Rhytidoponera Sp

Total Page:16

File Type:pdf, Size:1020Kb

Rhytidoponera Sp InSectes Sociaux, Paris Masson, Paris, 1987 1987, Volume 34, n ~ 2, pp. 75-86 THE REPRODUCTIVE DIVISION OF LABOUR IN THE QUEENLESS PONERINE ANT RHYTIDOPONERA SP. 12 C.P. PEETERS School of Zoology, University of New South Wales, P.O. Box 1, Kensington N.S.W., Australia 2033 Re~u le 15 octobre 1986 Accept6 le 9 mars 1987 SUMMARY Mated workers have replaced the queen as the functional egg-layers in several species of ponerine ants. In such queenless species, the reproductive status of workers can only be determined through ovarian dissections. However, the presence of yolky oocytes is not necessarily an indication of active egg-laying. In Rhytidoponera sp. 12, a substantial proportion of the workers confined under, ground have many large yolky oocytes in their ovaries. Examination of various details of oogenesis (size and appearance of basal oocytes,...) revealed that oocytes do not mature in unmated workers, and that they accumulate in the ovaries. In the 21 mated workers found in a colony excavated in October 1985, there were fewer large yolky oocytes, and the dense accumulations of yellow bodies indicated that eggs were laid regularly. Thus reproductive differentiation among the workers is controlled by insemination. The lack of egg-laying activity by unmated workers was confirmed by monitoring brood production in the laboratory. Trophic eggs do not seem to exist. Various characteristics of worker reproduction in ponerine ants are discussed. RESUME La division des rSles reproducteurs chez Rhytidoponera esp~ce 12, une fourmi Pon6rine sans reine Des ouvri6res fdcond6es ont remplac6 la reine (darts sa fonction de pondeuse) chez plusieurs esp6ces de fourrnis pondrines. Darts ces esp~ces sans reine, l'6tat reproductif des ouvri6res ne peut 6tre d6termin6 qu'avec la dissection des ovaires. Cependant, la prdsence d'ovocytes en vitellogen~se n'indique pas n6cessairement qu'il y ait ponte d'o~ufs. Chez Rhytidoponera esp6ce 12, une grande proportion des ouvri6res actives ~t l'int4rieur du nid ont beaucoup d'ovocytes en vitellogen6se darts leurs ovaires. L'examen de certains d6tails de l'ovogen6se (talUe et apparence des ovocytes basaux..) a d6montr6 76 C.P. PEETERS que les ovocytes ne mflrissent pas chez les ouvri~res non f6cond4es, et qu'ils s'accumulent dans les ovalres, Chez les 21 ouvri~res f4cond4es trouv4es dans une colonie d4terr6e en Octobre 1985, il y avait moins de gros ovocytes en vitellogen~se, et les accumulations denses de corps jaunes indiquaient que les ceufs 4taient pondus r6guli~rement. Donc la s6paration des r61es parmi les ouvri~res est contr616e par la f6condation. L'absence de ponte par les ouvri6res non f4cond4es a 4t4 confirm4e par 1'4tude du d4veloppement du couvain darts des groupes de fourmis au laboratoire. Les 0eufs trophiques ne semblent pas exister. Certaines caract4ristiques de la reproduction ouvri~re chez les fourmis pon4rines sont discut4es. INTRODUCTION The queen caste does not exist in various species of ants belonging to the sub-family Ponerinae, and ilthe reproductive function is perforce carried out by the workers. In OphCtialmopone berthoudi, egg-laying is restricted to the mated workers, and these produce both workers and males (PEETF.RS and Cm~wv., 1985a). Thus insemination controls the reproductive division of labour. In contrast, PAMILO et al. (1985) reported that, in Rhytidoponera sp. 12, a majority of the workers (both mated and unmated) exhibit ovarian activity, and that mated workers have less active ovaries than unmated workers from deep regions of the nests. This then implies that unmated workers also lay eggs, although PAMILO et al. concluded that these unfertilized eggs may have atrophic function. CROZIER et al. (1984) used allozyme data to establish the presence of h number of egg-layers in colonies of Rhytido- ponera sp. 12. This paper aims to highlight the difficulties involved in the assessment of reproductive activity in ponerine worker societies, where the mated egg- layers (= gamergates, PEETERS and CREWE, 1984) are morphologically iden- tical to their infertile nestmates. MATERIAL AND METHODS The population of Rhytidoponera sp. 12 ANIC studied (from Fowler's Gap Research Station, western New South Wales) is the same as that described in CROZIER et al. (1984) and PAMILO et al. (1985). An exceptionally populous colony was excavated on 7 October 1985, and the inhabitants were collected in groups according to the areas of