Kinorhyncha: Cyclorhagida) Martin V

Total Page:16

File Type:pdf, Size:1020Kb

Kinorhyncha: Cyclorhagida) Martin V ARTICLE IN PRESS Organisms, Diversity & Evolution 8 (2008) 233–246 www.elsevier.de/ode Phylogenetic analysis of the Echinoderidae (Kinorhyncha: Cyclorhagida) Martin V. Sørensen Ancient DNA and Evolution Group, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark Received 10 July 2007; accepted 14 November 2007 Abstract The phylogeny of the kinorhynch family Echinoderidae is analyzed using morphological characters and parsimony as the optimization criterion. Thirty-six characters were coded in a matrix with eleven echinoderid terminals, representing all echinoderid genera and six non-echinoderid outgroup taxa. The ingroup includes Polacanthoderes martinezi and Cephalorhyncha liticola, newly described in a separate paper. The resulting most parsimonious trees support Polacanthoderes as the most basal echinoderid genus, followed by an unresolved clade with non-monophyletic Fissuroderes and monophyletic Cephalorhyncha and Echinoderes. r 2008 Gesellschaft fu¨ r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Cephalorhyncha; Phylogeny; Morphology; Echinoderes; Fissuroderes; Polacanthoderes Introduction Echinodera were treated as synonymous with the name ‘‘Kinorhyncha’’ that had been introduced by Reinhard Even though the kinorhynchs have been known for a (1885, 1887) and now applies to the whole phylum. reasonable amount of time, the group’s internal Present-day kinorhynch taxonomy was founded by relationships remain a puzzle. Only few studies have Zelinka (1896) who discriminated between the two main dealt with kinorhynch phylogeny (Neuhaus 1994, 1995; clades, Homalorhagida and Cyclorhagida. Echinoderi- Adrianov and Malakhov 1996, 1999; Kristensen 2002; dae was assigned to the latter, and considered as closely Neuhaus and Higgins 2002), all of them based on related to Centroderidae Zelinka, 1896. Until the mid theoretical considerations and discussions; thus, kinor- 1920s, more than 70 years after the first kinorhynch had hynch relationships have never been analyzed using been recorded by Dujardin (1851), only few species had modern numerical methods. The present study repre- been formally described. Then the known kinorhynch sents the first attempt to understand kinorhynch biodiversity increased dramatically with the publication phylogeny using morphological data analyzed under a of Zelinka’s (1928) monumental ‘‘Monographie der cladistic approach. The analyses focus on the relation- Echinodera’’, in which he described a total of 48 new ships within the family Echinoderidae. species, and several new genera. In his classification, The family Echinoderidae was originally erected by Zelinka assigned four genera to Echinoderidae. Un- Bu¨ tschli (1876) to contain the single kinorhynch species, fortunately, two of these genera, Habroderes and Echinoderes dujardini Clapare` de, 1863. For some Habroderella, were mostly based on specimens that time, the derived higher-taxon names Echinoderida or have since turned out to be juveniles of Echinoderes,and most of the corresponding names are considered as E-mail address: [email protected]. nomina dubia today. The two species of the fourth genus 1439-6092/$ - see front matter r 2008 Gesellschaft fu¨ r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. doi:10.1016/j.ode.2007.11.002 ARTICLE IN PRESS 234 M.V. Sørensen / Organisms, Diversity & Evolution 8 (2008) 233–246 recognized by Zelinka, Echinoderella, have been assigned 1999; and Zelinkaderes brightae Sørensen, Heiner, Ziemer to Echinoderes as well. Hence, the family Echinoderidae & Neuhaus, 2007. The following 11 echinoderid