Codes Used Today: Morse Code, Semaphore, Binary Code

Total Page:16

File Type:pdf, Size:1020Kb

Codes Used Today: Morse Code, Semaphore, Binary Code Codes used today: Morse code, semaphore, binary code. Thursday 10th December 2020 LO: understanding codes in use today Thousands of years ago the Chinese developed a system of conveying informaon using twigs that were either broken or whole. It was wri=en down as either broken or unbroken lines. It was a form of ‘binary code’. ‘Binary’ means ‘two’ – so in binary code there are only two op7ons, like yes and no, or black and white, or broken and not-broken. The same idea is used today in computers. It is how computers send, receive and store informaon: music, films, pictures, phone calls, games, everything! 01001000 01100101 01101100 01101100 01101111 00100001 These ones and zeros are binary code for ‘Hello!’ Any code that uses Just two symbols to represent informaon is a binary code. In 1937, the American mathemacian Claude Shannon realized that the simple ON / OFF of an electric switch could be a binary code. 01001000 01100101 01101100 01101100 01101111 Computers are Just a huge number of switches flicking on and off, millions of 7mes a second. Use the key below to write your own name in binary code. You can see how difficult binary code is for us to read! And how different we are from computers! Computers don’t get 7red or bored – they Just do as they’re told. Signals some7mes need to be very clear and simple. Traffic lights are a code: green, amber and red. Railways signals work in the same way: STOP / CAUTION / GO. 200 years ago people knew they needed a faster way to send messages. In 1792, the French inventor Claude Chappe developed the opcal telegraph. An opcal telegraph is a line of towers, each a few miles apart. The signal operator in each tower passes the message on to the next. That way a message could be sent faster than by a rider on horseback. The code used was called semaphore. Flag semaphore is s7ll used by the U.S. Navy today. It is useful to communicate in very noisy environments, like on aircra carriers. Try sending a short message to your friends! Maybe Just signal ‘Help!’ It’s easy to get it wrong, because you have to think of the message from the other person’s point of view, not your own. The electric telegraph was invented in the 1840s. It was the first electronic communicaons system. Pulses of current were sent down wires. Each pulse could be part of a code for a le=er. Telegraph poles and wires became a common sight. The American inventor Samuel Morse developed a code for the telegraph that is s7ll used in communicaons today. Morse Code is a series of dots (short signals) and dashes (longer signals). Telegraph operators had to tap out each le=er of a message. Try sending a message in Morse Code. Morse Code is useful because it can be transmi=ed in different ways – as an electric signal, as sounds, or as flashes of light. The ‘dashes’ are long sounds or long flashes. The ‘dots’ are short sounds or short flashes. This is a sailor in the U.S. Navy sending a Morse Code signal from one ship to another. Why might they use light instead of other methods of communicaon? When the Titanic sank in 1912, the telegraph operator sent desperate Morse Code messages for help. ‘SOS’ in Morse Code is the internaonal distress signal. See if you can spot SOS in the clip below. hps://www.youtube.com/watch?v=snkwsU98QlQ Imagine you are on board the Titanic, and the ship is sinking. In your work books, write a short sentence calling the coastguard for help. Translate the message into the three codes we’ve looked at: 1. binary code 2. flag semaphore (draw s7ck figures to spell out the words). 3. Morse Code. Label each coded message, saying which code you’ve used.. .
Recommended publications
  • Alpha • Bravo • Charlie
    ALPHA • BRAVO • CHARLIE Inspired by Alpha, Bravo, Charlie (published by Phaidon) these Perfect activity sheets introduce young people to four different nautical codes. There are messages to decode, questions to answer for curious and some fun facts to share with friends and family. 5-7 year olds FLAG IT UP These bright, colorful flags are known as signal flags. There is one flag for each letter of the alphabet. 1. What is the right-hand side of a ship called? Use the flags to decode the answer! 3. Draw and color the flag that represents the first letter of your name. 2. Draw and color flags to spell out this message: SHIP AHOY SH I P AHOY FUN FACT Each flag also has its own To purchase your copy of meaning when it's flown by 2. Alpha, Bravo, Charlie visit phaidon.com/childrens2016 itself. For example, the N flag by STARBOARD 1. itself means "No" or "Negative". Answers: ALPHA OSCAR KILO The Phonetic alphabet matches every letter with a word so that letters can’t be mixed up and sailors don’t get the wrong message. 1. Write in the missing first letters from these words in the Phonetic alphabet. What word have you spelled out? Write it in here: HINT: The word for things that are transported by ship. 2. Can you decode the answer to this question: What types of cargo did Clipper ships carry in the 1800s? 3. Use the Phonetic alphabet to spell out your first name. FUN FACT The Phonetic alphabet’s full name is the GOLD AND WOOL International Radiotelephony Spelling Alphabet.