the nest in which they had been found (jig. 1). During theevening prior to the nest excavation, workers present outside the nest entrance were collected separately. In addition, 17 foragers active over the previous days had been colour-marked. Due to time limitations, only a sample of this colony was dissected (table I). Only 10 of the " above ground " workers were dissected, but additional workers active in an identical context (including foragers) were collected in April 1986 and dissected. While DIVISION OF LABOUR IN RHYTIDOPONERA 77 20 MOUND ground layer li< oha er -20 im I~ chamber 2 -40 I I shaft " chamber -60 11 i~, chamber 3 Fig. 1. -- Schematic cross-section of the nest excavated on 7 October 1985. Fig. 1. -- Coupe sch6matique au travers du hid d6terr4 le 70ctobre 1985. all the workers from chamber 2 were dissected, the shaft chamber was not sampled. Two sampling procedures were used to estimate the total number of gamergates in the remaining groups: (1) random - workers from chamber I were mixed together in a container and half of them were taken and dissected. (2) subjective - workers from chamber 3 were selected for dissection on the basis of their behaviour (e.g. active in the open, or confined to dark areas). The ants were kept in a laboratory nest consisting of a sheet of red perspex lying on top of a depression in soil; they were fed on meal- worms and honey water. Notes were made on the pattern of oocyte development in each worker dissected, and the spermathecae were examined in part of the sample. RESULTS A large proportion (82 %) of ~he workers dissected (n = 296) were found to have medium--large yolky oocytes in their ovarioles. However, only 21 inseminated workers were found. During the course of the dissections, consistent differences in ovarian activity were perceived between mated and unmated workers. Eventually, a set of diagnostic characters allowed the recognition of the ovaries of mated workers without prior examination of their spermathecae. The principal criterion for recognizing mated workers was the presence of large, dense accumulations of dark-yellow inclusions at the base of the ovaries. In contrast, only tiny light-yellow inclusions were found in the ovaries of most of the unmated workers. These inclusions appear to be 78 C.P. PEETERS yellow bodies ("corpus lutea") which are produced when nurse cells (" trophocytes ") degenerate (BILLEN, 1985). This normally occurs whenever a basal oocyte passes into the oviduct, and thus the conspicuous aggregation of yellow bodies found at the base of almost every ovariole in mated workers is evidence of active egg-laying. Yellow bodies can also be produced during oocyte resorbtion (e.g. MINKENBEI~G and PETIT, 1985), and this would account for their presence in very small quantities in unmated workers. Rare ovipo- sition by unmated workers cannot be totally excluded, but was never observed in the laboratory. In addition to yellow bodies, there were distinct differences in the pattern of oocyte growth between mated and unmated workers (except in one individual). One class of workers had many large, opaque (i.e. with yolk deposits) oocytes in their ovaries; there were up to four of these oocytes in each of the six ovariotes (fig. 2). In each ovariole, the basal oocyte was markedly larger than the next yolky oocyte ; usually it was abnormally- shaped (round, not oval), and bigger than eggs collected from the nest. The yolky oocytes in each ovariole were often squeezed together, and as a result their shapes were distorted. Sometimes adjacent oocytes were fused together. Finally, the internal macrostructure of these oocytes (especially the basal ones) was abnormal; the yolk had a mottled appearance, and this became more pronounced after a few minutes in a Ringer's solution. Workers with these ovarian characteristics ,were invariably found to have empty spermathecae (n ---- 123). In contrast, there were much fewer yolky oocytes in the ovaries of mated workers, and as a result they appeared less " active ". There were seldom more than four mature basal oocytes per individual, and one or more ovarioles often contained no yolky oocytes at all (fig. 3). Mature basal oocytes had regular shapes and sizes (relative to eggs), and yolk consistency was normal. In the few ovarioles that contained two opaque oocytes, the second oocyte was markedly smaller than the basal one. They were not squeezed together, and often nurse cells could be seen in the space between successive oocytes. I conclude