Pathophysiology of Diabetic Dyslipidaemia: Where Are We?

Total Page:16

File Type:pdf, Size:1020Kb

Pathophysiology of Diabetic Dyslipidaemia: Where Are We? Diabetologia (2015) 58:886–899 DOI 10.1007/s00125-015-3525-8 REVIEW Pathophysiology of diabetic dyslipidaemia: where are we? Bruno Vergès Received: 25 November 2014 /Accepted: 19 January 2015 /Published online: 1 March 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Cardiovascular disease is a major cause of morbid- retinol-binding protein 4, may also contribute to the ity and mortality in patients with type 2 diabetes mellitus, with development of dyslipidaemia in patients with type 2 a two- to fourfold increase in cardiovascular disease risk com- diabetes. pared with non-diabetic individuals. Abnormalities in lipid metabolism that are observed in the context of type 2 diabetes are among the major factors contributing to an increased car- Keywords Cardiovascular disease . Dyslipidaemia . diovascular risk. Diabetic dyslipidaemia includes not only HDL-cholesterol (HDL-C) . Insulin resistance . quantitative lipoprotein abnormalities, but also qualitative LDL-cholesterol (LDL-C) . Lipid metabolism . Review . and kinetic abnormalities that, together, result in a shift to- Triglycerides . Type 2 diabetes mellitus wards a more atherogenic lipid profile. The primary quantita- tive lipoprotein abnormalities are increased triacylglycerol (triglyceride) levels and decreased HDL-cholesterol levels. Abbreviations Qualitative lipoprotein abnormalities include an increase in ABCA1 ATP-binding cassette protein 1 large, very low-density lipoprotein subfraction 1 (VLDL1) ABCG1 ATP-binding cassette G1 and small, dense LDLs, as well as increased triacylglycerol Apo Apolipoprotein content of LDL and HDL, glycation of apolipoproteins and ARF-1 ADP ribosylation factor 1 increased susceptibility of LDL to oxidation. The main kinetic CETP Cholesteryl ester transfer protein abnormalities are increased VLDL1 production, decreased ChREBP Carbohydrate responsive element-binding VLDL catabolism and increased HDL catabolism. In addition, protein even though LDL-cholesterol levels are typically normal in ER Endoplasmic reticulum patients with type 2 diabetes, LDL particles show reduced FOXO1 Forkhead box protein O1 turnover, which is potentially atherogenic. Although the path- HMG-CoA 3-Hydroxy-3-methylglutaryl coenzyme A ophysiology of diabetic dyslipidaemia is not fully understood, LCAT Lecithin–cholesterol acyltransferase the insulin resistance and relative insulin deficiency ob- ICAM-1 Intercellular adhesion molecule 1 served in patients with type 2 diabetes are likely to IDL Intermediate-density lipoprotein contribute to these lipid changes, as insulin plays an LPL Lipoprotein lipase important role in regulating lipid metabolism. In addi- LRP LDL receptor–related protein tion, some adipocytokines, such as adiponectin or MTP Microsomal triacylglycerol transfer protein PERPP Post-ER presecretory proteolysis PI3K Phosphatidylinositol 3-kinase B. Vergès (*) Service Endocrinologie, Diabétologie et Maladies Métaboliques, PIP2 Phosphatidylinositol 4,5-bisphosphate Hôpital du Bocage, 2 bd Maréchal de Lattre de Tassigny, PIP3 Phosphatidylinositol 3,4,5-trisphosphate 21000 Dijon, France PLTP Phospholipid transfer protein e-mail: [email protected] RBP4 Retinol-binding protein 4 B. Vergès PTP-1B Protein-tyrosine phosphatase 1B INSERM CRI 866, Medicine University, Dijon, France SREBP Sterol regulatory element-binding protein Diabetologia (2015) 58:886–899 887 Introduction density, ranging from chylomicrons to VLDL, intermediate- density lipoprotein (IDL), LDL and HDL (Fig. 1). The risk of cardiovascular disease and cardiovascular mortal- ity is significantly increased in patients with type 2 diabetes Postprandial lipidaemia and chylomicrons mellitus relative to healthy individuals [1, 2]. A major contrib- utor to the increased