    [Show full text]
  • UNIT 2 Braille
    Mathematics Enhancement Programme Codes and UNIT 2 Braille Lesson Plan 1 Braille Ciphers Activity Notes T: Teacher P: Pupil Ex.B: Exercise Book 1 Introduction T: What code, designed more than 150 years ago, is still used Whole class interactive extensively today? discussion. T: The system of raised dots which enables blind people to read was Ps might also suggest Morse code designed in 1833 by a Frenchman, Louis Braille. or semaphore. Does anyone know how it works? Ps might have some ideas but are T: Braille uses a system of dots, either raised or not, arranged in unlikely to know that Braille uses 3 rows and 2 columns. a 32× configuration. on whiteboard Here are some possible codes: ape (WB). T puts these three Braille letters on WB. T: What do you notice? (They use different numbers of dots) T: We will find out how many possible patterns there are. 10 mins 2 Number of patterns T: How can we find out how many patterns there are? Response will vary according to (Find as many as possible) age and ability. T: OK – but let us be systematic in our search. What could we first find? (All patterns with one dot) T: Good; who would like to display these on the board? P(s) put possible solutions on the board; T stresses the logical search for these. Agreement. Praising. (or use OS 2.1) T: Working in your exercise books (with squared paper), now find all possible patterns with just 2 dots. T: How many have you found? Allow about 5 minutes for this before reviewing.
    [Show full text]
  • The Origins of the Underline As Visual Representation of the Hyperlink on the Web: a Case Study in Skeuomorphism
    The Origins of the Underline as Visual Representation of the Hyperlink on the Web: A Case Study in Skeuomorphism The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Romano, John J. 2016. The Origins of the Underline as Visual Representation of the Hyperlink on the Web: A Case Study in Skeuomorphism. Master's thesis, Harvard Extension School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797379 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Origins of the Underline as Visual Representation of the Hyperlink on the Web: A Case Study in Skeuomorphism John J Romano A Thesis in the Field of Visual Arts for the Degree of Master of Liberal Arts in Extension Studies Harvard University November 2016 Abstract This thesis investigates the process by which the underline came to be used as the default signifier of hyperlinks on the World Wide Web. Created in 1990 by Tim Berners- Lee, the web quickly became the most used hypertext system in the world, and most browsers default to indicating hyperlinks with an underline. To answer the question of why the underline was chosen over competing demarcation techniques, the thesis applies the methods of history of technology and sociology of technology. Before the invention of the web, the underline–also known as the vinculum–was used in many contexts in writing systems; collecting entities together to form a whole and ascribing additional meaning to the content.
    [Show full text]
  • Multimedia Data and Its Encoding
    Lecture 14 Multimedia Data and Its Encoding M. Adnan Quaium Assistant Professor Department of Electrical and Electronic Engineering Ahsanullah University of Science and Technology Room – 4A07 Email – [email protected] URL- http://adnan.quaium.com/aust/cse4295 CSE 4295 : Multimedia Communication prepared by M. Adnan Quaium 1 Text Encoding The character by character encoding of an alphabet is called encryption. As a rule, this coding must be reversible – the reverse encoding known as decoding or decryption. Examples for a simple encryption are the international phonetic alphabet or Braille script CSE 4295 : Multimedia Communication prepared by M. Adnan Quaium 2 Text Encoding CSE 4295 : Multimedia Communication prepared by M. Adnan Quaium 3 Morse Code Samuel F. B. Morse and Alfred Vail used a form of binary encoding, i.e., all text characters were encoded in a series of two basic characters. The two basic characters – a dot and a dash – were short and long raised impressions marked on a running paper tape. Word borders are indicated by breaks. CSE 4295 : Multimedia Communication prepared by M. Adnan Quaium 4 Morse Code ● To achieve the most efficient encoding of the transmitted text messages, Morse and Vail implemented their observation that specific letters came up more frequently in the (English) language than others. ● The obvious conclusion was to select a shorter encoding for frequently used characters and a longer one for letters that are used seldom. CSE 4295 : Multimedia Communication prepared by M. Adnan Quaium 5 7 bit ASCII code CSE 4295 : Multimedia Communication prepared by M. Adnan Quaium 6 Unicode Standard ● The Unicode standard assigns a number (code point) and a name to each character, instead of the usual glyph.