species, became monogeneric again for some time, containing representing all known echinoderid genera, were selected Echinoderes only (for further historic overview of as ingroup taxa: Polacanthoderes martinezi Sørensen, kinorhynch classification, see Higgins 1971). Recently, 2008; Cephalorhyncha liticola Sørensen, 2008; C. asiatica the genera Cephalorhyncha and Fissuroderes have been (Adrianov, 1989); C. nybakkeni (Higgins 1986); Fissu- added to Echinoderidae (Neuhaus and Blasche 2006); roderes higginsi Neuhaus & Blasche, 2006; F. novaezea- thus, the family comprises three genera today. landia Neuhaus & Blasche, 2006; F. papai Neuhaus & In a separate paper in the present issue of ODE Blasche, 2006; F. rangi Neuhaus & Blasche, 2006; (Sørensen 2008), a new echinoderid genus and species, F. thermoi Neuhaus & Blasche, 2006; Echinoderes and a new species of Cephalorhyncha are described. spinifurca Sørensen, Heiner & Ziemer, 2005; and Character states of these new taxa have been included in E. truncatus Higgins, 1983. the present paper’s data matrix, together with selected All character codings are based either on published character states of other known echinoderid species, in descriptions or on personal observations. Documenta- order to analyze the relationships within the diverse tion of most previously unreported character traits is family Echinoderidae. included in the character descriptions below. The main literature sources for character codings per species are as follows. Paracentrophyes quadridentatus: Higgins (1983), Material and methods Neuhaus (1995). Campyloderes macquariae: Higgins (1967), Neuhaus (2004). Antygomonas paulae: Sørensen Morphological traits of 17 terminal taxa were coded (2007). Dracoderes abei: Higgins and Shirayama (1990). in a character state matrix (Table 1). The matrix Dracoderes orientalis: Adrianov and Malakhov (1999). includes 36 characters, 32 of them bistate and 4 Zelinkaderes brightae: Sørensen et al. (2007). Pola- multistate, resulting in a total of 76 character states. canthoderes martinezi: Sørensen (2008). Cephalorhyncha All characters were coded as non-additive, except for liticola: Sørensen (2008). Cephalorhyncha asiatica: character 5 which was ordered. Detailed descriptions of Adrianov (1989), Adrianov and Malakhov (1999), all characters and character states are given below. Neuhaus and Blasche (2006). Cephalorhyncha nybakke- Outgroup taxa selected for the analysis are the ni: Higgins (1986a), Neuhaus and Blasche (2006). All homalorhagid Paracentrophyes quadridentatus (Zelinka, five species of Fissuroderes: Neuhaus and Blasche (2006). 1928) and five cyclorhagid non-echinoderid species: Echinoderes spinifurca: Sørensen et al. (2005). Echino- Antygomonas paulae Sørensen, 2007; Campyloderes deres truncatus: Higgins (1983), Sørensen (2006). macquariae (Johnston, 1938); Dracoderes abei Higgins Most species included in the data matrix were & Shirayama, 1990; D. orientalis Adrianov & Malakhov, examined with a light microscope; all except the species Table 1. Morphological character state matrix for analysis of relationships among selected kinorhynch species Character 000000000111111111122222222223333333 Species 123456789012345678901234567890123456 Paracentrophyes quadridentatus 1000000000––––11–––00–1–––––0––00000 Campyloderes macquariae –1000000101111110001100111100––00000 Antygomonas paulae 02000000111111110001100?11100––00000 Zelinkaderes brightae 02002000110001110001100100000––00000 Dracoderes abei 110100010201110011000–1100100––00000 Dracoderes orientalis 110?00010201110011000–100000?