cardiovascular risk associated with type 2 Dietary lipids are absorbed by the enterocytes via pas- diabetes is dyslipidaemia, which encompasses abnormalities sive diffusion or specific transporters (e.g. CD36 for in all lipoproteins [3–5]. Lipid abnormalities observed in type NEFA and Niemann-Pick C1-like 1 protein [NPC1L1] 2 diabetes are not only quantitative, but also qualitative and for cholesterol). Within the enterocytes, triacylglycerols kinetic in nature [6–8]. A number of factors may contribute to (triglycerides), cholesteryl esters and other lipids (phos- the changes in lipid metabolism in patients with type 2 pholipids and small amounts of unesterified cholesterol) diabetes, including insulin resistance and/or relative are associated with apolipoprotein (Apo)B-48 (as well insulin deficiency, adipocytokines (e.g. adiponectin), and as ApoA-IV and ApoA-I) to form chylomicrons in a hyperglycaemia [6–8]. The aim of this review is to briefly process involving microsomal triacylglycerol transfer describe normal lipoprotein metabolism, including the role protein (MTP) and fatty acid transport proteins. of insulin, to describe the pathophysiology of the lipid abnor- Chylomicrons are then exported into lymph and subse- malities observed in individuals with type 2 diabetes, and to quently into the blood. ApoB-48 synthesis by the gut discuss how these lipid abnormalities relate to the develop- occurs continuously; however, lipidation to form chylo- ment of cardiovascular disease. microns is dependent on the availability of lipids and occurs mainly after meals. Lipoprotein lipase (LPL), which is attached to the Overview of normal lipoprotein metabolism luminal surface of endothelial cells and present mostly in muscles, the heart and the adipose tissue, plays a Lipids are transported within body fluids in the form of lipo- major role in chylomicron clearance by hydrolysing tri- protein particles, which are classified according to their acylglycerols and liberating NEFA into the circulation. Chylomicrons ApoB-48 Insulin 3 + + 3 LPL NEFA LPL ApoB-48 VLDL IDL LDL ApoB-100 ApoB-100 ApoB-100 Chylomicron remnants NEFA 4 CE LDL-R Insulin LRP LDL-R – – + + 1 ABCG1 Peripheral cell HSL TAG Liver SR-B1 CETP NEFA ABCA1 ApoA-I ApoA-I HL LCAT 5 ApoA-I HDL2 HDL3 Adipose tissue 2 Insulin HDLn Fig. 1 An overview of human lipoprotein metabolism and the effects of Insulin increases LDL receptor (LDL-R) expression. CE, cholesterol ester; insulin on lipoprotein metabolism. (1) Insulin inhibits hormone-sensitive CETP, cholesteryl ester transfer protein; HDLn, nascent HDL HL, hepatic lipase. (2) Insulin inhibits hepatic VLDL production. (3) Insulin activates lipase; HSL, hormone-sensitive lipase; LPL, lipoprotein lipase; SR-B1, LPL. (4) Insulin increases LRP expression on the plasma membrane. (5) scavenger receptor B1; TAG, triacylglycerol 888 Diabetologia (2015) 58:886–899 The chylomicron remnants produced by the lipolysis of As with chylomicrons, triacylglycerols from VLDLs are chylomicrons are taken up by the liver via the LDL hydrolysed by LPL in plasma, producing NEFA to be used receptor (Fig. 1) in conjunction with the LDL as fuel in the heart and skeletal muscle or for storage within receptor-related protein (LRP), both of which bind adipocytes (as triacylglycerols). The progressive triacylglyc- ApoE. erol depletion of VLDLs induces the transfer of a portion of the lipoprotein surface layer (including phospholipids, ApoC VLDLs and IDLs and ApoE) to HDLs and leads to the formation of IDLs [8]. Approximately 90% of IDLs are converted into LDL through Lipids are exported from the liver into the blood as VLDLs. further lipolysis involving hepatic lipase, which has both tri- The first step of VLDL assembly takes place in the rough acylglycerol lipase and phospholipase activities, whereas the endoplasmic reticulum (ER) where ApoB-100 is rest is cleared by the liver (via LRP or LDL receptors). cotranslationally and post-translationally lipidated by MTP, forming pre-VLDL [9, 10]. In the absence of adequate core LDLs lipids and/or MTP, partially translocated ApoB is exposed to the cytosol and subjected to degradation via the ubiquitin– LDL, the major transporter of cholesterol within the blood, proteasome system. During the second step, pre-VLDL is fur- comprises a core of esterified cholesterol molecules enclosed ther lipidated late in the ER compartment to form VLDL2, in a shell of phospholipids and unesterified cholesterol, to- exiting the ER compartment via Sar1 (a GTPase)/coat protein gether with a single molecule of ApoB-100. LDL is taken up II (COPII) vesicles that fuse to the cis side of the Golgi appa- into cells via receptor-mediated endocytosis, which involves, ratus. In the Golgi apparatus, VLDL2 can be converted into first, the binding of LDL–ApoB-100 to the LDL receptor on larger VLDL1 by the addition of lipids (Fig. 2). At this stage, the plasma membrane of hepatic and other tissues, then the VLDL particles may also be degraded via post-ER internalisation of the LDL-receptor complex via endocytosis, presecretory proteolysis (PERPP) [11]. The formation of followed by fusion with lysozymes, which contain a number VLDL1 depends on factors such as ADP ribosylation factor of catabolic enzymes. Proprotein convertase subtilisin/kexin 1 (ARF-1), phospholipase D1 and extracellular signal- type 9 (PCSK9) plays a key role in regulating LDL-receptor regulated kinase 2 (ERK2), which are involved in membrane activity by binding the LDL-receptor/LDL complex and trafficking between the ER and the Golgi apparatus or in the directing the receptor away from recycling back to the surface formation of cytosolic lipid droplets [10]. and into the lysosomal catabolic pathway. Fig. 2 An overview of VLDL VLDL assembly
Recommended publications
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Role of Phospholipases in Adrenal Steroidogenesis
    229 1 W B BOLLAG Phospholipases in adrenal 229:1 R29–R41 Review steroidogenesis Role of phospholipases in adrenal steroidogenesis Wendy B Bollag Correspondence should be addressed Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, USA to W B Bollag Department of Physiology, Medical College of Georgia, Augusta University (formerly Georgia Regents Email University), Augusta, GA, USA [email protected] Abstract Phospholipases are lipid-metabolizing enzymes that hydrolyze phospholipids. In some Key Words cases, their activity results in remodeling of lipids and/or allows the synthesis of other f adrenal cortex lipids. In other cases, however, and of interest to the topic of adrenal steroidogenesis, f angiotensin phospholipases produce second messengers that modify the function of a cell. In this f intracellular signaling review, the enzymatic reactions, products, and effectors of three phospholipases, f phospholipids phospholipase C, phospholipase D, and phospholipase A2, are discussed. Although f signal transduction much data have been obtained concerning the role of phospholipases C and D in regulating adrenal steroid hormone production, there are still many gaps in our knowledge. Furthermore, little is known about the involvement of phospholipase A2, Endocrinology perhaps, in part, because this enzyme comprises a large family of related enzymes of that are differentially regulated and with different functions. This review presents the evidence supporting the role of each of these phospholipases in steroidogenesis in the Journal Journal of Endocrinology adrenal cortex. (2016) 229, R1–R13 Introduction associated GTP-binding protein exchanges a bound GDP for a GTP. The G protein with GTP bound can then Phospholipids serve a structural function in the cell in that activate the enzyme, phospholipase C (PLC), that cleaves they form the lipid bilayer that maintains cell integrity.