    [Show full text]
  • Designing the Haptic Interface for Morse Code Michael Walker University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 10-31-2016 Designing the Haptic Interface for Morse Code Michael Walker University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Art Practice Commons, Communication Commons, and the Neurosciences Commons Scholar Commons Citation Walker, Michael, "Designing the Haptic Interface for Morse Code" (2016). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6600 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Designing the Haptic Interface for Morse Code by Michael Walker A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department of Mechanical Engineering College of Engineering University of South Florida Major Professor: Kyle Reed, Ph.D. Stephanie Carey, Ph.D. Don Dekker, Ph.D. Date of Approval: October 24, 2016 Keywords: Bimanual, Rehabilitation, Pattern, Recognition, Perception Copyright © 2016, Michael Walker ACKNOWLEDGMENTS I would like to thank my thesis advisor, Dr. Kyle Reed, for providing guidance for my first steps in research work and exercising patience and understanding through my difficulties through the process of creating this thesis. I am thankful for my colleagues in REED lab, particularly Benjamin Rigsby and Tyagi Ramakrishnan, for providing helpful insight in the design of my experimental setup. TABLE OF CONTENTS LIST OF TABLES ........................................................................................................................
    [Show full text]
  • The Emoji Factor: Humanizing the Emerging Law of Digital Speech
    The Emoji Factor: Humanizing the Emerging Law of Digital Speech 1 Elizabeth A. Kirley and Marilyn M. McMahon Emoji are widely perceived as a whimsical, humorous or affectionate adjunct to online communications. We are discovering, however, that they are much more: they hold a complex socio-cultural history and perform a role in social media analogous to non-verbal behaviour in offline speech. This paper suggests emoji are the seminal workings of a nuanced, rebus-type language, one serving to inject emotion, creativity, ambiguity – in other words ‘humanity’ - into computer mediated communications. That perspective challenges doctrinal and procedural requirements of our legal systems, particularly as they relate to such requisites for establishing guilt or fault as intent, foreseeability, consensus, and liability when things go awry. This paper asks: are we prepared as a society to expand constitutional protections to the casual, unmediated ‘low value’ speech of emoji? It identifies four interpretative challenges posed by emoji for the judiciary or other conflict resolution specialists, characterizing them as technical, contextual, graphic, and personal. Through a qualitative review of a sampling of cases from American and European jurisdictions, we examine emoji in criminal, tort and contract law contexts and find they are progressively recognized, not as joke or ornament, but as the first step in non-verbal digital literacy with potential evidentiary legitimacy to humanize and give contour to interpersonal communications. The paper proposes a separate space in which to shape law reform using low speech theory to identify how we envision their legal status and constitutional protection. 1 Dr. Kirley is Barrister & Solicitor in Canada and Seniour Lecturer and Chair of Technology Law at Deakin University, MelBourne Australia; Dr.
    [Show full text]
  • Super Duper Semaphore Or, As We Like to Call It
    Super Duper Semaphore Or, as we like to call it ... Flag Texting! Hello Lieutenants ... You can have a whole lot of fun with just a couple of hand flags. Even if you don’t have actual flags, you can make your own using items found around your home, like tea towels, or even two smelly old socks tied to some sticks! As long as you’re having fun ... be inventive. What’s it all about? Well, believe it or not, a great way for ships near (in range of) each other or ships wanting to communicate to the land is to use ‘Flag Semaphore’. It’s a bit like sending a text message ... but with your arms. It has been used for hundreds of years on both land and sea (from the sea, red and yellow flags are used). The word semaphore is Greek for ‘Sign-bearer’ Here’s how it works… Each letter of the alphabet has its own arm position (plus a few extras that we will cover in later ranks). Once you can remember these, you can send loads of hidden messages to your friends and family. Check these out ... ABCDEFG HIJKLM NOPQR STUVWX YZ How cool is that? To send a message the ‘sender’ gets the attention of the ‘receiver’ by waving their arms (and flags) by their side in an up and down motion (imagine flapping your arms like a bird). Don’t worry if you make mistakes or the receiver translates your signals into silly words - we’ve had lots of fun practicing this, and it will take time to become a Super Signaller! Are you ready to send your message? One letter at a time? Remember to pause between each letter and a bit longer between words to accurately get your message through.
