Live Pd in the Early Solar System and Implications for Planetary Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curt Teich Postcard Archives Towns and Cities
Curt Teich Postcard Archives Towns and Cities Alaska Aialik Bay Alaska Highway Alcan Highway Anchorage Arctic Auk Lake Cape Prince of Wales Castle Rock Chilkoot Pass Columbia Glacier Cook Inlet Copper River Cordova Curry Dawson Denali Denali National Park Eagle Fairbanks Five Finger Rapids Gastineau Channel Glacier Bay Glenn Highway Haines Harding Gateway Homer Hoonah Hurricane Gulch Inland Passage Inside Passage Isabel Pass Juneau Katmai National Monument Kenai Kenai Lake Kenai Peninsula Kenai River Kechikan Ketchikan Creek Kodiak Kodiak Island Kotzebue Lake Atlin Lake Bennett Latouche Lynn Canal Matanuska Valley McKinley Park Mendenhall Glacier Miles Canyon Montgomery Mount Blackburn Mount Dewey Mount McKinley Mount McKinley Park Mount O’Neal Mount Sanford Muir Glacier Nome North Slope Noyes Island Nushagak Opelika Palmer Petersburg Pribilof Island Resurrection Bay Richardson Highway Rocy Point St. Michael Sawtooth Mountain Sentinal Island Seward Sitka Sitka National Park Skagway Southeastern Alaska Stikine Rier Sulzer Summit Swift Current Taku Glacier Taku Inlet Taku Lodge Tanana Tanana River Tok Tunnel Mountain Valdez White Pass Whitehorse Wrangell Wrangell Narrow Yukon Yukon River General Views—no specific location Alabama Albany Albertville Alexander City Andalusia Anniston Ashford Athens Attalla Auburn Batesville Bessemer Birmingham Blue Lake Blue Springs Boaz Bobler’s Creek Boyles Brewton Bridgeport Camden Camp Hill Camp Rucker Carbon Hill Castleberry Centerville Centre Chapman Chattahoochee Valley Cheaha State Park Choctaw County -
Report of the United States National Museum
— THE METEORITE COLLECTION IN THE U. S. NATIONAL MUSEUM; A CATALOGUE OF METEORITES REPRESENTED NOVEMBER 1, 1886, By F. W. Clarke. The following catalogue has been prepared mainly to facilitate ex- changes and to aid in the upbuilding of the collection. In addition to the usual information as to title, date of fall, and weight of specimen, it has beeu thought well to give the source from which each example was obtained ; and it may be interesting to note that the meteorites ac- credited to Dr. J. Berrien. Lindsley were mainly received by him from the late Dr. J. Lawrence Smith. In the catalogue of the Shepard col- lection, now on deposit in the Museum, the arrangement of Professor Shepard himself has been followed without change. Including the Shepard meteorites, over 200 falls are now on exhibition, giving the entire collection a very respectable place among the larger collections of the world. The Tucson iron is unique, and therefore a cut of it is inserted. METEORIC IRONS. 1. Scriba, Oswego County, N. Y. Fouud about 1834. Fragment, 9.15 grammes. By exchange from S. C. H. Bailey. 2. Burlington, Otsego County, N. Y. Ploughed up previous to 1819. Weight of specimen, 76.87 grammes. By exchange from Prof. C. U. Shepard. 3. Lockport, Niagara County, N. Y. Ploughed up earlier thau 1845. Slice weigh- ing 155 grammes. By exchange from the cabinet of Yale College. 4. Jenny's Cheek, Wayne County, W. Va. Found in 1884. Several small frag- ments, 25.5 grammes in all; largest fragment, 15.3 grammes. -
The Origin of S-Process Isotope Heterogeneity in the Solar Protoplanetary Disk
The origin of s-process isotope heterogeneity in the solar protoplanetary disk Mattias Ek1,2*, Alison C. Hunt1, Maria Lugaro3,4, Maria Schönbächler1 Preprint version of manuscript published in Nature Astronomy on December 9th 2019 (https://doi.org/10.1038/s41550-019-0948-z). Online, free-for-all, access to the published pdf is available through the Springer Nature SharedIt initiative here. 1 Institute for Geochemistry and Petrology, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland. 2 Bristol Isotope Group, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom. 3 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, H-1121 Budapest, Hungary. 