    [Show full text]
  • Phospholipase D in Cell Proliferation and Cancer
    Vol. 1, 789–800, September 2003 Molecular Cancer Research 789 Subject Review Phospholipase D in Cell Proliferation and Cancer David A. Foster and Lizhong Xu The Department of Biological Sciences, Hunter College of The City University of New York, New York, NY Abstract trafficking, cytoskeletal reorganization, receptor endocytosis, Phospholipase D (PLD) has emerged as a regulator of exocytosis, and cell migration (4, 5). A role for PLD in cell several critical aspects of cell physiology. PLD, which proliferation is indicated from reports showing that PLD catalyzes the hydrolysis of phosphatidylcholine (PC) to activity is elevated in response to platelet-derived growth factor phosphatidic acid (PA) and choline, is activated in (PDGF; 6), fibroblast growth factor (7, 8), epidermal growth response to stimulators of vesicle transport, endocyto- factor (EGF; 9), insulin (10), insulin-like growth factor 1 (11), sis, exocytosis, cell migration, and mitosis. Dysregula- growth hormone (12), and sphingosine 1-phosphate (13). PLD tion of these cell biological processes occurs in the activity is also elevated in cells transformed by a variety development of a variety of human tumors. It has now of transforming oncogenes including v-Src (14), v-Ras (15, 16), been observed that there are abnormalities in PLD v-Fps (17), and v-Raf (18). Thus, there is a growing body of expression and activity in many human cancers. In this evidence linking PLD activity with mitogenic signaling. While review, evidence is summarized implicating PLD as a PLD has been associated with many aspects of cell physiology critical regulator of cell proliferation, survival signaling, such as membrane trafficking and cytoskeletal organization cell transformation, and tumor progression.
    [Show full text]
  • Phospholipase D in Cell Proliferation and Cancer
    Vol. 1, 789–800, September 2003 Molecular Cancer Research 789 Subject Review Phospholipase D in Cell Proliferation and Cancer David A. Foster and Lizhong Xu The Department of Biological Sciences, Hunter College of The City University of New York, New York, NY Abstract trafficking, cytoskeletal reorganization, receptor endocytosis, Phospholipase D (PLD) has emerged as a regulator of exocytosis, and cell migration (4, 5). A role for PLD in cell several critical aspects of cell physiology. PLD, which proliferation is indicated from reports showing that PLD catalyzes the hydrolysis of phosphatidylcholine (PC) to activity is elevated in response to platelet-derived growth factor phosphatidic acid (PA) and choline, is activated in (PDGF; 6), fibroblast growth factor (7, 8), epidermal growth response to stimulators of vesicle transport, endocyto- factor (EGF; 9), insulin (10), insulin-like growth factor 1 (11), sis, exocytosis, cell migration, and mitosis. Dysregula- growth hormone (12), and sphingosine 1-phosphate (13). PLD tion of these cell biological processes occurs in the activity is also elevated in cells transformed by a variety development of a variety of human tumors. It has now of transforming oncogenes including v-Src (14), v-Ras (15, 16), been observed that there are abnormalities in PLD v-Fps (17), and v-Raf (18). Thus, there is a growing body of expression and activity in many human cancers. In this evidence linking PLD activity with mitogenic signaling. While review, evidence is summarized implicating PLD as a PLD has been associated with many aspects of cell physiology critical regulator of cell proliferation, survival signaling, such as membrane trafficking and cytoskeletal organization cell transformation, and tumor progression.
    [Show full text]
  • Phospholipase D Functional Ablation Has a Protective Effect in An
    www.nature.com/scientificreports OPEN Phospholipase D functional ablation has a protective efect in an Alzheimer’s disease Received: 7 September 2017 Accepted: 13 February 2018 Caenorhabditis elegans model Published: xx xx xxxx Francisca Vaz Bravo1,2, Jorge Da Silva1,2, Robin Barry Chan3, Gilbert Di Paolo3,4, Andreia Teixeira-Castro1,2 & Tiago Gil Oliveira 1,2 Phospholipase D (PLD) is a key player in the modulation of multiple aspects of cell physiology and has been proposed as a therapeutic target for Alzheimer’s disease (AD). Here, we characterize a PLD mutant, pld-1, using the Caenorhabditis elegans animal model. We show that pld-1 animals present decreased phosphatidic acid levels, that PLD is the only source of total PLD activity and that pld-1 animals are more sensitive to the acute efects of ethanol. We further show that PLD is not essential for survival or for the normal performance in a battery of behavioral tests. Interestingly, pld-1 animals present both increased size and lipid stores levels. While ablation of PLD has no important efect in worm behavior, its ablation in an AD-like model that overexpresses amyloid-beta (Aβ), markedly improves various phenotypes such as motor tasks, prevents susceptibility to a proconvulsivant drug, has a protective efect upon serotonin treatment and reverts the biometric changes in the Aβ animals, leading to the normalization of the worm body size. Overall, this work proposes the C. elegans model as a relevant tool to study the functions of PLD and further supports the notion that PLD has a signifcant role in neurodegeneration.