    [Show full text]
  • Microej Documentation
    MicroEJ Documentation MicroEJ Corp. Revision ff3ccfde Nov 27, 2020 Copyright 2008-2020, MicroEJ Corp. Content in this space is free for read and redistribute. Except if otherwise stated, modification is subject to MicroEJ Corp prior approval. MicroEJ is a trademark of MicroEJ Corp. All other trademarks and copyrights are the property of their respective owners. CONTENTS 1 MicroEJ Glossary 2 2 Overview 4 2.1 MicroEJ Editions.............................................4 2.1.1 Introduction..........................................4 2.1.2 Determine the MicroEJ Studio/SDK Version..........................5 2.2 Licenses.................................................7 2.2.1 Overview............................................7 2.2.2 License Manager........................................7 2.2.3 Evaluation Licenses......................................7 2.2.4 Production Licenses......................................9 2.3 MicroEJ Runtime............................................. 13 2.3.1 Language............................................ 13 2.3.2 Scheduler............................................ 13 2.3.3 Garbage Collector....................................... 14 2.3.4 Foundation Libraries...................................... 14 2.4 MicroEJ Libraries............................................ 14 2.5 MicroEJ Central Repository....................................... 15 2.6 Embedded Specification Requests................................... 15 2.7 MicroEJ Firmware............................................ 15 2.7.1 Bootable Binary with
    [Show full text]
  • Language Reference
    Enterprise PL/I for z/OS Version 5 Release 3 Language Reference IBM SC27-8940-02 Note Before using this information and the product it supports, be sure to read the general information under “Notices” on page 613. Third Edition (September 2019) This edition applies to Enterprise PL/I for z/OS Version 5 Release 3 (5655-PL5), and IBM Developer for z/OS PL/I for Windows (former Rational Developer for System z PL/I for Windows), Version 9.1, and to any subsequent releases of any of these products until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of the product. Order publications through your IBM® representative or the IBM branch office serving your locality. Publications are not stocked at the address below. A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to: IBM Corporation, Department H150/090 555 Bailey Ave. San Jose, CA, 95141-1099 United States of America When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. Because IBM Enterprise PL/I for z/OS supports the continuous delivery (CD) model and publications are updated to document the features delivered under the CD model, it is a good idea to check for updates once every three months. © Copyright International Business Machines Corporation 1999, 2019. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
    [Show full text]
  • Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16
    Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 1 of 137 Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 2 of 137 Exhibit A Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 3 of 137 Exhibit A1 Served via Overnight Mail Name Attention Address 1 Address 2 City State Zip Country Aastha Broadcasting Network Limited Attn: Legal Unit213 MezzanineFl Morya LandMark1 Off Link Road, Andheri (West) Mumbai 400053 IN Abs Global LTD Attn: Legal O'Hara House 3 Bermudiana Road Hamilton HM08 BM Abs-Cbn Global Limited Attn: Legal Mother Ignacia Quezon City Manila PH Aditya Jain S/O Sudhir Kumar Jain Attn: Legal 12, Printing Press Area behind Punjab Kesari Wazirpur Delhi 110035 IN AdminNacinl TelecomunicacionUruguay Complejo Torre De Telecomuniciones Guatemala 1075. Nivel 22 HojaDeEntrada 1000007292 5000009660 Montevideo CP 11800 UY Advert Bereau Company Limited Attn: Legal East Legon Ars Obojo Road Asafoatse Accra GH Africa Digital Network Limited c/o Nation Media Group Nation Centre 7th Floor Kimathi St PO Box 28753-00100 Nairobi KE Africa Media Group Limited Attn: Legal Jamhuri/Zaramo Streets Dar Es Salaam TZ Africa Mobile Network Communication Attn: Legal 2 Jide Close, Idimu Council Alimosho Lagos NG Africa Mobile Networks Cameroon Attn: Legal 131Rue1221 Entree Des Hydrocarbures Derriere Star Land Hotel Bonapriso-Douala Douala CM Africa Mobile Networks Cameroon Attn: Legal BP12153 Bonapriso Douala CM Africa Mobile Networks Gb,