––00000 Polacanthoderes martinezi 020200010–0000001000111000110––01000 Cephalorhyncha liticola 021211?1120000001010111000110––00000 Cephalorhyncha asiatica 020211111200000010101110001111100000 Cephalorhyncha nybakkeni 021?11111200000010101??0001011?00000 Fissuroderes higginsi ?20200011200000010101110001110110111 Fissuroderes novaezealandia ?20?000112000000101011100010101p0ppp Fissuroderes papai ?20?00111200000010101110001111000000 Fissuroderes rangi 020?0001120000001000111000001100p000 Fissuroderes thermoi ?20200011200000010101110001010110111 Echinoderes truncatus 02022001120000001010111000100––00010 Echinoderes spinifurca 02022001120000001010111000100––00000 ? ¼ missing data; – ¼ inapplicable character state; p ¼ character state coded as polymorphic. ARTICLE IN PRESS M.V. Sørensen / Organisms, Diversity & Evolution 8 (2008) 233–246 235 of Fissuroderes, Dracoderes orientalis, Cephalorhyncha 4. Number of trichoscalids: 0 ¼ 14 trichoscalids; 1 ¼ 7 asiatica and C. nybakkeni were examined with SEM as trichoscalids; 2 ¼ 6 trichoscalids. Trichoscalids are well. Specimens of Fissuroderes and C. asiatica were small, modified sensorial head appendages with a loaned from the Museum fu¨ r Naturkunde, Berlin, featherlike appearance (Fig. 2E and F). They are Germany. Specimens of Paracentrophyes quadridentatus located in the posteriormost introvert ring (ring 07), were collected from muddy sediment at 42 m depth but usually they are not attached to the same outside of Kaldbak Fjord on the Faroe Islands radii as the scalids in the six more anterior rings. (6210400100N0614602300W) and kindly provided by Prof. Instead, their exact location is often related to R.M. Kristensen. The author collected specimens of another kind of structures, the trichoscalid plates, Campyloderes macquariae from intertidal aggregations which are small plates attached to the placids of the of the coralline alga Corallina officinalis in Kaldbak neck (Figs. 1A and B, 2F). However, trichoscalid Fjord, Faroe Islands (6210302800N0614904000W). Speci- plates can be missing in some species, e.g. in mens of Dracoderes abei were collected at the species’ Antygomonas paulae (Fig. 2E). In some kinorhynch type locality in Tanabe Bay, Japan (Higgins and species, e.g. in A. paulae, Campyloderes macquariae Shirayama 1990). Detailed information from SEM and
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Autor: T-I Ij Ii 11 Iil U Li U Titel: H I] Il !J Band: I~ Ii Fj Ii [I S
    ;; ij Il 1I U it li ii H 13 u Autor: t-i ij ii 11 iil u li U Titel: H I] Il !J Band: I~ Ii fj iI [i s. 181 - 201. li 13 U li U It ii I,i Ii U t-i il il ii 11 il 11 li Il il lil U Ii il 1I l~ li Ii vörhanuen 1I 1,1 ti U n u 1I ii It 11 u I1 U li 1.1 it jj u ii u n 11 ii 11 H.l l,I II n il ii li ii ii U Ii U li 11 I] II !l !:! 1'1 I1 6 ?e> O$-15k~w'rl~1i. 180 T.A. Platonova& L. V. Kulangieva: Marine £noplido- ZOOSYST. ROSSICA Val. 3 @ Zoological Institute, Sl.Peter~ 1995 pharynx aod proposal of two new families. Zool. Tchesunov, A. V. 1991. On the slruclure of thc cephaJic Zhurn., 69(8): 5-17. (In Russian), culiclc in frcc-living ncmatodcsof thc famHy Linho- - Tchesunov, A.V. 1990b. Long-hairy Xyalida (Ncma- mocidae (Nemaloda. Chromadoria, Siphonolaimo- loda, Chromadoria, Monhystcrida) in thc Whitc ideaL Zoo!. Zhurn., 70(5): 21-27. (In RussianL The phylogeny and classification ofthe phylum Sca: ncw spccics, new combinations arid s~atusof Ih~ genus Trichotheristus. Zoo!. Zhurn., 69(10): 5-19. Reeei."ed 27 Mo)! /99J (In R!JssianL Cephalorhyncha A.V. Adrianov & V.V. Malakhov Adrianov, A.V. & Malakhoy, V. V. 1995. Thc phylogcny and c1assification of thc phylum Cephalorhyncha. Zoosystematica Rossica, 3(2),' 1994: 181-201. The phylum Ccphalorhyncha is a laxon including headproboscis worms: Priapulida, Loricifera, Kinorhyncha, Nematomorpha.