    [Show full text]
  • Expression Profiling of Palmitate
    Expression Profiling of Palmitate- and Oleate-Regulated Genes Provides Novel Insights Into the Effects of Chronic Lipid Exposure on Pancreatic ␤-Cell Function Anna K. Busch,1 Damien Cordery,1 Gareth S. Denyer,2 and Trevor J. Biden1 Chronic lipid exposure is implicated in ␤-cell dysfunc- tion in type 2 diabetes. We therefore used oligonucleo- tide arrays to define global alterations in gene irculating nutrients regulate the function of pan- expression in MIN6 cells after 48-h pretreatment with creatic ␤-cells at multiple levels: they acutely oleate or palmitate. Altogether, 126 genes were altered stimulate insulin secretion, modulate insulin >1.9-fold by palmitate, 62 by oleate, and 46 by both biosynthesis, and, over the longer term, bring lipids. Importantly, nine of the palmitate-regulated C about adaptive changes in gene expression (1). Dysregu- genes are known to be correspondingly changed in ␤ lation of any of these aspects of the nutrient response models of type 2 diabetes. A tendency toward -cell ␤ de-differentiation was also apparent with palmitate: and/or alterations in -cell differentiation and survival are pyruvate carboxylase and mitochondrial glycerol potentially implicated in the onset of type 2 diabetes. This 3-phosphate dehydrogenase were downregulated, disease is associated with peripheral insulin resistance but whereas lactate dehydrogenase and fructose 1,6- only develops in conjunction with a failure of ␤-cell bisphosphatases were induced. Increases in the latter compensation, which otherwise counteracts the insulin (also seen with oleate), along with glucosamine-phos- resistance (2–5). Type 2 diabetic patients display reduc- phate N-acetyl transferase, imply upregulation of the tions in ␤-cell mass as compared with insulin-resistant hexosamine biosynthesis pathway in palmitate-treated cells.
    [Show full text]
  • Interface of Phospholipase Activity, Immune Cell Function, and Atherosclerosis
    biomolecules Review Interface of Phospholipase Activity, Immune Cell Function, and Atherosclerosis Robert M. Schilke y, Cassidy M. R. Blackburn y , Temitayo T. Bamgbose and Matthew D. Woolard * Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; [email protected] (R.M.S.); [email protected] (C.M.R.B.); [email protected] (T.T.B.) * Correspondence: [email protected]; Tel.: +1-(318)-675-4160 These authors contributed equally to this work. y Received: 12 September 2020; Accepted: 13 October 2020; Published: 15 October 2020 Abstract: Phospholipases are a family of lipid-altering enzymes that can either reduce or increase bioactive lipid levels. Bioactive lipids elicit signaling responses, activate transcription factors, promote G-coupled-protein activity, and modulate membrane fluidity, which mediates cellular function. Phospholipases and the bioactive lipids they produce are important regulators of immune cell activity, dictating both pro-inflammatory and pro-resolving activity. During atherosclerosis, pro-inflammatory and pro-resolving activities govern atherosclerosis progression and regression, respectively. This review will look at the interface of phospholipase activity, immune cell function, and atherosclerosis. Keywords: atherosclerosis; phospholipases; macrophages; T cells; lipins 1. Introduction All cellular membranes are composed mostly of phospholipids. Phospholipids are amphiphilic compounds with a hydrophilic, negatively charged phosphate group head and two hydrophobic fatty acid tail residues [1]. The glycerophospholipids, phospholipids with glycerol backbones, are the largest group of phospholipids, which are classified by the modification of the head group [1]. The negatively charged phosphate head forms an ionic bond with an amino alcohol. This bridges the glycerol backbone to the nitrogenous functional group (amino alcohol).