that the oocytes in unmated workers do not mature. They are never laid, and thus they accumulate in the ovaries giving an impression of high " activity". In mated workers however, mature basal oocytes are laid regularly, and there is a dynamic turn-over of material. Thus an ovariole without several large yolky oocytes is not necessarily less active. These results indicate that there is an association between insemination and repro- ductive activity. Many of the workers active in the nest entrances after nightfall also had ovaries with many yolky oocytes in them. All were unmated. However, foragers showed definite signs of oocyte resorbtion. In most cases, only the basal oocytes remained, and the subsequent ones had either disappeared or DIVISION OF LABOUR IN RHYTIDOPONERA 79 Fig. 2 --Cl0se,u p of a developed ovary from an unmated worker. Note that there are a few opaque oocytes squeezed together in each of the three ovarioles, and that the yolk in tttelbasal oocytes has a mottled appearance.
Recommended publications
  • Congeneric Phylogeography of Australian Ogyris Butterflies (Lepidoptera: Lycaenidae)
    Congeneric Phylogeography of Australian Ogyris Butterflies (Lepidoptera: Lycaenidae) Author Schmidt, Daniel J Published 2007 Thesis Type Thesis (PhD Doctorate) School School of Environmental Science DOI https://doi.org/10.25904/1912/2207 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/366723 Griffith Research Online https://research-repository.griffith.edu.au Congeneric phylogeography of Australian Ogyris butterflies (Lepidoptera: Lycaenidae) Daniel J. Schmidt B.Sc. (Hons) Australian Rivers Institute Faculty of Environmental Sciences, Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy, October 2006 ii iii Summary This study investigated spatial genetic structuring of two groups of Australian Ogyris butterflies (Lycaenidae). Ogyris represents one of several Australian endemic butterfly radiations that is well characterised in terms of basic biology but lacking in data useful for discriminating among the potential factors promoting divergence and speciation. A phylogeographic approach was used to document structuring in mitochondrial DNA markers (mtDNA) across the geographic range of two groups of closely related taxa. These include a pair of sister species: Ogyris zosine and O. genoveva, and the polytypic species O. amaryllis which is comprised of four subspecies. Topological relationships among recognised taxonomic units were tested and polyphyletic patterns investigated as a potential source of information relating to divergence and speciation. Sister species Ogyris zosine and O. genoveva were found to exhibit a polyphyletic relationship based on mtDNA. The deepest divergence within the group separated allopatric populations of O. zosine in northern Australia which do not correspond to a recognised taxonomic entity.
    [Show full text]
  • Ant Venoms. Current Opinion in Allergy and Clinical
    CE: Namrta; ACI/5923; Total nos of Pages: 5; ACI 5923 Ant venoms Donald R. Hoffman Brody School of Medicine at East Carolina University, Purpose of review Greenville, North Carolina, USA The review summarizes knowledge about ants that are known to sting humans and their Correspondence to Donald R. Hoffman, PhD, venoms. Professor of Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University, Recent findings 600 Moye Blvd, Greenville, NC 27834, USA Fire ants and Chinese needle ants are showing additional spread of range. Fire ants are Tel: +1 252 744 2807; e-mail: [email protected] now important in much of Asia. Venom allergens have been characterized and Current Opinion in Allergy and Clinical studied for fire ants and jack jumper ants. The first studies of Pachycondyla venoms Immunology 2010, 10:000–000 have been reported, and a major allergen is Pac c 3, related to Sol i 3 from fire ants. There are very limited data available for other ant groups. Summary Ants share some common proteins in venoms, but each group appears to have a number of possibly unique components. Further proteomic studies should expand and clarify our knowledge of these fascinating animals. Keywords ant, fire ant, jack jumper ant, phospholipase, sting, venom Curr Opin Allergy Clin Immunol 10:000–000 ß 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins 1528-4050 east [4] and P. sennaarensis in the middle east [5]. These Introduction two species are commonly referred to as Chinese needle Ants are among the most biodiverse organisms on earth. ants and samsum ants.