    [Show full text]
  • Measuring Biodiversity and Extinction-Present and Past
    Title Measuring Biodiversity and Extinction-Present and Past Authors Sigwart, JD; Bennett, KD; Edie, SM; Mander, L; Okamura, B; Padian, K; Wheeler, Q; Winston, JE; Yeung, NW Date Submitted 2019-03-01 Page 1 of 18 Integrative and Comparative Biology Measuring Biodiversity and Extinction – Present and Past Julia D. Sigwart(1,2), K.D. Bennett(1,3), Stewart M. Edie(4), Luke Mander(5), Beth Okamura(6), Kevin Padian(2), Quentin Wheeler(7), Judith Winston(8), Norine Yeung(9) 1. Marine Laboratory, Queen’s University Belfast, Portaferry, N. Ireland 2. University of California Museum of Paleontology, University of California, Berkeley, Berkeley, California 3. School of Geography and Sustainable Development, University of St Andrews, Scotland 4. Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 5. School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, UK 6. The Natural History Museum, London, UK 7. College of Environmental Science and Forestry, Syracuse, New York 8. Smithsonian Marine Station, Fort Pierce, Florida 9. Bishop Museum, Honolulu, Hawai‘i Abstract How biodiversity is changing in our time represents a major concern for all organismal biologists. Anthropogenic changes to our planet are decreasing species diversity through the negative effects of pollution, habitat destruction, direct extirpation of species, and climate change. But major biotic changes – including those that have both increased and decreased species diversity – have happened before in Earth’s history. Biodiversity dynamics in past eras provide important context to understand ecological responses to current environmental change. The work of assessing biodiversity is woven into ecology, environmental science, conservation, Integrative and Comparative Biology Page 2 of 18 paleontology, phylogenetics, evolutionary and developmental biology, and many other disciplines; yet, the absolute foundation of how we measure species diversity depends on taxonomy and systematics.
    [Show full text]
  • Towards a Management Hierarchy (Classification) for the Catalogue of Life
    TOWARDS A MANAGEMENT HIERARCHY (CLASSIFICATION) FOR THE CATALOGUE OF LIFE Draft Discussion Document Rationale The Catalogue of Life partnership, comprising Species 2000 and ITIS (Integrated Taxonomic Information System), has the goal of achieving a comprehensive catalogue of all known species on Earth by the year 2011. The actual number of described species (after correction for synonyms) is not presently known but estimates suggest about 1.8 million species. The collaborative teams behind the Catalogue of Life need an agreed standard classification for these 1.8 million species, i.e. a working hierarchy for management purposes. This discussion document is intended to highlight some of the issues that need clarifying in order to achieve this goal beyond what we presently have. Concerning Classification Life’s diversity is classified into a hierarchy of categories. The best-known of these is the Kingdom. When Carl Linnaeus introduced his new “system of nature” in the 1750s ― Systema Naturae per Regna tria naturae, secundum Classes, Ordines, Genera, Species …) ― he recognised three kingdoms, viz Plantae, Animalia, and a third kingdom for minerals that has long since been abandoned. As is evident from the title of his work, he introduced lower-level taxonomic categories, each successively nested in the other, named Class, Order, Genus, and Species. The most useful and innovative aspect of his system (which gave rise to the scientific discipline of Systematics) was the use of the binominal, comprising genus and species, that uniquely identified each species of organism. Linnaeus’s system has proven to be robust for some 250 years. The starting point for botanical names is his Species Plantarum, published in 1753, and that for zoological names is the tenth edition of the Systema Naturae published in 1758.