    [Show full text]
  • Eie312 Communications Principles
    EIE312 COMMUNICATIONS PRINCIPLES Outline: Principles of communications: 1. An elementary account of the types of transmission (Analogue signal transmission and digital signal transmission). Block diagram of a communication system. 2. Brief Historical development on communications: a. Telegraph b. Telephony c. Radio d. Satellite e. Data f. Optical and mobile communications g. Facsimile 3. The frequency Spectrum 4. Signals and vectors, orthogonal functions. 5. Fourier series, Fourier integral, signal spectrum, convolution, power and energy correlation. 6. Modulation, reasons for modulation, types of modulation. 7. Amplitude modulation systems: a. Comparison of amplitude modulation systems. b. Methods of generating and detecting AM, DBS and SSB signals. c. Vestigial sideband d. Frequency mixing and multiplexing, frequency division multiplexing e. Applications of AM systems. 8. Frequency modulation systems: 1 a. Instantaneous frequency, frequency deviation, modulation index, Bessel coefficients, significant sideband criteria b. Bandwidth of a sinusoidally modulated FM signal, power of an FM signal, direct and indirect FM generation, c. Various methods of FM demodulation, discriminator, phase-lock loop, limiter, pre- emphasis and de-emphasis, Stereophonic FM broadcasting 9. Noise waveforms and characteristics. Thermal noise, shot noise, noise figure and noise temperature. Cascade network, experimental determination of noise figure. Effects of noise on AM and FM systems. 10. Block diagram of a superheterodyne AM radio receiver, AM broadcast mixer, local oscillator design, intermodulation interference, adjacent channel interference, ganging, tracking error, intermediate frequency, automatic gain control (AGC), delay AGC, diode detector, volume control. 11. FM broadcast band and specification, Image frequency, block diagram of a FM radio receiver, limiter and ratio detectors, automatic frequency control, squelch circuit, FM mono and FM stereo receivers.
    [Show full text]
  • Optical Communication: Its History and Recent Progress Govind P
    177 8 Optical Communication: Its History and Recent Progress Govind P. Agrawal 8.1 Historical Perspective – 178 8.2 Basic Concepts Behind Optical Communication – 181 8.2.1 Optical Transmitters and Receivers – 181 8.2.2 Optical Fibers and Cables – 182 8.2.3 Modulations Formats – 184 8.2.4 Channel Multiplexing – 185 8.3 Evolution of Optical Communication from 1975 to 2000 – 187 8.3.1 The First Three Generations – 187 8.3.2 The Fourth Generation – 188 8.3.3 Bursting of the Telecom Bubble in 2000 – 190 8.4 The Fifth Generation – 191 8.5 The Sixth Generation – 192 8.5.1 Capacity Limit of Single-Mode Fibers – 193 8.5.2 Space-Division Multiplexing – 194 8.6 Worldwide Fiber-Optic Communication Network – 195 8.7 Conclusions – 197 References – 198 G.P. Agrawal (*) The Institute of Optics, University of Rochester, Rochester NY 14627, USA e-mail: [email protected] © The Author(s) 2016 M.D. Al-Amri et al. (eds.), Optics in Our Time, DOI 10.1007/978-3-319-31903-2_8 178 G.P. Agrawal 8.1 Historical Perspective The use of light for communication purposes dates back to antiquity if we interpret optical communication in a broad sense, implying any communication scheme that makes use of light. Most civilizations have used mirrors, fire beacons, or smoke signals to convey a single piece of information (such as victory in a war). For example, it is claimed that the Greeks constructed in 1084 B.C. a 500-km-long line of fire beacons to convey the news of the fall of Troy [1].
    [Show full text]