    [Show full text]
  • Hymenoptera: Formicidae
    16 The Weta 30: 16-18 (2005) Changes to the classification of ants (Hymenoptera: Formicidae) Darren F. Ward School of Biological Sciences, Tamaki Campus, Auckland University, Private Bag 92019, Auckland ([email protected]) Introduction This short note aims to update the reader on changes to the subfamily classification of ants (Hymenoptera: Formicidae). Although the New Zealand ant fauna is very small, these changes affect the classification and phylogeny of both endemic and exotic ant species in New Zealand. Bolton (2003) has recently proposed a new subfamily classification for ants. Two new subfamilies have been created, a revised status for one, and new status for four. Worldwide, there are now 21 extant subfamilies of ants. The endemic fauna of New Zealand is now classified into six subfamilies (Table 1), as a result of three subfamilies, Amblyoponinae, Heteroponerinae and Proceratiinae, being split from the traditional subfamily Ponerinae. Bolton’s (2003) classification also affects several exotic species in New Zealand. Three species have been transferred from Ponerinae: Amblyopone australis to Amblyoponinae, and Rhytidoponera chalybaea and R. metallica to Ectatomminae. Currently there are 28 exotic species in New Zealand (Table 1). Eighteen species have most likely come from Australia, where they are native. Eight are global tramp species, commonly transported by human activities, and two species are of African origin. Nineteen of the currently established exotic species are recorded for the first time in New Zealand as occurring outside their native range. This may result in difficulty in obtaining species-specific biological knowledge and assessing their likelihood of becoming successful invaders. In addition to the work by Bolton (2003), Phil Ward and colleagues at UC Davis have started to resolve the phylogenetic relationships among subfamilies and genera of all ants using molecular data (Ward et al, 2005).
    [Show full text]
  • Floral Volatiles Play a Key Role in Specialized Ant Pollination Clara De Vega
    FLORAL VOLATILES PLAY A KEY ROLE IN SPECIALIZED ANT POLLINATION CLARA DE VEGA1*, CARLOS M. HERRERA1, AND STEFAN DÖTTERL2,3 1 Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida de Américo Vespucio s/n, 41092 Sevilla, Spain 2 University of Bayreuth, Department of Plant Systematics, 95440 Bayreuth, Germany 3 Present address: University of Salzburg, Organismic Biology, Hellbrunnerstr. 34, 5020 Salzburg, Austria Running title —Floral scent and ant pollination * For correspondence. E-mail [email protected] Tel: +34 954466700 Fax: + 34 954621125 1 ABSTRACT Chemical signals emitted by plants are crucial to understanding the ecology and evolution of plant-animal interactions. Scent is an important component of floral phenotype and represents a decisive communication channel between plants and floral visitors. Floral 5 volatiles promote attraction of mutualistic pollinators and, in some cases, serve to prevent flower visitation by antagonists such as ants. Despite ant visits to flowers have been suggested to be detrimental to plant fitness, in recent years there has been a growing recognition of the positive role of ants in pollination. Nevertheless, the question of whether floral volatiles mediate mutualisms between ants and ant-pollinated plants still remains largely unexplored. 10 Here we review the documented cases of ant pollination and investigate the chemical composition of the floral scent in the ant-pollinated plant Cytinus hypocistis. By using chemical-electrophysiological analyses and field behavioural assays, we examine the importance of olfactory cues for ants, identify compounds that stimulate antennal responses, and evaluate whether these compounds elicit behavioural responses. Our findings reveal that 15 floral scent plays a crucial role in this mutualistic ant-flower interaction, and that only ant species that provide pollination services and not others occurring in the habitat are efficiently attracted by floral volatiles.
    [Show full text]
  • ACT, Australian Capital Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • The Little Things That Run the City How Do Melbourne’S Green Spaces Support Insect Biodiversity and Promote Ecosystem Health?