4 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800, Australia. *e-mail: [email protected] 1 Rocky asteroids and planets display nucleosynthetic isotope variations that are attributed to the heterogeneous distribution of stardust from different stellar sources in the solar protoplanetary disk. Here we report new high precision palladium isotope data for six iron meteorite groups, which display smaller nucleosynthetic isotope variations than the more refractory neighbouring elements. Based on this observation we present a new model in which thermal destruction of interstellar medium dust results in an enrichment of s-process dominated stardust in regions closer to the Sun. We propose that stardust is depleted in volatile elements due to incomplete condensation of these elements into dust around asymptotic giant branch (AGB) stars. This led to the smaller nucleosynthetic variations for Pd reported here and the lack of such variations for more volatile elements. -
Geographic Names
GEOGRAPHIC NAMES CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES ? REVISED TO JANUARY, 1911 WASHINGTON GOVERNMENT PRINTING OFFICE 1911 PREPARED FOR USE IN THE GOVERNMENT PRINTING OFFICE BY THE UNITED STATES GEOGRAPHIC BOARD WASHINGTON, D. C, JANUARY, 1911 ) CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES. The following list of geographic names includes all decisions on spelling rendered by the United States Geographic Board to and including December 7, 1910. Adopted forms are shown by bold-face type, rejected forms by italic, and revisions of previous decisions by an asterisk (*). Aalplaus ; see Alplaus. Acoma; township, McLeod County, Minn. Abagadasset; point, Kennebec River, Saga- (Not Aconia.) dahoc County, Me. (Not Abagadusset. AQores ; see Azores. Abatan; river, southwest part of Bohol, Acquasco; see Aquaseo. discharging into Maribojoc Bay. (Not Acquia; see Aquia. Abalan nor Abalon.) Acworth; railroad station and town, Cobb Aberjona; river, IVIiddlesex County, Mass. County, Ga. (Not Ackworth.) (Not Abbajona.) Adam; island, Chesapeake Bay, Dorchester Abino; point, in Canada, near east end of County, Md. (Not Adam's nor Adams.) Lake Erie. (Not Abineau nor Albino.) Adams; creek, Chatham County, Ga. (Not Aboite; railroad station, Allen County, Adams's.) Ind. (Not Aboit.) Adams; township. Warren County, Ind. AJjoo-shehr ; see Bushire. (Not J. Q. Adams.) Abookeer; AhouJcir; see Abukir. Adam's Creek; see Cunningham. Ahou Hamad; see Abu Hamed. Adams Fall; ledge in New Haven Harbor, Fall.) Abram ; creek in Grant and Mineral Coun- Conn. (Not Adam's ties, W. Va. (Not Abraham.) Adel; see Somali. Abram; see Shimmo. Adelina; town, Calvert County, Md. (Not Abruad ; see Riad. Adalina.) Absaroka; range of mountains in and near Aderhold; ferry over Chattahoochee River, Yellowstone National Park. -
Handbook of Iron Meteorites, Volume 3 (Willow Creek – Wood's Mountian)
Willamette - Willow Creek 1321 Stage four would be the penetration of the atmos Williamstown. See Kenton County phere. However, no remnants of the associated sculpturing (Williamstown) are to be seen today. The fusion crust and heat-affected o:2 zones are all removed by weathering. Immediately after its landing, the external shape of Willamette may have re Willow Creek, Wyoming, U.S.A. sembled that of Morito rather closely. Stage five is the final long-term exposure in the humid 43°26'N, 106° 46'W; about 1,800 m Oregon valley forest during which the deep cavities, partially penetrating and generally perpendicular to the Coarse octahedrite, Og. Bandwidth 1.40±0.25 mm. Partly recrystal topside of the mass, were formed. While no large-scale lized . HV 152±6. texture, such as silicate inclusions, can be considered Group IIIE. 8.76% Ni, about 0.35% P, 16.9 ppm Ga, 36.4 ppm Ge, responsible for the curious corrosion progress, it is possible 0 .05 ppm lr. that the very distinct troilite filaments have aided in the weathering. These lanes of fine-grained troilite, kamacite HISTORY and taenite would probably provide easy diffusion paths A mass of 112.5 pounds (51 kg) was found by John studded with electrochemical cells and with dilute sulfuric Forbes of Arminto, Wyoming, near Willow Creek, Natrona acid from decomposed troilite, where the kamacite phase County, about 1914. For a long time it was in the would provide the anodic areas and dissolve first. The final possession of the Forbes family, but in 1934 the meteorite product, the deeply carved Willamette mass, must, however, be seen to be believed. -