    [Show full text]
  • Kinorhyncha:Cyclorhagida
    JapaneseJapaneseSociety Society ofSystematicZoologyof Systematic Zoology Species Diversity, 2002, 7, 47-66 Echinoderesaureus n. sp. (Kinorhyncha: Cyclorhagida) from Tanabe Bay (Honshu Island), Japan, with a Key to the Genus Echinoderes Andrey V.Adrianovi, Chisato Murakami2and Yoshihisa Shirayama2 iinstitute ofMarine BiotQgy, Fkir-East Branch ofRetssian Accutemp of Sciences, Palchevskly St. IZ VIadivostok 690041, Russia 2Seto Marine Btolqgical Laboratorly, Its,oto U}ziversdy, Shirahama 459, IVishimuro, Vliakayama, 649-2211 Jicipan (Received 18 May 2001; Accepted 10 December 2oo1) A new species of echinoderid kinorhynch, Echinoderes aureus, is de- scribed and illustrated using a differential interference contrast microscope with Nomarski optics. The kinorhynchs were collected from washings of a brown alga, Padina arborescens Holmes, growing in tide pools in Tanabe Bay, Honshu Island, Japan. Diagnostic characters of E. aureLts are the pres- ence of middorsal spines on segments 6-10, lateral spines/tubu}es on seg- ments4 and 7-12, a pair of remarkably large subcuticular scars in a subven- tral position on segment 3, and an ineomplete rnidventral articulation on segment 4. The positions of numerous sensory-glandular organs, the sizes of various lateral spinesltubules, and the shapes of the terminal tergal and sternal extensions are also diagnostic. Echinoderes aureus constitutes the ' 59th valid species o ± the genus Echinoderes and the 15th speeies described from the Pacific Ocean. This is the fourth representative of Pacific ki- norhynchs found only in the intertidal zone and the second Pacific Ebhin- oderes living on macroalgae in tide pools, A dichotomous key to all 59 species is provided. Key Words: kinorhynch, taxonumy, Echinoderes, key, placid, spine, tubule, setae Introduction Kinorhyncha constitutes a taxon of meiobenthic, free-living, segmented and spiny marine invertebrates, generally less than lmm in length.
    [Show full text]
  • The Enigmatic Kinorhynch Cateria Styx Gerlach, 1956 E a Sticky Son of a Beach
    Zoologischer Anzeiger xxx (xxxx) xxx Contents lists available at ScienceDirect Zoologischer Anzeiger journal homepage: www.elsevier.com/locate/jcz Research paper The enigmatic kinorhynch Cateria styx Gerlach, 1956 e A sticky son of a beach * María Herranz a, c, , Maikon Di Domenico b, Martin V. Sørensen c, 1, Brian S. Leander a, 1 a Departments of Zoology and Botany, Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada b Centro de Estudos do Mar, Universidade Federal do Parana, Pontal do Parana, Brazil c Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark article info abstract Article history: Since its discovery in the mid-1950'ies, Cateria has been an enigmatic kinorhynch genus due to its Received 21 February 2019 aberrant worm-like shape and extremely thin cuticle. However, the rare occurrence of the species, only Received in revised form found in sandy intertidal habitats, and the poor preservation of the type material have hampered 16 April 2019 detailed studies of the genus over time. Now, sixty years after the original description of Cateria styx,we Accepted 24 May 2019 present an extensive morphological and functional study based on new material collected from its type Available online xxx locality in Macae, Brazil. We combine live observations with detailed scanning electron microscopy data, new light microscopy material, confocal laser scanning microscopy and three-dimensional rendering. Keywords: Kinorhyncha These observations show that C. styx displays a complex array of cuticular structures (spines, spinoscalids Morphology and extraordinarily complex cuticular ornamentation) that we interpret to be adaptations for mechanical Adhesion adhesion, through friction and interlocking, in an interstitial habitat; the enigmatic dorsal organ, is a Friction hydrostatic structure which function is inferred to be adhesive.
    [Show full text]
  • A Review on Taxonomy of Phylum Kinorhyncha
    Open Journal of Marine Science, 2020, 10, 260-294 https://www.scirp.org/journal/ojms ISSN Online: 2161-7392 ISSN Print: 2161-7384 A Review on Taxonomy of Phylum Kinorhyncha C. Jeeva, P. M. Mohan, P. Ragavan, V. Muruganantham Department of Ocean Studies and Marine Biology, Pondicherry University, Brookshabad Campus, Port Blair, Andaman and Nicobar Islands, India How to cite this paper: Jeeva, C., Mo- Abstract han, P.M., Ragavan, P. and Muruganan- tham, V. (2020) A Review on Taxonomy Kinorhyncha is exclusively marine, holobenthic, free-living, meiofaunal spe- of Phylum Kinorhyncha. Open Journal of cies found in all marine habitats in the world. However, information on geo- Marine Science, 10, 260-294. graphical distribution and taxonomical distributional status of Kinorhyncha https://doi.org/10.4236/ojms.2020.104020 are needed further understanding. This research article presents a compiled, Received: September 10, 2020 up-to-date checklist of the Phylum Kinorhyncha based on bibliographical Accepted: October 27, 2020 survey and revision of taxon names. Present checklist of this phylum com- Published: October 30, 2020 prises 271 species belonging to 30 genera and 13 families. The families are Copyright © 2020 by author(s) and distributed under three orders, Echinorhagata Sørensen et al. 2015, Kentror- Scientific Research Publishing Inc. hagata Sørensen et al. 2015, Xenosomata Zelinka, 1907. Among the 271 valid This work is licensed under the Creative species, in the last five years 82 new species emerged, two new orders and Commons Attribution International three families were described. It also includes nine new genera. This checklist License (CC BY 4.0).
