 12 February 2007 † Background and Aims The species-poor and little-studied genus Verhuellia has often been treated as a synonym of the genus Peperomia, downplaying its significance in the relationships and evolutionary aspects in Piperaceae and Piperales. The lack of knowledge concerning Verhuellia is largely due to its restricted distribution, poorly known collection localities, limited availability in herbaria and absence in botanical gardens and lack of material suitable for molecular phylogenetic studies until recently. Because Verhuellia has some of the most reduced flowers in Piperales, the reconstruction of floral evolution which shows strong trends towards reduction in all lineages needs to be revised. † Methods Verhuellia is included in a molecular phylogenetic analysis of Piperales (trnT-trnL-trnF and trnK/matK), based on nearly 6000 aligned characters and more than 1400 potentially parsimony-informative sites which were partly generated for the present study. Character states for stamen and carpel number are mapped on the combined molecular tree to reconstruct the ancestral states.
    [Show full text]
  • Persea, Lauraceae
    Scientific article doi: http://dx.doi.org/10.5154/r.rchsh.2017.12.038 Phylogenetic analysis of some members of the subgenus Persea (Persea, Lauraceae) Análisis filogenético de algunos miembros del subgénero Persea (Persea, Lauraceae) María Edith Cruz-Maya1; Alejandro Facundo Barrientos-Priego1*; Lily Xochitl Zelaya-Molina2; José Luis Rodríguez-de la O1; Juan Carlos Reyes-Alemán3 1Universidad Autónoma Chapingo, Departamento de Fitotecnia. Carretera México-Texcoco km 38.5, Texcoco, Estado de México, C. P. 56230, MÉXICO. 2Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Recursos Genéticos. Av. Biodiversidad núm. 2498, col. Centro, Tepatitlán de Morelos, Jalisco, C. P. 47600, MÉXICO. 3Universidad Autónoma del Estado de México. Carretera Tenancingo-Villa Guerrero km 1.5, Tenancingo, Estado de México, C. P. 52400, MÉXICO. *Corresponding author: [email protected]. Abstract he avocado belongs to the genus Persea, which is one of the most controversial genera of the Lauraceae family, since the relationships within the subgenus Persea are not clear T and only recognized two species, Persea americana and Persea schiedeana. Its relationship with the subgenus Eriodaphne is also complex and there is a debate as to whether it is an independent genus. For this reason, the study aims to analyze the phylogenetic relationships within the genus Persea, with an emphasis on the subgenus Persea, using maximum parsimony and bayesian inference with the sequence of eight different fragments from nuclear, chloroplast and mitochondrial DNA. Sequences of the chloroplast ndhF, rbcL, matK, rpoC, trnH- psbA; mitochondria atp4 and cox3 and nuclear 18S rRNA were used. Fourteen fixed mutations were found in species of the subgenus Eriodaphne.
    [Show full text]