    The Little Things that Run the City How do Melbourne’s green spaces support insect biodiversity and promote ecosystem health? Luis Mata, Christopher D. Ives, Georgia E. Garrard, Ascelin Gordon, Anna Backstrom, Kate Cranney, Tessa R. Smith, Laura Stark, Daniel J. Bickel, Saul Cunningham, Amy K. Hahs, Dieter Hochuli, Mallik Malipatil, Melinda L Moir, Michaela Plein, Nick Porch, Linda Semeraro, Rachel Standish, Ken Walker, Peter A. Vesk, Kirsten Parris and Sarah A. Bekessy The Little Things that Run the City – How do Melbourne’s green spaces support insect biodiversity and promote ecosystem health? Report prepared for the City of Melbourne, November 2015 Coordinating authors Luis Mata Christopher D. Ives Georgia E. Garrard Ascelin Gordon Sarah Bekessy Interdisciplinary Conservation Science Research Group Centre for Urban Research School of Global, Urban and Social Studies RMIT University 124 La Trobe Street Melbourne 3000 Contributing authors Anna Backstrom, Kate Cranney, Tessa R. Smith, Laura Stark, Daniel J. Bickel, Saul Cunningham, Amy K. Hahs, Dieter Hochuli, Mallik Malipatil, Melinda L Moir, Michaela Plein, Nick Porch, Linda Semeraro, Rachel Standish, Ken Walker, Peter A. Vesk and Kirsten Parris. Cover artwork by Kate Cranney ‘Melbourne in a Minute Scavenger’ (Ink and paper on paper, 2015) This artwork is a little tribute to a minute beetle. We found the brown minute scavenger beetle (Corticaria sp.) at so many survey plots for the Little Things that Run the City project that we dubbed the species ‘Old Faithful’. I’ve recreated the map of the City of Melbourne within the beetle’s body. Can you trace the outline of Port Phillip Bay? Can you recognise the shape of your suburb? Next time you’re walking in a park or garden in the City of Melbourne, keep a keen eye out for this ubiquitous little beetle.
    [Show full text]
  • Distribution and Structure of Arthropod Communities in Relation to Resource Patches and Spatial Scale in Dryland Woodland Ecosystems
    Distribution and structure of arthropod communities in relation to resource patches and spatial scale in dryland woodland ecosystems Alan B. C. Kwok Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney, NSW, 2052 Australia PhD thesis March 2012 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Kwok First name: Alan Other name/s: Bing Choong Abbreviation for degree as given in the University calendar: PhD School: Biological, Earth and Environmental Faculty: Science Sciences Title: Distribution and structure of arthropod communities in relation to resource patches and spatial scale in dryland woodland ecosystems Abstract 350 words maximum: (PLEASE TYPE) In dryland ecosystems, resources such as water, nutrients and habitat are concentrated into discrete patches. This resource concentration occurs at fine (e.g. around trees, grasses or logs) and broad (e.g. habitat remnants within an agricultural matrix) scales. Arthropods, which include insects, spiders, and a range of other invertebrates, provide a range of critical ecosystem functions in drylands. Arthropods may be particularly sensitive to changes in resource concentration given their small size and habitat requirements. Limited research, however, has examined how arthropods respond to changes in resource concentration across different spatial scales. This thesis examines how the concentration of resources affects the distribution and structure of arthropod communities at multiple spatial scales in south-eastern Australia. Chapter 1 provides an overview of resource patchiness in arid and semi-arid ecosystems, and describes how it is known to affect the biota. Chapters 2 to 4 investigate how the fine-scale distribution of resources (plants, and plant-associated patches) affects the distribution and composition of arthropod communities at local (plant-plant) scales.