New Insights Into the Mineralogy and Weathering of the Meridiani Planum Meteorite, Mars
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stirling Online Research Repository Meteoritics & Planetary Science 46, Nr 1, 21–34 (2011) doi: 10.1111/j.1945-5100.2010.01141.x New insights into the mineralogy and weathering of the Meridiani Planum meteorite, Mars Iris FLEISCHER1*, Christian SCHRO¨ DER2,Go¨ star KLINGELHO¨ FER1, Jutta ZIPFEL3, Richard V. MORRIS4, James W. ASHLEY5, Ralf GELLERT6, Simon WEHRHEIM1, and Sandro EBERT1 1Institut fu¨ r Anorganische und Analytische Chemie, Johannes-Gutenberg-Universita¨ t Mainz, Staudinger Weg 9, 55128 Mainz, Germany 2Universita¨ t Bayreuth und Eberhard Karls Universita¨ tTu¨ bingen, Sigwartstr. 10, 72076 Tu¨ bingen, Germany 3Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Sektion Meteoritenforschung, Senckenberganlage 25, 60325 Frankfurt, Germany 4ARES Code KR, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA 5Mars Space Flight Facility, School of Earth and Space Exploration, Arizona State University P.O. Box 876305, Tempe, Arizona 85287–6305, USA 6Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada *Corresponding author. E-mail: fl[email protected] (Received 18 November 2009; revision accepted 15 October 2010) Abstract–Meridiani Planum is the first officially recognized meteorite find on the surface of Mars. It was discovered at and named after the landing site of the Mars Exploration Rover Opportunity. Based on its composition, it was classified as a IAB complex iron meteorite. Mo¨ ssbauer spectra obtained by Opportunity are dominated by kamacite (a-Fe-Ni) and exhibit a small contribution of ferric oxide. Several small features in the spectra have been neglected to date. -
I. Measurements of Pges, Re, Mo, W, and Au in Meteoritic Fe-Ni Metal
Meteoritics & Planetary Science 39, Nr 10, 1685–1697 (2004) Abstract available online at http://meteoritics.org Differentiation of metal-rich meteoritic parent bodies: I. Measurements of PGEs, Re, Mo, W, and Au in meteoritic Fe-Ni metal M. I. PETAEV1, 2* and S. B. JACOBSEN1 1Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachussetts 02138, USA 2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachussetts 02139, USA *Corresponding author. E-mail: [email protected] (Received 18 July 2003; revision accepted 26 July 2004) Abstract–We describe an analytical technique for measurements of Fe, Ni, Co, Mo, Ru, Rh, W, Re, Os, Ir, Pt, and Au in bulk samples of iron meteorites. The technique involves EPMA (Fe, Ni, Co) and LA-ICP-MS analyses of individual phases of iron meteorites, followed by calculation of bulk compositions based on the abundances of these phases. We report, for the first time, a consistent set of concentrations of Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in the iron meteorites Arispe, Bennett County, Grant, Cape of Good Hope, Cape York, Carbo, Chinga, Coahuila, Duchesne, Gibeon, Henbury, Mundrabilla, Negrillos, Odessa, Sikhote-Alin, and Toluca and the Divnoe primitive achondrite. The comparison of our LA-ICP-MS data for a number of iron meteorites with high-precision isotope dilution and INAA data demonstrates the good precision and accuracy of our technique. The narrow ranges of variations of Mo and Pd concentrations within individual groups of iron meteorites suggest that these elements can provide important insights into the evolution of parent bodies of iron meteorites. -
Handbook of Iron Meteorites, Volume 3 (Toluca – Tombigbee River)