    [Show full text]
  • The Palaeoscolecida and the Evolution of the Ecdysozoa Andrey Yu
    The Palaeoscolecida and the evolution of the Ecdysozoa Andrey Yu. Zhuravlev1, José Antonio Gámez Vintaned2 and Eladio Liñán1 1Área y Museo de Paleontología, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, E-50009 Zaragoza, Spain 2Área de Paleontología, Departamento de Geologica, Facultad de Ciencias Biológicas, Univeristat de València, C/ Doctor Moliner, 50, E-46100 Burjassot, Spain Email: [email protected] AbstrAct rÉsUMÉ Palaeoscolecidans are a key group for understanding the ear- Les Paléoscolécides sont un groupe clé pour la compréhen- ly evolution of the Ecdysozoa. The Palaeoscolecida possess sion des débuts de l’évolution des Ecdysozoa. Les Pal- a terminal mouth and an anus, an invertible proboscis with aeoscolecida possèdent une bouche terminale et un anus, pointed scalids, a thick integument of diverse plates, sensory un proboscis inversible aux scalides pointues, un tégument papillae and caudal hooks. These are features that draw a épais de plaques diverses, des papilles sensorielles et des secret out of these worms, indicating palaeoscolecidan af- crochets caudaux. Ceux-ci sont des traits qui tirent un secret finities with the phylum Cephalorhyncha, which embraces de ces vers, ce qui indique des affinités paléoscolecides avec priapulids, kinorhynchs, loriciferans and nematomorphs. At le phylum des Cephalorhyncha qui inclut les priapulides, les the same time, the Palaeoscolecida share a number of char- kinorhynches, les loricifères et les nématomorphes. Cepen- acters with the lobopod-bearing Cambrian ecdysozoans, the dant, les Palaeoscolecida ont aussi quelques-uns des mêmes Xenusia. Xenusians commonly possess a terminal mouth, caractères que les Xenusia, ces écdysozaires cambriens qui a proboscis (although not retractable), and a thick integu- portaient des lobopodes.
    [Show full text]
  • Cell Proliferation Pattern and Twist Expression in an Aplacophoran
    RESEARCH ARTICLE Cell Proliferation Pattern and Twist Expression in an Aplacophoran Mollusk Argue Against Segmented Ancestry of Mollusca EMANUEL REDL1, MAIK SCHERHOLZ1, TIM WOLLESEN1, CHRISTIANE TODT2, 1∗ AND ANDREAS WANNINGER 1Faculty of Life Sciences, Department of Integrative Zoology, University of Vienna, Vienna, Austria 2University Museum, The Natural History Collections, University of Bergen, Bergen, Norway ABSTRACT The study of aplacophoran mollusks (i.e., Solenogastres or Neomeniomorpha and Caudofoveata or Chaetodermomorpha) has traditionally been regarded as crucial for reconstructing the morpho- logy of the last common ancestor of the Mollusca. Since their proposed close relatives, the Poly- placophora, show a distinct seriality in certain organ systems, the aplacophorans are also in the focus of attention with regard to the question of a potential segmented ancestry of mollusks. To contribute to this question, we investigated cell proliferation patterns and the expression of the twist ortholog during larval development in solenogasters. In advanced to late larvae, during the outgrowth of the trunk, a pair of longitudinal bands of proliferating cells is found subepithelially in a lateral to ventrolateral position. These bands elongate during subsequent development as the trunk grows longer. Likewise, expression of twist occurs in two laterally positioned, subepithelial longitudinal stripes in advanced larvae. Both, the pattern of proliferating cells and the expression domain of twist demonstrate the existence of extensive and long-lived mesodermal bands in a worm-shaped aculiferan, a situation which is similar to annelids but in stark contrast to conchifer- ans, where the mesodermal bands are usually rudimentary and ephemeral. Yet, in contrast to annelids, neither the bands of proliferating cells nor the twist expression domain show a sepa- ration into distinct serial subunits, which clearly argues against a segmented ancestry of mollusks.