    [Show full text]
  • Picture As Pdf Download
    RESEARCH Causes of ant sting anaphylaxis in Australia: the Australian Ant Venom Allergy Study Simon G A Brown, Pauline van Eeden, Michael D Wiese, Raymond J Mullins, Graham O Solley, Robert Puy, Robert W Taylor and Robert J Heddle he prevalence of systemic allergy to ABSTRACT native ant stings in Australia is as high as 3% in areas where these Objective: To determine the Australian native ant species associated with ant sting T anaphylaxis, geographical distribution of allergic reactions, and feasibility of diagnostic insects are commonly encountered, such as Tasmania and regional Victoria.1,2 In one venom-specific IgE (sIgE) testing. large Tasmanian emergency department Design, setting and participants: Descriptive clinical, entomological and study, ant sting allergy was the most com- immunological study of Australians with a history of ant sting anaphylaxis, recruited in mon cause of anaphylaxis (30%), exceeding 2006–2007 through media exposure and referrals from allergy practices and emergency cases attributed to bees, wasps, antibiotics physicians nationwide. We interviewed participants, collected entomological or food.3 specimens, prepared reference venom extracts, and conducted serum sIgE testing Myrmecia pilosula (jack jumper ant [JJA]) against ant venom panels relevant to the species found in each geographical region. is theThe major Medical cause Journal of ant ofsting Australia anaphylaxis ISSN: Main outcome measures: Reaction causation attributed using a combination of ant 2 in Tasmania.0025-729X A 18double-blind, July 2011 195 randomised 2 69-73 identification and sIgE testing. placebo-controlled©The Medical Journaltrial has of Australiademonstrated 2011 Results: 376 participants reported 735 systemic reactions. Of 299 participants for whom the effectivenesswww.mja.com.au of JJA venom immuno- a cause was determined, 265 (89%; 95% CI, 84%–92%) had reacted clinically to Myrmecia therapyResearch (VIT) to reduce the risk of sting species and 34 (11%; 95% CI, 8%–16%) to green-head ant (Rhytidoponera metallica).
    [Show full text]
  • Adverse Reactions to Ants Other Than Imported Fire Ants John H
    Adverse reactions to ants other than imported fire ants John H. Klotz, PhD*; Richard D. deShazo, MD†; Jacob L. Pinnas, MD‡; Austin M. Frishman, PhD§; Justin O. Schmidt, PhD¶; Daniel R. Suiter, PhDʈ; Gary W. Price, MD**; and Stephen A. Klotz, MD‡ Objective: To identify ants other than Solenopsis invicta and Solenopsis richteri reported to cause adverse reactions in humans. Data Sources: We conducted a literature review to identify reports of medical reactions to ants other than S invicta and S richteri. Our review of medical and entomological literature on stinging ants was generated from MEDLINE and FORMIS, respectively, using the key words stinging ants and ant stings. The search was limited to articles in English published from 1966 to 2004 on MEDLINE and all years on FORMIS. We also present 3 new case reports of severe reactions to stings by 2 different species of ants, Pseudomyrmex ejectus and Hypoponera punctatissima. Study Selection: Articles that concerned anaphylactic (IgE-mediated) or anaphylactic-like (resembling anaphylaxis but mechanism unknown) immediate reactions to ant stings or bites were included in this review. Results: Taken together, our data demonstrate that S invicta and S richteri are not alone in their capability to cause serious allergic or adverse reactions. A diverse array of ant species belonging to 6 different subfamilies (Formicinae, Myrmeciinae, Ponerinae, Ectatomminae, Myrmicinae, and Pseudomyrmecinae) and 10 genera (Solenopsis, Formica, Myrmecia, Tetramorium, Pogonomyrmex, Pachycondyla, Odontomachus, Rhytidoponera, Pseudomyrmex, and Hypoponera) have now been shown to have this capability. Conclusion: Awareness that species other than imported fire ants may cause severe reactions should lead to more rapid evaluation and treatment and further investigation of the medical entomology of these ants.