Tlacotepec - Toluca 1209 troilite and daubreelite, each 1-5 J.1 thick. When different 1952. It is likely that these collectors more or less absorbed troilite-daubreelite nodules in the same section are com the specimens discovered by the immediately preceding pared, the daubreelite lamellae show random orientation, generation while they were tilling fields. It may be i.e., the troilite orientation with respect to the parent estimated that Kranz, Ward and Foote purchased 100, 500 austenite crystal is also random. and 300 kg, respectively , while Nininger (1952b) reported A few troilite-daubreelite intergrowths have assumed that he acquired 325 and 180 kg in 1929 and 1952, plate shapes and reach dimensions of 500 x 1 J.1 in cross respectively. If we add to this the weight of the collection section. They are enveloped in 1-2 J.1 wide creamcolored of specimens in Mexico City, i.e., about 900 kg which has austenite, bordered on either side by 10-15 J.1 wide martens not passed through the hands of the foreign collectors, and itic-bainitic zones. an additional 500 kg representing the material collected by No silicates, graphites or carbides were detected in the Humboldt, Stein, Burkart and minor dealers, we end up sections. with a total of about 2.8 tons as an estimate of what has Tlacotepec is a nickel-rich ataxite of group IVB which actually been removed from the Toluca region. To this we is closely related to lquique, Hoba and Cape of Good Hope. must add the numerous fragments which have been forged However, it appears to be slightly less weathered than these. -
Determinations of Osmium Isotope Ratios in Iron Meteorites and Iridosmines by ICP-MS
Geochemical Journal, Vol. 20, pp. 233 to 239, 1986 Determinations of osmium isotope ratios in iron meteorites and iridosmines by ICP-MS AKIMASA MASUDA, TAKAFUMI HIRATA and HIROSHI SHIMIZU Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan (Received August 15, 1986: Accepted September 10, 1986) Osmium isotopes in three Os reagents, four terrestiral Os-Ir alloys (iridosmine) and two iron mete orites have been measured on an inductively coupled plasma mass spectrometer (ICP-MS), with the preci sion of around 1% for 1870S/1920S. Comparisons are made of our isotopic ratios with the previous ones. Apart from the variation of 1870S abundance as naturally expected, there seems to be a slight systematic deviation for "'Os. Also some discussions are given to 184Os. The Os isotopic ratios for three iridosmine samples from Hokkaido, Japan, have been found quite similar to each other. The values for the Hokkaido iridosmines are 3-4% higher relative to the straight "'Os growth line obtained by Allegre and Luck (1980) . Finally, the isotopic "standard" abundances (%) for Os are presented by us: 1840s, 0.019; 1860s, 1.589; 187Os, 1.519; 1880s, 13.24; 1890s, 16.37; 190Os , 26.30; 192Os, 40.96. These give us the Os atomic weight = 190.24. INTRODUCTION determined the 117Re half-life ((4.35 ± 0.13) X 1010y) with these measurements. The half life Herr et al. (1961) started Re-Os cosmo of 117Re is similar to that of 8'Rb (4.88 X 101°y). chronology on the basis of the g decay of Further, Os isotope measurements by accelera 187Re, but the difficulty in Os isotope measure for mass spectrometer have been reported on ments prevented the popular use of this method. -
Meteorite Mineralogy Alan Rubin , Chi Ma Index More Information
Cambridge University Press 978-1-108-48452-7 — Meteorite Mineralogy Alan Rubin , Chi Ma Index More Information Index 2I/Borisov, 104, See interstellar interloper alabandite, 70, 96, 115, 142–143, 151, 170, 174, 177, 181, 187, 189, 306 Abbott. See meteorite Alais. See meteorite Abee. See meteorite Albareto. See meteorite Acapulco. See meteorite Albin. See meteorite acapulcoites, 107, 173, 179, 291, 303, Al-Biruni, 3 309, 314 albite, 68, 70, 72, 76, 78, 87, 92, 98, 136–137, 139, accretion, 238, 260, 292, 347, 365 144, 152, 155, 157–158, 162, 171, 175, 177–178, acetylene, 230 189–190, 200, 205–206, 226, 243, 255–257, 261, Acfer 059. See meteorite 272, 279, 295, 306, 309, 347 Acfer 