    [Show full text]
  • A Role for Phospholipase D1 in Neurotransmitter Release
    A role for phospholipase D1 in neurotransmitter release Yann Humeau*, Nicolas Vitale*, Sylvette Chasserot-Golaz*, Jean-Luc Dupont*, Guangwei Du†, Michael A. Frohman†, Marie-France Bader*, and Bernard Poulain*‡ *Centre National de la Recherche Scientifique, Unite´Propre de Recherche 2356, Neurotransmission et Se´cre´tion Neuroendocrine, 5 Rue Blaise Pascal, IFR37, 67084 Strasbourg, France; and †Department of Pharmacology and Center for Developmental Genetics, University Medical Center, Stony Brook, NY 11794-5140 Edited by Erwin Neher, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany, and approved October 23, 2001 (received for review July 13, 2001) Phosphatidic acid produced by phospholipase D (PLD) as a result of PLD1 plays an important role in Ca2ϩ-dependent exocytosis, signaling activity is thought to play a role in membrane vesicle operating a late stage subsequent to the cytoskeletal-mediated trafficking, either as an intracellular messenger or as a cone-shaped recruitment of secretory granules to exocytotic sites (14). We lipid that promotes membrane fusion. We recently described that, proposed that PLD1 constitutes a key factor for the late fusion in neuroendocrine cells, plasma membrane-associated PLD1 oper- event. Because Ca2ϩ-dependent membrane fusion proceeds ؉ ates at a stage of Ca2 -dependent exocytosis subsequent to cy- through a closely related mechanism in secretory cells and toskeletal-mediated recruitment of secretory granules to exocy- neurons, our results raised the question of whether PLD1 also totic sites. We show here that PLD1 also plays a crucial role in may play a role in neurotransmitter release. We show here that neurotransmitter release. Using purified rat brain synaptosomes PLD1 is present in rat nerve terminals at the presynaptic plasma subjected to hypotonic lysis and centrifugation, we found that membrane.
    [Show full text]
  • Supplemental Figures 04 12 2017
    Jung et al. 1 SUPPLEMENTAL FIGURES 2 3 Supplemental Figure 1. Clinical relevance of natural product methyltransferases (NPMTs) in brain disorders. (A) 4 Table summarizing characteristics of 11 NPMTs using data derived from the TCGA GBM and Rembrandt datasets for 5 relative expression levels and survival. In addition, published studies of the 11 NPMTs are summarized. (B) The 1 Jung et al. 6 expression levels of 10 NPMTs in glioblastoma versus non‐tumor brain are displayed in a heatmap, ranked by 7 significance and expression levels. *, p<0.05; **, p<0.01; ***, p<0.001. 8 2 Jung et al. 9 10 Supplemental Figure 2. Anatomical distribution of methyltransferase and metabolic signatures within 11 glioblastomas. The Ivy GAP dataset was downloaded and interrogated by histological structure for NNMT, NAMPT, 12 DNMT mRNA expression and selected gene expression signatures. The results are displayed on a heatmap. The 13 sample size of each histological region as indicated on the figure. 14 3 Jung et al. 15 16 Supplemental Figure 3. Altered expression of nicotinamide and nicotinate metabolism‐related enzymes in 17 glioblastoma. (A) Heatmap (fold change of expression) of whole 25 enzymes in the KEGG nicotinate and 18 nicotinamide metabolism gene set were analyzed in indicated glioblastoma expression datasets with Oncomine. 4 Jung et al. 19 Color bar intensity indicates percentile of fold change in glioblastoma relative to normal brain. (B) Nicotinamide and 20 nicotinate and methionine salvage pathways are displayed with the relative expression levels in glioblastoma 21 specimens in the TCGA GBM dataset indicated. 22 5 Jung et al. 23 24 Supplementary Figure 4.