    [Show full text]
  • Ants and Termites Increase Crop Yield in a Dry Climate
    ARTICLE Received 8 Oct 2010 | Accepted 24 Feb 2011 | Published 29 Mar 2011 DOI: 10.1038/ncomms1257 Ants and termites increase crop yield in a dry climate Theodore A. Evans1, Tracy Z. Dawes2, Philip R. Ward3 & Nathan Lo4 Agricultural intensification has increased crop yields, but at high economic and environmental cost. Harnessing ecosystem services of naturally occurring organisms is a cheaper but under-appreciated approach, because the functional roles of organisms are not linked to crop yields, especially outside the northern temperate zone. Ecosystem services in soil come from earthworms in these cooler and wetter latitudes; what may fulfill their functional role in agriculture in warmer and drier habitats, where they are absent, is unproven. Here we show in a field experiment that ants and termites increase wheat yield by 36% from increased soil water infiltration due to their tunnels and improved soil nitrogen. Our results suggest that ants and termites have similar functional roles to earthworms, and that they may provide valuable ecosystem services in dryland agriculture, which may become increasingly important for agricultural sustainability in arid climates. 1 CSIRO Ecosystem Sciences, Clunies Ross Street, Canberra, Australian Capital Territory 2600, Australia. 2 CSIRO Ecosystem Sciences, Vandelin Drive, Darwin, Northern Territory 0821, Australia. 3 CSIRO Plant Industry, Underwood Avenue, Perth, Western Australia 6014, Australia. 4 Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, University of Sydney, New South Wales 2006, Australia. Correspondence and requests for materials should be addressed to T.A.E. (email: [email protected]). NATURE COMMUNICATIONS | 2:262 | DOI: 10.1038/ncomms1257 | www.nature.com/naturecommunications © 2011 Macmillan Publishers Limited.
    [Show full text]
  • Sex Determination in the Hymenoptera: a Review of Models and Evidence
    Heredity 71 (1993) 421—435 Received 10 March 1993 Genetical Society of Great Britain Sex determination in the Hymenoptera: a review of models and evidence JAMES M. COOK Department of Genetics & Human Variation, La Trobe University, Bun doora 3083, Victoria, Australia Thehaploid males and diploid females of Hymenoptera have all chromosomes in the same proportions. This rules out most familiar sex-determining mechanisms, which rely on dosage differences at sex determination loci. Two types of model —genicbalance and complementary sex determination (CSD) —havebeen invoked for Hymenoptera. Experimental studies provide no good evidence for genic balance models, which are contradicted by the detection of diploid males in 33 disparate species. Furthermore, recent advances have shown that sex determination in the best- studied diploid animals does not depend on genic balance, removing the original justification for hymenopteran genic balance models. Instead, several Hymenoptera have single-locus CSD. In this system, sex locus heterozyotes are female while homozygotes and hemizygotes are male. Single- locus CSD does not apply to several inbreeding species and this probably reflects selection against the regular production of diploid males, which are sterile. A multilocus CSD model, in which heterozygosity at any one of several sex loci leads to female development has also been proposed. To date, multilocus CSD has not been demonstrated but several biases against its detection must be considered. CSD can apply to thelytokous races as long as the cytogenetic mechanism permits retention of sex locus heterozygosity. However, some thelytokous races clearly do not have CSD. The distribution of species with and without CSD suggests that this form of sex determination may be ancestral in the Hymenoptera.
    [Show full text]
  • Gavin Ballantyne Phd Thesis
    ANTS AS FLOWER VISITORS: FLORAL ANT-REPELLENCE AND THE IMPACT OF ANT SCENT-MARKS ON POLLINATOR BEHAVIOUR Gavin Ballantyne A Thesis Submitted for the Degree of PhD at the University of St. Andrews 2011 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/2535 This item is protected by original copyright Ants as flower visitors: floral ant-repellence and the impact of ant scent-marks on pollinator behaviour Gavin Ballantyne University of St Andrews 2011 Supervisor: Prof Pat Willmer - This thesis is dedicated to my grandparents, the half that are here and the half that have gone, and to taking photos of random things. - “Look in the mirror, and don't be tempted to equate transient domination with either intrinsic superiority or prospects for extended survival.” - Stephen Jay Gould “I am comforted and consoled in finding it immeasurably remote in time, gloriously lacking in any relevance for our day.” - Umberto Eco i Declarations Candidate's declarations I, Gavin Ballantyne, hereby certify that this thesis, which is approximately 59,600 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in June, 2007 and as a candidate for the degree of Ph.D. in Biology; the higher study for which this is a record was carried out in the University of St Andrews between 2007 and 2011.
    [Show full text]