094. See meteorite albite twinning, 68 Acfer 097. See meteorite Aldrin, Buzz, 330 achondrites, 101, 106–108, 150, 171, 175, 178–179, Aletai. See meteorite 182, 226, 253, 283, 291, 294, 303, 309–310, 318, ALH 77307. See meteorite 350, 368, 374 ALH 78091. See meteorite acute bisectrix, 90 ALH 78113. See meteorite adamite, 83 ALH 81005. See meteorite addibischoffite, 116, 167 ALH 82130. See meteorite Adelaide. See meteorite ALH 83009. See meteorite Adhi Kot. See meteorite ALH 83014. See meteorite Admire. See meteorite ALH 83015. See meteorite adrianite, 117, 134, 167, 268 ALH 83108. See meteorite aerogel, 234 ALH 84001. See meteorite Aeschylus, 6 ALH 84028. See meteorite agate, 2 ALH 85085. See meteorite AGB stars. See asymptotic giant branch stars ALH 85151. See meteorite agglutinate, 201, 212, 224, 279, 301–302, 308 ALHA76004. See meteorite Agpalilik. See Cape York ALHA77005. -
Part 1. Meteorites
Part 1. Meteorites GEOLOGICAL SURViTf PROFESSIONAL PAPER Data of Geochemistry Sixth Edition MICHAEL FLEISCHER, Technical Editor Chapter B. Cosmochemistry Part 1. Meteorites By BRIAN MASON GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-B-l Tabulation and discussion of elemental abundances in the different classes of stony and iron meteorites, and in their constituent minerals UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress catalog-card No. 79-64561 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-031621 DATA OF GEOCHEMISTRY, SIXTH EDITION Michael Fleischer, Technical Editor The first edition of the Data of Geochemistry, by F. W. Clarke, was published in 1908 as U.S. Geological Survey Bulletin 330. Later editions, also by Clarke, were published in 1911, 1916, 1920, and 1924 as Bulletins 491, 616, 695, and 770. This, the sixth edition, has been written by several scientists in the Geological Survey and in other institutions in the United States and abroad, each preparing a chapter on his special field. The current edition is being published in individual chapters, titles of which are listed below. Chapters already published are indicated by boldface. CHAPTER A. The chemical elements B. Cosmochemistry Part 1, Meteorites by Brian Mason] Part 2, Cosmochemistry. C. Internal structure and composition of the earth. D. Composition of the earth's crust, by R. L. Parker E. Chemistry of the atmosphere F. Chemical composition of subsurface waters, by Donald E. White, John D. -
Xb Ie'ian%Mlseltm
Xb1oxfitateie'ian%Mlseltm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 I 90 SEPTEMBER IO, I964 The Meteorite and Tektite Collection of the American Museum of Natural History BY BRIAN MASON' INTRODUCTION The first meteorite received by the American Museum of Natural History was a 46-gram piece of the Searsmont chondrite, presented by G. M. Brainerd of Rockland, Maine, in 1872. For some years the col- lection grew very slowly. Hovey (1896) published the first catalogue, in which he enumerated 55 pieces representing 26 different meteorites. However, the status of the collection was radically changed in 1900 with the acquisition of the Bement collection of minerals, through the gener- osity ofJ. Pierpont Morgan. Besides some 12,000 mineral specimens, the Bement collection contained 580 meteorites, representing nearly 500 different falls and finds. This acquisition established the meteorite col- lection of this museum as one of the great collections of the world, a situation that has been maintained by more recent additions. Some of the more notable additions may be briefly noted. In 1904 three Cape York irons, brought from Greenland in 1897 by R. E. Peary, were deposited in the museum. These are known as "Ahnighito" or "The Tent," "The Woman," and "The Dog" (fig. 1). "Ahnighito," the largest of the three, is approximately 11 feet long, 7 feet high, and 6 feet thick. Various estimates of its weight, ranging from 30 to 80 tons, have been published. Thanks to the Toledo Scale Company it was mounted 1 Chairman, Department of Mineralogy, the American Museum of Natural History.