    [Show full text]
  • Supplementary Figures S1-S3
    selected-GBID Uni-genename Uni-title p value NM_001299 CNN1 Calponin 1, basic, smooth muscle 0.0174 NM_002836 PTPRA Protein tyrosine phosphatase, receptor type, A 0.0256 NM_003380 VIM Vimentin 0.004 NM_033119 NKD1 Naked cuticle homolog 1 (Drosophila) 0.004 NM_052913 KIAA1913 KIAA1913 0.004 NM_005940 MMP11 Matrix metallopeptidase 11 (stromelysin 3) 0.0069 NM_018032 LUC7L LUC7-like (S. cerevisiae) 0.0367 NM_005269 GLI1 Glioma-associated oncogene homolog 1 (zinc finger protein) 0.0174 BE463997 ARL9 ADP-ribosylation factor-like 9 0.0367 NM_015939 CGI-09 CGI-09 protein 0.0023 NM_002961 S100A4 S100 calcium binding protein A4 (calcium protein, calvasculin, 0.0324 metastasin, murine placental homolog) NM_003014 SFRP4 Secreted frizzled-related protein 4 0.0005 NM_080759 DACH1 Dachshund homolog 1 (Drosophila) 0.004 NM_053042 KIAA1729 KIAA1729 protein 0.004 BX415194 MGC16121 Hypothetical protein MGC16121 0.0367 NM_182734 PLCB1 Phospholipase C, beta 1 (phosphoinositide-specific) 0.0023 NM_006643 SDCCAG3 Serologically defined colon cancer antigen 3 0.011 NM_000088 COL1A1 Collagen, type I, alpha 1 0.0174 NM_033292 CASP1 Caspase 1, apoptosis-related cysteine peptidase 0.0367 (interleukin 1, beta, convertase) NM_003956 CH25H Cholesterol 25-hydroxylase 0.0256 NM_144658 DOCK11 Dedicator of cytokinesis 11 0.011 AK024935 NODATA CDNA: FLJ21283 fis, clone COL01910 0.0363 AL050227 PTGER3 Prostaglandin E receptor 3 (subtype EP3) 0.0367 NM_012383 OSTF1 Osteoclast stimulating factor 1 0.0023 NM_145040 PRKCDBP Protein kinase C, delta binding protein 0.0069 NM_000089
    [Show full text]
  • Dynamic Phospholipid Signaling by G Protein-Coupled Receptors ⁎ Paschal A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1768 (2007) 888–900 www.elsevier.com/locate/bbamem Review Dynamic phospholipid signaling by G protein-coupled receptors ⁎ Paschal A. Oude Weernink a, , Li Han a, Karl H. Jakobs a, Martina Schmidt b a Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany b Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands Received 28 June 2006; received in revised form 18 September 2006; accepted 18 September 2006 Available online 23 September 2006 Abstract G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP2 by phospholipase C (PLC) into the second messengers IP3 and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP2, has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP2 by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.
    [Show full text]
  • Downloaded from the Mouse Lysosome Gene Database, Mlgdb
    1 Supplemental Figure Legends 2 3 Supplemental Figure S1: Epidermal-specific mTORC1 gain-of-function models show 4 increased mTORC1 activation and down-regulate EGFR and HER2 protein expression in a 5 mTORC1-sensitive manner. (A) Immunoblotting of Rheb1 S16H flox/flox keratinocyte cultures 6 infected with empty or adenoviral cre recombinase for markers of mTORC1 (p-S6, p-4E-BP1) 7 activity. (B) Tsc1 cKO epidermal lysates also show decreased expression of TSC2 by 8 immunoblotting of the same experiment as in Figure 2A. (C) Immunoblotting of Tsc2 flox/flox 9 keratinocyte cultures infected with empty or adenoviral cre recombinase showing decreased EGFR 10 and HER2 protein expression. (D) Expression of EGFR and HER2 was decreased in Tsc1 cre 11 keratinocytes compared to empty controls, and up-regulated in response to Torin1 (1µM, 24 hrs), 12 by immunoblot analyses. Immunoblots are contemporaneous and parallel from the same biological 13 replicate and represent the same experiment as depicted in Figure 7B. (E) Densitometry 14 quantification of representative immunoblot experiments shown in Figures 2E and S1D (r≥3; error 15 bars represent STDEV; p-values by Student’s T-test). 16 17 18 19 20 21 22 23 Supplemental Figure S2: EGFR and HER2 transcription are unchanged with epidermal/ 24 keratinocyte Tsc1 or Rptor loss. Egfr and Her2 mRNA levels in (A) Tsc1 cKO epidermal lysates, 25 (B) Tsc1 cKO keratinocyte lysates and(C) Tsc1 cre keratinocyte lysates are minimally altered 26 compared to their respective controls. (r≥3; error bars represent STDEV; p-values by Student’s T- 27 test).
    [Show full text]