    [Show full text]
  • Two New Species of Echinoderes (Kinorhyncha: Cyclorhagida) from the Gulf of Mexico
    ORIGINAL RESEARCH ARTICLE published: 27 May 2014 MARINE SCIENCE doi: 10.3389/fmars.2014.00008 Two new species of Echinoderes (Kinorhyncha: Cyclorhagida) from the Gulf of Mexico Martin V. Sørensen 1* and Stephen C. Landers 2 1 Geogenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark 2 Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA Edited by: Comprehensive sampling of meiofauna along the northern continental slope in the Gulf Tito Monteiro Da Cruz Lotufo, of Mexico has revealed a diverse kinorhynch fauna of undescribed species. The present Universidade Federal do Ceara, contribution includes the description of two new species of the cyclorhagid genus Brazil Echinoderes. Echinoderes augustae sp. nov. is recognized by the presence of acicular Reviewed by: Fernando Pardos, Universidad spines in middorsal positions on segments 4–8, and in lateroventral positions on segments Complutense de Madrid, Spain 6–9, tubes in lateroventral positions on segments 2–5, midlateral positions on segment Maikon Di Domenico, University of 4, and in sublateral positions on segment 8. It furthermore has glandular cell outlets Campinas, Brazil type 2 in subdorsal positions of segment 2, a middorsal protuberance-like extension *Correspondence: from the intersegmental border between segments 10 and 11, and conspicuously short Martin V. Sørensen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark and stout lateral terminal spines. Echinoderes skipperae sp. nov. has acicular spines in e-mail: [email protected] middorsal positions on segments 4, 6, and 8, and in lateroventral positions on segments 8 and 9, tubes in sublateral and ventrolateral positions on segment 2, in lateroventral positions on segment 5, in lateral accessory positions on segment 8, and in laterodorsal positions on segment 10.
    [Show full text]
  • Animal Phylogeny and the Ancestry of Bilaterians: Inferences from Morphology and 18S Rdna Gene Sequences
    EVOLUTION & DEVELOPMENT 3:3, 170–205 (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences Kevin J. Peterson and Douglas J. Eernisse* Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA; and *Department of Biological Science, California State University, Fullerton CA 92834-6850, USA *Author for correspondence (email: [email protected]) SUMMARY Insight into the origin and early evolution of the and protostomes, with ctenophores the bilaterian sister- animal phyla requires an understanding of how animal group, whereas 18S rDNA suggests that the root is within the groups are related to one another. Thus, we set out to explore Lophotrochozoa with acoel flatworms and gnathostomulids animal phylogeny by analyzing with maximum parsimony 138 as basal bilaterians, and with cnidarians the bilaterian sister- morphological characters from 40 metazoan groups, and 304 group. We suggest that this basal position of acoels and gna- 18S rDNA sequences, both separately and together. Both thostomulids is artifactal because for 1000 replicate phyloge- types of data agree that arthropods are not closely related to netic analyses with one random sequence as outgroup, the annelids: the former group with nematodes and other molting majority root with an acoel flatworm or gnathostomulid as the animals (Ecdysozoa), and the latter group with molluscs and basal ingroup lineage. When these problematic taxa are elim- other taxa with spiral cleavage. Furthermore, neither brachi- inated from the matrix, the combined analysis suggests that opods nor chaetognaths group with deuterostomes; brachiopods the root lies between the deuterostomes and protostomes, are allied with the molluscs and annelids (Lophotrochozoa), and Ctenophora is the bilaterian sister-group.
    [Show full text]